Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
cellobiose + benzyl viologen = cellobiono-1,5-lactone + reduced benzyl viologen
-
6-phospho-D-gluconate + oxidized benzyl viologen = 6-phospho-D-arabino-hex-2-ulosonate + reduced benzyl viologen
-
D-galactonate + oxidized benzyl viologen = D-lyxo-hex-2-ulosonate + reduced benzyl viologen
-
D-glucarate + oxidized benzyl viologen = 2-oxo-D-glucarate + reduced benzyl viologen
-
D-gluconate + oxidized benzyl viologen = D-arabino-hex-2-ulosonate + reduced benzyl viologen
-
D-gulonate + oxidized benzyl viologen = D-arabino-hex-2-ulosonate + reduced benzyl viologen
-
D-lactate + oxidized benzyl viologen = pyruvate + reduced benzyl viologen
-
D-ribonate + oxidized benzyl viologen = D-erythro-pent-2-ulosonate + reduced benzyl viologen
-
D-xylonate + oxidized benzyl viologen = D-threo-pent-2-ulosonate + reduced benzyl viologen
-
galactarate + oxidized benzyl viologen = 2-oxogalactarate + reduced benzyl viologen
-
L-arabinonate + oxidized benzyl viologen = L-erythro-pent-2-ulosonate + reduced benzyl viologen
-
L-arabinuronate + oxidized benzyl viologen = ? + reduced benzyl viologen
-
L-mannonate + oxidized benzyl viologen = L-arabino-hex-2-ulosonate + reduced benzyl viologen
-
lactobionate + oxidized benzyl viologen = 4-O-(beta-D-galactopyranosido)-D-arabino-hex-2-ulosonate + reduced benzyl viologen
-
H2 + oxidized benzyl viologen = H+ + reduced benzyl viologen
-
H2 + oxidized benzyl viologen = reduced benzyl viologen + H+
-
NADH + oxidized benzyl viologen = NAD+ + reduced benzyl viologen
-
oxidized benzyl viologen + NADH = reduced benzyl viologen + NAD+
-
H2 + oxidized benzyl viologen = H+ + reduced benzyl viologen
-
H2 + benzyl viologen = H+ + reduced benzyl viologen
-
H2 + benzyl viologen = reduced benzyl viologen
-
H2 + oxidized benzyl viologen = H+ + reduced benzyl viologen
-
H2 + oxidized benzyl viologen = reduced benzyl viologen + H+
-
H2 + benzyl viologen = ?
-
H2 + oxidized benzyl viologen = reduced benzyl viologen
-
H2 + benzyl viologen = H2S + reduced benzyl viologen
-
H2 + benzyl viologen = H+ + reduced benzyl viologen
-
H2 + benzyl viologen = reduced benzyl viologen
-
H2 + oxidized benzyl viologen = H+ + reduced benzyl viologen
-
H2 + oxidized benzyl viologen = H+ + reduceded benzyl viologen
-
H2 + oxidized benzyl viologen = reduced benzyl viologen
-
H2 + oxidized benzyl viologen = reduced benzyl viologen + H+
-
xanthine + benzyl viologen + H2O = urate + reduced benzyl viologen
-
formate + benzyl viologen = CO2 + reduced benzyl viologen
-
formate + benzyl viologen = CO2 + reduced benzyl viologen + H+
-
NADH + benzyl viologen = NAD+ + reduced benzyl viologen
-
formate + benzyl viologen = CO2 + reduced benzyl viologen
-
formate + oxidized benzyl viologen = CO2 + reduced benzyl viologen
-
formate + benzyl viologen = CO2 + reduced benzyl viologen
-
benzyl viologen + NADH = reduced benzyl viologen + NAD+
-
oxidized benzyl viologen + NADH = reduced benzyl viologen + NAD+
-
oxidized benzyl viologen + NADH = reduced benzyl viologen + NAD+ + H+
-
oxidized benzyl viologen + NADPH = reduced benzyl viologen + NADP+
-
oxidized benzyl viologen + NADPH = reduced benzyl viologen + NADP+ + H+
-
phenylglyoxylate + benzyl viologen + CoA-SH = benzoyl-S-CoA + CO2 + reduced benzyl viologen
-
pyruvate + CoA + benzyl viologen = acetyl-CoA + CO2 + reduced benzyl viologen
-
pyruvate + CoA + oxidized benzyl viologen = acetyl-CoA + CO2 + reduced benzyl viologen + H+
-
oxalate + benzyl viologen = CO2 + reduced benzyl viologen
-
formylmethanofuran + oxidized benzylviologen + H2O = methanofuran + reduced benzylviologen + CO2
-
CO + H2O + benzyl viologen = CO2 + reduced benzyl viologen
-
acetaldehyde + H2O + oxidized benzyl viologen = acetate + H+ + reduced benzyl viologen
-
acetaldehyde + H2O + oxidized benzyl viologen = acetate + reduced benzyl viologen
-
benzaldehyde + H2O + oxidized benzyl viologen = benzoate + H+ + reduced benzyl viologen
-
benzaldehyde + H2O + oxidized benzyl viologen = benzoate + reduced benzyl viologen
-
benzaldehyde + H2O + oxidized benzyl viologen = benzoic acid + H+ + reduced benzyl viologen
-
cinnamaldehyde + H2O + oxidized benzyl viologen = cinnamate + reduced benzyl viologen
-
crotonaldehyde + H2O + oxidized benzyl viologen = crotonate + H+ + reduced benzyl viologen
-
crotonaldehyde + H2O + oxidized benzyl viologen = crotonate + reduced benzyl viologen
-
crotonaldehyde + H2O + oxidized benzyl viologen = crotonate + reduced benzyl viologen + H+
-
crotonaldehyde + H2O + oxidized benzyl viologen = pyruvate + H+ + reduced benzyl viologen
-
formaldehyde + H2O + oxidized benzyl viologen = formate + H+ + reduced benzyl viologen
-
formaldehyde + H2O + oxidized benzyl viologen = formate + reduced benzyl viologen
-
glutardialdehyde + H2O + oxidized benzyl viologen = ? + H+ + reduced benzyl viologen
-
glutaric dialdehyde + H2O + oxidized benzyl viologen = ?
-
indoleacetaldehyde + H2O + oxidized benzyl viologen = indoleacetate + H+ + reduced benzyl viologen
-
isovalerylaldehyde + H2O + oxidized benzyl viologen = isovalerate + H+ + reduced benzyl viologen
-
phenylacetaldehyde + H2O + oxidized benzyl viologen = phenylacetate + H+ + reduced benzyl viologen
-
phenylpropionaldehyde + H2O + oxidized benzyl viologen = phenylpropanoate + H+ + reduced benzyl viologen
-
propionaldehyde + H2O + oxidized benzyl viologen = propionate + H+ + reduced benzyl viologen
-
salicylaldehyde + H2O + oxidized benzyl viologen = salicylic acid + H+ + reduced benzyl viologen
-
succinic semialdehyde + H2O + oxidized benzyl viologen = succinic acid + H+ + reduced benzyl viologen
-
D-glyceraldehyde 3-phosphate + H2O + oxidized benzyl viologen = 3-phospho-D-glycerate + H+ + reduced benzyl viologen
-
D-glyceraldehyde-3-phosphate + H2O + oxidized benzyl viologen = 3-phospho-D-glycerate + H+ + reduced benzyl viologen
-
2-ketoisohexanoate + CoA + benzyl viologen = isopentanoyl-CoA + CO2 + reduced benzyl viologen
-
2-ketoisovalerate + CoA + benzyl viologen = S-(2-methylpropanoyl)-CoA + CO2 + reduced benzyl viologen
-
2-ketovalerate + CoA + benzyl viologen = butanoyl-CoA + CO2 + reduced benzyl viologen
-
acetaldehyde + H2O + oxidized benzyl viologen = acetate + H+ + reduced benzyl viologen
-
acetaldehyde + H2O + oxidized benzyl viologen = acetate + reduced benzyl viologen + H+
-
formaldehyde + H2O + oxidized benzyl viologen = formate + 2 H+ + reduced benzyl viologen
-
formaldehyde + H2O + oxidized benzyl viologen = formate + H+ + reduced benzyl viologen
-
formaldehyde + H2O + oxidized benzyl viologen = formate + reduced benzyl viologen + H+
-
glutaric dialdehyde + H2O + oxidized benzyl viologen = ? + reduced benzyl viologen + H+
-
indole-3-acetaldehyde + H2O + oxidized benzyl viologen = indole-3-acetate + H+ + reduced benzyl viologen
-
indole-3-acetaldehyde + H2O + oxidized benzyl viologen = indole-3-acetate + reduced benzyl viologen + H+
-
phenylpropionaldehyde + H2O + oxidized benzyl viologen = phenylpropionate + H+ + reduced benzyl viologen
-
phenylpropionaldehyde + H2O + oxidized benzyl viologen = phenylpropionate + reduced benzyl viologen + H+
-
propionaldehyde + H2O + oxidized benzyl viologen = propionate + H+ + reduced benzyl viologen
-
propionaldehyde + H2O + oxidized benzyl viologen = propionate + reduced benzyl viologen + H+
-
succinic semialdehyde + H2O + oxidized benzyl viologen = succinate + H+ + reduced benzyl viologen
-
succinic semialdehyde + H2O + oxidized benzyl viologen = succinate + reduced benzyl viologen + H+
-
2-ethylhexanal + H2O + oxidized benzyl viologen = 2-ethylhexanoate + reduced benzyl viologen + H+
-
2-methylbutyraldehyde + H2O + oxidized benzyl viologen = 2-methylbutyrate + reduced benzyl viologen + H+
-
2-methylvaleraldehyde + H2O + oxidized benzyl viologen = 2-methylvalerate + reduced benzyl viologen + H+
-
2-naphthaldehyde + H2O + oxidized benzyl viologen = 2-naphthoate + reduced benzyl viologen + H+
-
3-phenylbutyraldehyde + H2O + oxidized benzyl viologen = 3-phenylbutyrate + reduced benzyl viologen + H+
-
cinnamaldehyde + H2O + oxidized benzyl viologen = cinnamate + reduced benzyl viologen + H+
-
hydratropaldehyde + H2O + oxidized benzyl viologen = ? + reduced benzyl viologen + H+
-
isobutyraldehyde + H2O + oxidized benzyl viologen = isobutyrate + reduced benzyl viologen + H+
-
4-Methoxybenzaldehyde + benzyl viologen = 4-Methoxybenzoate + reduced carbamoyl methyl viologen
-
Acetaldehyde + benzyl viologen = acetate + reduced benzyl viologen
-
acetaldehyde + benzyl viologen = acetic acid + reduced benzyl viologen
-
Benzaldehyde + benzyl viologen = Benzoate + reduced benzyl viologen
-
benzaldehyde + benzyl viologen = benzoic acid + reduced benzyl viologen
-
Butyraldehyde + benzyl viologen = Butanoate + reduced benzyl viologen
-
crotonaldehyde + benzyl viologen = crotonic acid + reduced benzyl viologen
-
Crotonaldehyde + benzyl viologen = E-2-Butenoate + reduced benzyl viologen
-
DL-glyceraldehyde + benzyl viologen = alpha,beta-dihydroxypropionic acid + reduced benzyl viologen
-
formaldehyde + benzyl viologen = formic acid + reduced benzyl viologen
-
Furfural + benzyl viologen = 2-Furancarboxylic acid + reduced benzyl viologen
-
Glutaraldehyde + benzyl viologen = Glutarate + reduced benzyl viologen
-
glutaraldehyde + benzyl viologen = glutaric acid + reduced benzyl viologen
-
Glyceraldehyde + benzyl viologen = Glycerate + reduced benzyl viologen
-
Glycolaldehyde + benzyl viologen = Glycolate + reduced benzyl viologen
-
glyoxylate + benzyl viologen = oxalic acid + reduced benzyl viologen
-
Hexanal + benzyl viologen = Hexanoate + reduced benzyl viologen
-
Indoleacetaldehyde + benzyl viologen = Indoleacetate + reduced benzyl viologen
-
isovaleraldehyde + benzyl viologen = isopentanoic acid + reduced benzyl viologen
-
Isovaleraldehyde + benzyl viologen = Isovalerate + reduced benzyl viologen
-
Methanal + benzyl viologen = Formate + reduced benzyl viologen
-
Pentanal + benzyl viologen = Pentanoate + reduced benzyl viologen
-
Phenylacetaldehyde + benzyl viologen = Phenylacetate + reduced benzyl viologen
-
phenylacetaldehyde + benzyl viologen = phenylacetic acid + reduced benzyl viologen
-
Propanal + benzyl viologen = Propanoate + reduced benzyl viologen
-
propionaldehyde + benzyl viologen = propionic acid + reduced benzyl viologen
-
Salicylaldehyde + benzyl viologen = Salicylate + reduced benzyl viologen
-
salicylaldehyde + benzyl viologen = salicylic acid + reduced benzyl viologen
-
acetaldehyde + H2O + benzylviologen = acetate + reduced benzylviologen
-
benzaldehyde + H2O + benzylviologen = benzoate + reduced benzylviologen
-
butyraldehyde + H2O + benzylviologen = butanoate + reduced benzylviologen
-
formaldehyde + H2O + benzylviologen = formate + reduced benzylviologen
-
furfural + H2O + benzylviologen = furfurate + reduced benzylviologen
-
glutaraldehyde + H2O + benzylviologen = glutarate + reduced benzylviologen
-
glycoaldehyde + H2O + benzylviologen = glycolate + reduced benzylviologen
-
hexanal + H2O + benzylviologen = hexanoate + reduced benzylviologen
-
octanal + H2O + benzylviologen = octanoate + reduced benzylviologen
-
p-anisaldehyde + H2O + benzylviologen = p-anisic acid + reduced benzylviologen
-
pentanal + H2O + benzylviologen = pentanoate + reduced benzylviologen
-
phenylacetaldehyde + H2O + benzylviologen = phenylacetate + reduced benzylviologen
-
propionaldehyde + H2O + benzylviologen = propionate + reduced benzylviologen
-
salicylaldehyde + H2O + benzylviologen = salicylate + reduced benzylviologen
-
arsenate + benzyl viologen = arsenite + oxidized benzyl viologen
-
succinate + benzyl viologen = fumarate + reduced benzyl viologen
-
succinate + oxidized benzyl viologen = fumarate + reduced benzyl viologen
-
acryloyl-CoA + benzyl viologen = propanoyl-CoA + reduced benzyl viologen
-
5-methyltetrahydrofolate + benzyl viologen = 5,10-methylenetetrahydrofolate + reduced benzyl viologen
-
N,N-dimethyl-p-phenylenediamine + oxidized benzyl viologen = ?
-
hydroxylamine + benzyl viologen reduced = ? + benzyl viologen oxidized
-
nitrite + benzyl viologen reduced + H+ = NH4+ + benzyl viologen oxidized + H2O
-
trimethylamine N-oxide + oxidized benzyl viologen + H+ = trimethylamine + reduced benzyl viologen + H2O
-
hydroxylamine + H2O + benzylviologen = NO + reduced benzylviologen + 2 H+
-
benzyl viologen + NADH = ? + NAD+
-
benzyl viologen + NADH + H+ = ?
-
benzyl viologen + NADPH + H+ = ?
-
sulfide + oxidized benzyl viologen = sulfur + reduced benzyl viologen + H+
-
dimethylsulfide + H2O + oxidized benzyl viologen = dimethylsulfoxide + reduced benzyl viologen
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(R,S)-2-oxo-3-methylpentanoate + reduced benzyl viologen = 2-hydroxy-3-methylpentanoate + oxidized benzyl viologen
-
-
(S)-2-oxo-3-methylpentanoate + reduced benzyl viologen = 2-hydroxy-3-methylpentanoate + oxidized benzyl viologen
-
-
2-oxo-3,3-dimethyl-4-hydroxybutanoate + reduced benzyl viologen = 3,3-dimethyl-2,4-dihydroxybutanoate + oxidized benzyl viologen
-
-
2-oxo-4-(hydroxy-methyl-phosphinyl)-butanoate + reduced benzyl viologen = 2-hydroxy-4-(hydroxymethylphosphinyl)-butanoate + oxidized benzyl viologen
-
-
2-oxo-4-methylpentanoate + reduced benzyl viologen = 2-hydroxy-4-methylpentanoate + oxidized benzyl viologen
-
-
2-oxo-carboxylate + reduced benzyl viologen = (2R)-hydroxy-carboxylate + oxidized benzyl viologen
-
-
2-oxoadipate + reduced benzyl viologen = 2-hydroxyadipate + oxidized benzyl viologen
-
-
2-oxoglutarate + reduced benzyl viologen = 2-hydroxyglutarate + oxidized benzyl viologen
-
-
2-oxononanoate + reduced benzyl viologen = 2-hydroxynonanoate + oxidized benzyl viologen
-
-
3-fluoropyruvate + reduced benzyl viologen = 3-fluoro-2-hydroxypropionate + oxidized benzyl viologen
-
-
5-benzyloxyindolylpyruvate + reduced benzyl viologen = 3-(5-benzyloxyindolyl)-2-hydroxypropionate + oxidized benzyl viologen
-
-
indolylpyruvate + reduced benzyl viologen = 2-hydroxy-3-indolylpropionate + oxidized benzyl viologen
-
-
phenylpyruvate + reduced benzyl viologen = (2R)-phenyllactate + oxidized benzyl viologen
-
-
phenylpyruvate + reduced benzyl viologen = 2-hydroxy-3-phenylpropionate + oxidized benzyl viologen
-
-
phenylpyruvate + reduced benzyl viologen = phenyllactate + oxidized benzyl viologen
-
-
pyruvate + reduced benzyl viologen = lactate + oxidized benzyl viologen
-
-
H+ + reduced benzyl viologen = H2 + oxidized benzyl viologen
-
-
H+ + reduced benzyl viologen = H2 + oxidized benzyl viologen
-
-
H2 + oxidized benzyl viologen = H+ + reduceded benzyl viologen
-
-
CO2 + reduced benzyl viologen = formate + benzyl viologen
-
-
reduced benzyl viologen + NADP+ + H+ = oxidized benzyl viologen + NADPH
-
-
isobutyryl-CoA + CO2 + reduced benzyl viologen = 2-oxoisopentanoate + CoA + benzyl viologen
-
-
arsenate + benzyl viologen = arsenite + oxidized benzyl viologen
-
-
tetrachloroethene + reduced benzylviologen = trichloroethene + chloride + benzylviologen
-
-
fumarate + reduced benzylviologen = succinate + benzylviologen
-
-
fumarate + reduced benzyl viologen = succinate + benzyl viologen
-
-
fumarate + reduced benzyl viologen = succinate + oxidized benzyl viologen
-
-
crotonobetaine + reduced benzylviologen = gamma-butyrobetaine + oxidized benzylviologen
-
-
crotonobetainyl-CoA + reduced benzylviologen = gamma-butyrobetainyl-CoA + oxidized benzylviologen
-
-
nitrate + reduced benzyl viologen = nitrite + benzyl viologen
-
-
nitrite + reduced benzyl viologen = ammonia + oxidized benzyl viologen
-
-
nitrate + reduced benzyl viologen = nitrite + benzyl viologen
-
-
nitrite + reduced benzyl viologen = ammonium hydroxide + H2O + benzyl viologen
-
-
nitrite + reduced benzyl viologen = nitric oxide + oxidized benzyl viologen
-
-
nitrite + reduced benzyl viologen = NO + H2O + oxidized benzyl viologen
-
-
nitrite + reduced benzyl viologen = NO + oxidized benzyl viologen
-
-
hydroxylamine + benzyl viologen reduced = ? + benzyl viologen oxidized
-
nitrite + benzyl viologen reduced + H+ = NH4+ + benzyl viologen oxidized + H2O
-
hydroxylamine + reduced benzyl viologen = ? + oxidized benzyl viologen
-
-
N2O + reduced benzyl viologen = N2 + H2O + benzyl viologen
-
-
N2O + reduced benzyl viologen = N2 + oxidized benzyl viologen
-
-
nitrous oxide + reduced benzyl viologen + H+ = nitrogen + H2O + oxidized benzyl viologen
-
-
nitrate + reduced benzyl viologen = nitrite + benzyl viologen
-
-
nitrate + reduced benzyl viologen = nitrite + oxidized benzyl viologen + H2O
-
-
nitrate + reduced benzyl viologen = nitrite + H2O + oxidized benzyl viologen
-
-
sulfur + reduced benzyl viologen + H+ = sulfide + oxidized benzyl viologen
-
-
thiosulfate + reduced benzyl viologen = sulfite + hydrogen sulfide + oxidized benzyl viologen
-
-
(ethylsulfinyl)benzene + reduced benzyl viologen = (ethylsulfanyl)benzene + H2O + oxidized benzyl viologen
-
-
(methylsulfinyl)benzene + reduced benzyl viologen = (methylsulfanyl)benzene + H2O + oxidized benzyl viologen
-
-
(propan-2-ylsulfinyl)benzene + reduced benzyl viologen = (propan-2-ylsulfanyl)benzene + H2O + oxidized benzyl viologen
-
-
(propylsulfanyl)benzene + reduced benzyl viologen = (propylsulfinyl)benzene + H2O + oxidized benzyl viologen
-
-
1-bromo-4-(methylsulfinyl)benzene + reduced benzyl viologen = 1-bromo-4-(methylsulfanyl)benzene + H2O + oxidized benzyl viologen
-
-
1-methyl-4-(methylsulfinyl)benzene + reduced benzyl viologen = 1-methyl-4-(methylsulfanyl)benzene + H2O + oxidized benzyl viologen
-
-
2-carboxypyridine N-oxide + reduced benzyl viologen + H2O = 2-carboxypyridine + oxidized benzyl viologen
-
-
2-chloropyridine N-oxide + reduced benzyl viologen + H2O = 2-chloropyridine + oxidized benzyl viologen
-
-
2-hydroxymethylpyridine N-oxide + reduced benzyl viologen + H2O = 2-hydroxymethylpyridine + oxidized benzyl viologen
-
-
2-mercaptopyridine N-oxide + reduced benzyl viologen + H2O = 2-mercaptopyridine + oxidized benzyl viologen
-
-
2-methylpyridine N-oxide + reduced benzyl viologen + H2O = 2-methylpyridine + oxidized benzyl viologen
-
-
3-amidopyridine N-oxide + reduced benzyl viologen + H2O = 3-amidopyridine + oxidized benzyl viologen
-
-
3-carboxypyridine N-oxide + reduced benzyl viologen + H2O = 3-carboxypyridine + oxidized benzyl viologen
-
-
3-hydroxymethylpyridine N-oxide + reduced benzyl viologen + H2O = 3-hydroxymethylpyridine + oxidized benzyl viologen
-
-
3-hydroxypyridine N-oxide + reduced benzyl viologen + H2O = 3-hydroxypyridine + oxidized benzyl viologen
-
-
3-methylpyridine N-oxide + reduced benzyl viologen + H2O = 3-methylpyridine + oxidized benzyl viologen
-
-
3alpha-hydroxybenzylpyridine N-oxide + reduced benzyl viologen + H2O = 3alpha-hydroxybenzylpyridine + oxidized benzyl viologen
-
-
4-carboxypyridine N-oxide + reduced benzyl viologen + H2O = 4-carboxypyridine + oxidized benzyl viologen
-
-
4-chloropyridine N-oxide + reduced benzyl viologen + H2O = 4-chloropyridine + oxidized benzyl viologen
-
-
4-hydroxymethylpyridine N-oxide + reduced benzyl viologen + H2O = 4-hydroxymethylpyridine + oxidized benzyl viologen
-
-
4-methylmorpholine N-oxide + reduced benzyl viologen + H2O = 4-methylmorpholine + oxidized benzyl viologen
-
-
4-methylpyridine N-oxide + reduced benzyl viologen + H2O = 4-methylpyridine + oxidized benzyl viologen
-
-
4-phenylpyridine N-oxide + reduced benzyl viologen + H2O = 4-phenylpyridine + oxidized benzyl viologen
-
-
dimethyldodecylamine N-oxide + reduced benzyl viologen + H2O = dimethyldodecylamine + oxidized benzyl viologen
-
-
dimethylsulfoxide + reduced benzyl viologen + H2O = dimethylsulfide + oxidized benzyl viologen
-
-
dimethylsulfoxide + reduced benzyl viologen = dimethylsulfide + H2O + oxidized benzyl viologen
-
-
dithane 1-oxide + reduced benzyl viologen + H2O = dithane + oxidized benzyl viologen
-
-
DL-methyl phenyl sulfoxide + reduced benzyl viologen + H2O = DL-methyl phenyl sulfide + oxidized benzyl viologen
-
-
methionine sulfoxide + reduced benzyl viologen + H2O = methionine + oxidized benzyl viologen
-
-
pyridine N-oxide + reduced benzyl viologen + H2O = pyridine + oxidized benzyl viologen
-
-
tetramethylene sulfoxide + reduced benzyl viologen + H2O = tetramethylene sulfide + oxidized benzyl viologen
-
-
trimethylamine N-oxide + reduced benzyl viologen + H2O = trimethylamine + oxidized benzyl viologen
-
-
trimethylamine N-oxide + reduced benzyl viologen = trimethylamine + oxidized benzyl viologen
-
-
[(methylsulfinyl)methyl]benzene + reduced benzyl viologen = [(methylsulfanyl)methyl]benzene + H2O + oxidized benzyl viologen
-
-
dimethyl sulfoxide + reduced benzyl viologen = dimethyl sulfide + oxidized benzyl viologen + H2O
-
-
L-methionine (R)-S-oxide + reduced benzyl viologen = L-methionine + oxidized benzyl viologen + H2O
-
-
L-methionine (S)-S-oxide + reduced benzyl viologen = L-methionine + oxidized benzyl viologen + H2O
-
-
L-methionine S-oxide in chaperone SurA + reduced benzyl viologen = L-methionine in chaperone SurA + oxidized benzyl viologen + H2O
-
-
L-methionine S-oxide in lipoprotein Pal + reduced benzyl viologen = L-methionine in lipoprotein Pal + oxidized benzyl viologen + H2O
-
-
L-methionine sulfoxide + reduced benzyl viologen = L-methionine + oxidized benzyl viologen + H2O
-
-
N-acetyl-L-methionine (S)-sulfoxide + reduced benzyl viologen = N-acetyl-L-methionine + oxidized benzyl viologen + H2O
-
-
oxidized calmodulin + reduced benzyl viologen = reduced calmodulin + oxidized benzyl viologen + H2O
-
-
tetrahydrothiophene oxide + reduced benzyl viologen = tetrahydrothiophene + oxidized benzyl viologen + H2O
-
-
trimethylamine N-oxide + reduced benzyl viologen = trimethylamine + oxidized benzyl viologen + H2O
-
-
coenzyme B-coenzyme M disulfide + reduced benzyl viologen = coenzyme B + coenzyme M + benzyl viologen
-
-
N-(7-[(2-sulfoethyl)dithio]heptanoyl)-3-O-phospho-L-threonine + reduced benzyl viologen = coenzyme B + coenzyme M + benzyl viologen
-
-
N-(7-[(2-sulfoethyl)dithio]heptanoyl)-3-O-phospho-L-threonine + reduced benzylviologen = coenzyme B + coenzyme M + benzylviologen
-
-
N-(7-[(2-sulfoethyl)dithio]heptanoyl)-3-O-phospho-L-threonine + reduced benzylviologen = coenzyme B + coenzyme M + oxidized benzyl viologen
-
-
nitrate + reduced benzyl viologen = nitrite + oxidized benzyl viologen
-
-
nitrate + reduced benzyl viologen = nitrite + oxidized benzyl viologen + H2O
-
-
chlorate + reduced benzyl viologen = chlorite + H2O + benzyl viologen
-
-
selenate + reduced benzyl viologen = selenite + H2O + benzyl viologen
-
-
selenate + reduced benzyl viologen = selenite + H2O + oxidized benzyl viologen
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Anaerobic metabolism of L-phenylalanine via benzoyl-CoA in the denitrifying bacterium Thauera aromatica
1997
Schneider, S.; Mohamed, M.E.S.; Fuchs, G.
Arch. Microbiol.
168
310-320
Phenylglyoxylate:NAD+ oxidoreductase (CoA benzoylating), a new enzyme of anaerobic phenylalanine metabolism in the denitrifying bacterium Azoarcus evansii
1998
Hirsch, W.; Schägger, H.; Fuchs, G.
Eur. J. Biochem.
251
907-915
Thermodynamics of the formylmethanofuran dehydrogenase reaction in Methanobacterium thermoautotrophicum
1994
Bertram, P.A.; Thauer, R.K.
Eur. J. Biochem.
226
811-818
The active species of 'CO2' utilized by formylmethanofuran dehydrogenase from Methanogenic archaea
1997
Vorholt, J.A.; Thauer, R.K.
Eur. J. Biochem.
248
919-924
Purification, characterization, and metabolic function of tungsten-containing aldehyde ferredoxin oxidoreductase from the hyperthermophilic and proteolytic archaeon Thermococcus strain ES-1
1995
Heider, J.; Ma, K.; Adams, M.W.W.
J. Bacteriol.
177
4757-4764
Purification and characterization of a benzylviologen-linked tungsten-containing aldehyde oxidoreductase from Desulfovibrio gigas
1995
Hensgens, C.M.H.; Hagen, W.R.; Hansen, T.A.
J. Bacteriol.
177
6195-6200
-
Pterin cofactor, substrate specificity, and observations on the kinetics of the reversible tungsten-containing aldehyde oxidoreductase from Clostridium thermoaceticum
1995
Huber, C.; Skopan, H.; Feicht, R.; White, H.; Simon, H.
Arch. Microbiol.
164
110-118
Purification and some properties of the tungsten-containing carboxylic acid reductase from Clostridium formicoaceticum
1991
White, H.; Feicht, R.; Huber, C.; Lottspeich, F.; Simon, H.
Biol. Chem. Hoppe-Seyler
372
999-1005
Formate dehydrogenase from Pseudomonas oxalaticus
1978
Mueller, U.; Willnow, P.; Ruschig, U.; Hoepner, T.
Eur. J. Biochem.
83
485-498
Formate dehydrogenase from Pseudomonas oxalaticus
1982
Hoepner, T.; Ruschig, U.; Mueller, U.; Willnow, P.
Methods Enzymol.
89
531-537
Formate dehydrogenase from Clostridium acidiurici
1972
Kearny, J.J.; Sagers, R.D.
J. Bacteriol.
109
152-161
Physiological and biochemical characterization of the soluble formate dehydrogenase, a molybdoenzyme from Alcaligenes eutrophus
1993
Friedebold, J.; Bowien, B.
J. Bacteriol.
175
4719-4728
Catalytic properties, molecular composition and sequence alignment of pyruvate:ferredoxin oxidoreductase from the methanogenic archaeon Methanosarcina barkeri (strain Fusaro)
1996
Bock, A.K.; Kunow, J.; Glasemacher, J.; Schönheit, P.
Eur. J. Biochem.
237
35-44
Purification of a hexaheme cytochrome c552 from Escherichia coli K 12 and its properties as a nitrite reductase
1986
Kajie, S.; Anraku, Y.
Eur. J. Biochem.
154
457-463
Some properties of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum
1985
Morpeth, F.F.
Biochem. J.
228
557-564
Low-potential cytochrome b as an essential electron-transport component of menaquinone reduction by formate in Vibrio succinogenes
1983
Unden, G.; Kroeger, A.
Biochim. Biophys. Acta
725
325-331
Further characterization of trimethylamine N-oxide reductase from Escherichia coli, a molybdoprotein
1986
Yamamoto, I.; Okubo, N.; Ishimoto, M.
J. Biochem.
99
1773-1779
The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes
1992
Dross, F.; Geisler, V.; Lenger, R.; Theis, F.; Krafft, T.; Fahrenholz, F.; Kojro, E.; Duchene, A.; Tripier, D.; Juvenal, K.; Krueger, A.
Eur. J. Biochem.
206
93-102
Erratum
1993
Dross, F.; Geisler, V.; Lenger, R.; Theis, F.; Krafft, T.; Fahrenholz, F.; Kojro, E.; Duchene, A.; Tripier, D.; Juvenal, K.; Krueger, A.
Eur. J. Biochem.
214
949-950
Purification and some characteristics of a cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes
1989
Teraguchi, S.; Hollocher, T.C.
J. Biol. Chem.
264
1972-1979
-
Properties of the particulate enzyme F420-reducing hydrogenase isolated from Methanospirillum hungatei
1987
Sprott, G.D.; Shaw, K.M.; Beveridge, T.J.
Can. J. Microbiol.
33
896-904
Biochemical characterization of the 8-hydroxy-5-deazaflavin-reactive hydrogenase from Methanosarcina barkeri Fusaro
1995
Michel, R.; Massanz, C.; Kostka, S.; Richter, M.; Fiebig, K.
Eur. J. Biochem.
233
727-735
Conversion of the central [4Fe-4S] cluster into a [3Fe-4S] cluster leads to reduced hydrogen-uptake activity of the F420-reducing hydrogenase of Methanococcus voltae
2000
Bingemann, R.; Klein, A.
Eur. J. Biochem.
267
6612-6618
Purification and properties of the membrane-bound by hydrogenase from Desulfovibrio desulfuricans
1983
Lalla-Maharajh, W.V.; Hall, D.O.; Cammack, R.; Rao, K.K.
Biochem. J.
209
445-454
Purification and properties of 5,10-methylenetetrahydrofolate reductase from Clostridium formicoaceticum
1986
Clark, J.E.; Ljungdahl, L.G.
Methods Enzymol.
122
392-399
Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum
1984
Clark, J.E.; Ljungdahl, L.G.
J. Biol. Chem.
259
10845-10849
NAD(P)H:rubredoxin oxidoreductase from Pyrococcus furiosus
2001
Ma, K.; Adams, M.W.W.
Methods Enzymol.
334
55-62
Functional analysis by site-directed mutagenesis of the NAD+-reducing hydrogenase from Ralstonia eutropha
2002
Burgdorf, T.; De Lacey, A.L.; Friedrich, B.
J. Bacteriol.
184
6280-6288
Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction
2000
Ma, K.; Weiss, R.; Adams, M.W.W.
J. Bacteriol.
182
1864-1871
Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coli K12
1986
Sawers, R.G.; Boxer, D.H.
Eur. J. Biochem.
156
265-275
The effects of pH and redox potential on the hydrogen production activity of the hydrogenase from Megasphaera elsdenii
1981
Van Dijk, C.; Veeger, C.
Eur. J. Biochem.
114
209-219
Purification and properties of hydrogenase from Megasphaera elsdenii
1979
Van Dijk, C.; Mayhew, S.G.; Grande, H.J.; Veeger, C.
Eur. J. Biochem.
102
317-330
-
NAD-dependent hydrogenase from the hydrogen-oxidizing bacterium Alcaligenes eutrophum Z1. Kinetic studies of the NADH-dehydrogenase activity
1985
Popov, V.O.; Gazaryan, I.G.; Egorov, A.M.; Berezin, I.V.
Biochim. Biophys. Acta
827
466-471
Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H 16
1976
Schneider, K.; Schlegel, H.G.
Biochim. Biophys. Acta
452
66-80
-
Effect of nickel on activity and subunit composition of purified hydrogenase from Nocardia opaca 1 b
1984
Schneider, K.; Schlegel, H.G.; Jochim, K.
Eur. J. Biochem.
138
553-541
Expression of a functional NAD-reducing [NiFe] hydrogenase from the gram-positive Rhodococcus opacus in the gram-negative Ralstonia eutropha
2002
Porthun, A.; Bernhard, M.; Friedrich, B.
Arch. Microbiol.
177
159-166
Purification and characterization of acetoin:2,6-dichlorophenolindophenol oxidoreductase, dihydrolipoamide dehydrogenase, and dihydrolipoamide acetyltransferase of the Pelobacter carbinolicus acetoin dehydrogenase enzyme system
1991
Oppermann, F.B.; Schmidt, B.; Steinbuchel, A.
J. Bacteriol.
173
757-767
Nicotinic acid metabolism. III. Purification and properties of a nicotinic acid hydroxylase
1969
Holcenberg, J.S.; Stadtman, E.R.
J. Biol. Chem.
244
1194-1203
Characterization of xanthine dehydrogenase from the anaerobic bacterium Veillonella atypica and identification of molybdopterin-cytosine-dinucleotide-containing molybdenum cofactor
1996
Gremer, L.; Meyer, O.
Eur. J. Biochem.
238
862-866
-
Purification and characterization of xanthine dehydrogenase from Clostridium acidiurici grown in the presence of selenium
1984
Wagner, R.; Cammack, R.; Andreesen, J.R.
Biochim. Biophys. Acta
791
63-74
Purification and molecular characterization of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus: the third of a putative five-member tungstoenzyme family
1999
Roy, R.; Mukund, S.; Schut, G.J.; Dunn, D.M.; Weiss, R.; Adams, M.W.
J. Bacteriol.
181
1171-1180
Aldehyde oxidoreductases from Pyrococcus furiosus
2001
Roy, R.; Menon, A.L.; Adams, M.W.W.
Methods Enzymol.
331
132-144
Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus
1995
Mukund, S.; Adams, M.W.
J. Biol. Chem.
270
8389-8392
The ferredoxin-dependent conversion of glyceraldehyde-3-phosphate in the hyperthermophilic archaeon Pyrococcus furiosus represents a novel site of glycolytic regulation
1998
van der Oost, J.; Schut, G.; Kengen, S.W.; Hagen, W.R.; Thomm, M.; de Vos, W.M.
J. Biol. Chem.
273
28149-28154
Structures and functions of four anabolic 2-oxoacid oxidoreductases in Methanobacterium thermoautotrophicum
1997
Tersteegen, A.; Linder, D.; Thauer, R.K.; Hedderich, R.
Eur. J. Biochem.
244
862-868
-
Molecular characterization of a copper-containing nitrite reductase from Rhodopseudomonas sphaereoides forma sp. denitrificans
1985
Michalski, W.P.; Nicholas, D.J.D.
Biochim. Biophys. Acta
828
130-137
Selenate reduction by Enterobacter cloacae SLD1a-1 is catalysed by a molybdenum-dependent membrane-bound enzyme that is distinct from the membrane-bound nitrate reductase
2003
Watts, C.A.; Ridley, H.; Condie, K.L.; Leaver, J.T.; Richardson, D.J.; Butler, C.S.
FEMS Microbiol. Lett.
228
273-279
Detection and localization of two hydrogenases in Methylococcus capsulatus (Bath) and their potential role in methane metabolism
2002
Hanczar, T.; Csaki, R.; Bodrossy, L.; Murrell, J.C.; Kovacs, K.L.
Arch. Microbiol.
177
167-172
Proteus mirabilis dehydrogenates aldonates and aldarates with an (R)-configured alpha-carbon atom to the corresponding 2-oxocarboxylates
1994
Schinschel, C.; Simon, H.
Bioorg. Med. Chem.
2
483-491
The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: purification and properties
2003
Laukel, M.; Chistoserdova, L.; Lidstrom, M.E.; Vorholt, J.A.
Eur. J. Biochem.
270
325-333
Tungsten-containing aldehyde oxidoreductase of Eubacterium acidaminophilum. Isolation, characterization and molecular analysis
2004
Rauh, D.; Graentzdoerffer, A.; Granderath, K.; Andreesen, J.R.; Pich, A.
Eur. J. Biochem.
271
212-219
Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus)
2003
Polcyn, W.; Lucinski, R.
FEMS Microbiol. Lett.
226
331-337
The soluble NAD+-Reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH
2005
Burgdorf, T.; van der Linden, E.; Bernhard, M.; Yin, Q.Y.; Back, J.W.; Hartog, A.F.; Muijsers, A.O.; de Koster, C.G.; Albracht, S.P.; Friedrich, B.
J. Bacteriol.
187
3122-3132
Purification and characterization of the tungsten enzyme aldehyde:ferredoxin oxidoreductase from the hyperthermophilic denitrifier Pyrobaculum aerophilum
2005
Hagedoorn, P.L.; Chen, T.; Schroder, I.; Piersma, S.R.; Vries, S.D.; Hagen, W.R.
J. Biol. Inorg. Chem.
10
259-269
The soluble [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanides in its active site, one of which is responsible for the insensitivity towards oxygen
2004
Van der Linden, E.; Burgdorf, T.; Bernhard, M.; Bleijlevens, B.; Friedrich, B.; Albracht, S.P.
J. Biol. Inorg. Chem.
9
616-626
A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis
2004
Soboh, B.; Linder, D.; Hedderich, R.
Microbiology
150
2451-2463
Characterization of hydrogenase and reductive dehalogenase activities of Dehalococcoides ethenogenes strain 195
2005
Nijenhuis, I.; Zinder, S.H.
Appl. Environ. Microbiol.
71
1664-1667
Reactions of H2, CO, and O2 with active [NiFe]-hydrogenase from Allochromatium vinosum. A stopped-flow infrared study
2004
George, S.J.; Kurkin, S.; Thorneley, R.N.; Albracht, S.P.
Biochemistry
43
6808-6819
Properties of stable hydrogenase from the purple sulfur bacterium Lamprobacter modestohalophilus
2004
Zadvorny, O.A.; Zorin, N.A.; Gogotov, I.N.; Gorlenko, V.M.
Biochemistry
69
164-169
Characterization of a cytosolic NiFe-hydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1
2003
Kanai, T.; Ito, S.; Imanaka, T.
J. Bacteriol.
185
1705-1711
Characterization of the menaquinone reduction site in the diheme cytochrome b membrane anchor of Wolinella succinogenes NiFe-hydrogenase
2004
Gross, R.; Pisa, R.; Sanger, M.; Lancaster, C.R.; Simon, J.
J. Biol. Chem.
279
274-281
Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens
2003
Laska, S.; Lottspeich, F.; Kletzin, A.
Microbiology
149
2357-2371
Characterization of catalytic properties of hydrogenase isolated from the unicellular cyanobacterium Gloeocapsa alpicola CALU 743
2006
Serebryakova, L.T.; Sheremetieva, M.E.
Biochemistry
71
1370-1376
An autocatalytic step in the reaction cycle of hydrogenase from Thiocapsa roseopersicina can explain the special characteristics of the enzyme reaction
2005
Osz, J.; Bagyinka, C.
Biophys. J.
89
1984-1989
Assignment of the [4Fe-4S] clusters of Ech hydrogenase from Methanosarcina barkeri to individual subunits via the characterization of site-directed mutants
2005
Forzi, L.; Koch, J.; Guss, A.M.; Radosevich, C.G.; Metcalf, W.W.; Hedderich, R.
FEBS J.
272
4741-4753
Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum
2005
Hattori, S.; Galushko, A.S.; Kamagata, Y.; Schink, B.
J. Bacteriol.
187
3471-3476
WOR5, a novel tungsten-containing aldehyde oxidoreductase from Pyrococcus furiosus with a broad substrate specificity
2005
Bevers, L.E.; Bol, E.; Hagedoorn, P.L.; Hagen, W.R.
J. Bacteriol.
187
7056-7061
Redox chemistry of tungsten and iron-sulfur prosthetic groups in Pyrococcus furiosus formaldehyde ferredoxin oxidoreductase
2006
Bol, E.; Bevers, L.E.; Hagedoorn, P.L.; Hagen, W.R.
J. Biol. Inorg. Chem.
11
999-1006
Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2
1998
Gross, R.; Simon, J.; Lancaster, R.D.; Kröger, A.
Mol. Microbiol.
30
639-646
Measuring the pH dependence of hydrogenase activities
2007
Tsygankov, A.A.; Minakov, E.A.; Zorin, N.A.; Gosteva, K.S.; Voronin, O.G.; Karyakin, A.A.
Biochemistry
72
968-973
The CO and CN(-) ligands to the active site Fe in [NiFe]-hydrogenase of Escherichia coli have different metabolic origins
2007
Forzi, L.; Hellwig, P.; Thauer, R.K.; Sawers, R.G.
FEBS Lett.
581
3317-3321
Reinvestigation of the steady-state kinetics and physiological function of the soluble NiFe-hydrogenase I of Pyrococcus furiosus
2008
van Haaster, D.J.; Silva, P.J.; Hagedoorn, P.L.; Jongejan, J.A.; Hagen, W.R.
J. Bacteriol.
190
1584-1587
EPR characterization of the molybdenum(V) forms of formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774 upon formate reduction
2007
Rivas, M.G.; Gonzalez, P.J.; Brondino, C.D.; Moura, J.J.; Moura, I.
J. Inorg. Biochem.
101
1617-1622
Glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), key enzymes of the respective modified Embden-Meyerhof pathways in the hyperthermophilic crenarchaeota Pyrobaculum aerophi and Aeropyrum pernix
2007
Reher, M.; Gebhard, S.; Schoenheit, P.
FEMS Microbiol. Lett.
273
196-205
Glyceraldehyde-3-phosphate ferredoxin oxidoreductase from Methanococcus maripaludis
2007
Park, M.O.; Mizutani, T.; Jones, P.R.
J. Bacteriol.
189
7281-7289
The hydrogenases and formate dehydrogenases of Escherichia coli
1994
Sawers, G.
Antonie van Leeuwenhoek
66
57-88
Respiratory arsenate reductase as a bidirectional enzyme
2009
Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.
Biochem. Biophys. Res. Commun.
382
298-302
Selenium-containing formate dehydrogenase H from Escherichia coli: A molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer
1998
Khangulov, S.V.; Gladyshev, V.N.; Dismukes, G.C.; Stadtman, T.C.
Biochemistry
37
3518-3528
Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA
2002
Seeliger, S.; Janssen, P.; Schink, B.
FEMS Microbiol. Lett.
211
65-70
The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli
1975
Enoch, H.G.; Lester, R.L.
J. Biol. Chem.
250
6693-7705
Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component
1990
Axley, M.J.; Grahame, D.A.; Stadtman, T.C.
J. Biol. Chem.
265
18213-18218
Kinetics for formate dehydrogenase of Escherichia coli formate-hydrogenlyase
1991
Axley, M.J.; Grahame, D.A.
J. Biol. Chem.
266
13731-13736
Characterization of crystalline formate dehydrogenase H from Escherichia coli
1996
Gladyshev, V.N.; Boyington, J.C.; Khangulov, S.V.; Grahame, D.A.; Stadtman, T.C.; Sun, P.D.
J. Biol. Chem.
271
8095-8100
Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli
1986
Zinoni, F.; Birkmann, A.; Stadtman, T.C.; Böck, A.
Proc. Natl. Acad. Sci. USA
83
4650-4654
Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium
1991
Axley, M.J.; Böck, A.; Stadtman, T.C.
Proc. Natl. Acad. Sci. USA
88
8450-8454
Structural and biological analysis of the metal sites of Escherichia coli hydrogenase accessory protein HypB
2008
Dias, A.V.; Mulvihill, C.M.; Leach, M.R.; Pickering, I.J.; George, G.N.; Zamble, D.B.
Biochemistry
47
11981-11991
Concentration-dependent front velocity of the autocatalytic hydrogenase reaction
2009
Bodo, G.; Branca, R.M.; Toth, A.; Horvath, D.; Bagyinka, C.
Biophys. J.
96
4976-4983
Purification and biochemical characterization of a membrane-bound [NiFe]-hydrogenase from a hydrogen-oxidizing, lithotrophic bacterium, Hydrogenophaga sp. AH-24
2009
Yoon, K.S.; Sakai, Y.; Tsukada, N.; Fujisawa, K.; Nishihara, H.
FEMS Microbiol. Lett.
290
114-120
The succinate dehydrogenase from the thermohalophilic bacterium Rhodothermus marinus: Redox-Bohr effect on heme bL
2001
Fernandes, A.S.; Pereira, M.M.; Teixeira, M.
J. Bioenerg. Biomembr.
33
343-352
Identification of active site residues of Escherichia coli fumarate reductase by site-directed mutagenesis
1991
Schroder, I.; Gunsalus, R.P.; Ackrell, B.A.; Cochran, B.; Cecchini, G.
J. Biol. Chem.
266
13572-13579
A [NiFe]-hydrogenase from Alteromonas macleodii with unusual stability in the presence of oxygen and high temperature
2011
Vargas, W.A.; Weyman, P.D.; Tong, Y.; Smith, H.O.; Xu, Q.
Appl. Environ. Microbiol.
77
1990-1998
Reactions of dimethylsulfoxide reductase from Rhodobacter capsulatus with dimethyl sulfide and with dimethyl sulfoxide: complexities revealed by conventional and stopped-flow spectrophotometry
1999
Adams, B.; Smith, A.T.; Bailey, S.; McEwan, A.G.; Bray, R.C.
Biochemistry
38
8501-8511
Oxalate metabolism by the acetogenic bacterium Moorella thermoacetica
2004
Daniel, S.; Pilsl, C.; Drake, H.
FEMS Microbiol. Lett.
231
39-43
-
Sulfide-cytochrome c reductase (flavocytochrome c)
1994
Yamanaka, T.
Methods Enzymol.
243
463-472
In vitro reconstitution of an NADPH-dependent superoxide reduction pathway from Pyrococcus furiosus
2005
Grunden, A.M.; Jenney, F.E.; Ma, K.; Ji, M.; Weinberg, M.V.; Adams, M.W.
Appl. Environ. Microbiol.
71
1522-1530
Sugar utilization in the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324: starch degradation to acetate and CO2 via a modified Embden-Meyerhof pathway and acetyl-CoA synthetase (ADP-forming)
2001
Labes, A.; Schoenheit, P.
Arch. Microbiol.
176
329-338
Archaeoglobus fulgidus couples CO oxidation to sulfate reduction and acetogenesis with transient formate accumulation
2007
Henstra, A.M.; Dijkema, C.; Stams, A.J.
Environ. Microbiol.
9
1836-1841
Molybdenum and vanadium do not replace tungsten in the catalytically active forms of the three tungstoenzymes in the hyperthermophilic archaeon Pyrococcus furiosus
1996
Mukund, S.; Adams, M.W.
J. Bacteriol.
178
163-167
A hyperactive NAD(P)H:rubredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus
1999
Ma, K.; Adams, M.W.
J. Bacteriol.
181
5530-5533
The unusual iron sulfur composition of the Acidianus ambivalens succinate dehydrogenase complex
1999
Gomes, C.M.; Lemos, R.S.; Teixeira, M.; Kletzin, A.; Huber, H.; Stetter, K.O.; Schäfer, G.; Anemüller, S.
Biochim. Biophys. Acta
1411
134-141
Characterization of a thioredoxin-thioredoxin reductase system from the hyperthermophilic bacterium Thermotoga maritima
2010
Yang, X.; Ma, K.
J. Bacteriol.
192
1370-1376
Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate:ferredoxin oxidoreductase that functions with FDX1
2013
van Lis, R.; Baffert, C.; Coute, Y.; Nitschke, W.; Atteia, A.
Plant Physiol.
161
57-71
Factor 420-dependent pyridine nucleotide-linked formate metabolism of Methanobacterium ruminantium
1975
Tzing, S.F.; Bryant, M.P.; Wolfe, R.S.
J. Bacteriol.
121
192-196
Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase
2014
Bassegoda, A.; Madden, C.; Wakerley, D.W.; Reisner, E.; Hirst, J.
J. Am. Chem. Soc.
136
15473-15476
Reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase: a kinetic and mechanistic study
2016
Maia, L.B.; Fonseca, L.; Moura, I.; Moura, J.J.
J. Am. Chem. Soc.
138
8834-8846
Simultaneous involvement of a tungsten-containing aldehyde:ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism
2014
Debnar-Daumler, C.; Seubert, A.; Schmitt, G.; Heider, J.
J. Bacteriol.
196
483-492
Molybdenum-containing membrane-bound formate dehydrogenase isolated from Citrobacter sp. S-77 having high stability against oxygen, pH, and temperature
2014
Nguyen, N.T.; Yatabe, T.; Yoon, K.S.; Ogo, S.
J. Biosci. Bioeng.
118
386-391
Oxidation-state-dependent binding properties of the active site in a Mo-containing formate dehydrogenase
2017
Robinson, W.E.; Bassegoda, A.; Reisner, E.; Hirst, J.
J. Am. Chem. Soc.
139
9927-9936
Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica
2014
Mock, J.; Wang, S.; Huang, H.; Kahnt, J.; Thauer, R.K.
J. Bacteriol.
196
3303-3314
Physiology and bioenergetics of [NiFe]-hydrogenase 2-catalyzed H2-consuming and H2-producing reactions in Escherichia coli
2015
Pinske, C.; Jaroschinsky, M.; Linek, S.; Kelly, C.L.; Sargent, F.; Sawers, R.G.
J. Bacteriol.
197
296-306
Reduction of nitric oxide catalyzed by hydroxylamine oxidoreductase from an anammox bacterium
2014
Irisa, T.; Hira, D.; Furukawa, K.; Fujii, T.
J. Biosci. Bioeng.
118
616-621
Catalytic properties, molecular composition and sequence alignments of pyruvate ferredoxin oxidoreductase from the methanogenic archaeon Methanosarcina barkeri (strain Fusaro)
1996
Bock, A.; Kunow, J.; Glasemacher, J.; Schönheit, P.
Eur. J. Biochem.
237
35-44
Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus
2001
Adams, M.; Holden, J.; Menon, A.; Schut, G.; Grunden, A.; Hou, C.; Hutchins, A.; Jenney F.E., J.; Kim, C.; Ma, K.; Pan, G.; Roy, R.; Sapra, R.; Story, S.; Verhagen, M.
J. Bacteriol.
183
716-724
Amixicile, a novel inhibitor of pyruvate ferredoxin oxidoreductase, shows efficacy against Clostridium difficile in a mouse infection model
2012
Warren, C.A.; van Opstal, E.; Ballard, T.E.; Kennedy, A.; Wang, X.; Riggins, M.; Olekhnovich, I.; Warthan, M.; Kolling, G.L.; Guerrant, R.L.; Macdonald, T.L.; Hoffman, P.S.
Antimicrob. Agents Chemother.
56
4103-4111