Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
substitution of ferric heme by MnIII protoporphyrin IX greatly diminishes the peroxidase activity, but has little effect on the cyclooxygenase activity
-
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
dimanganese(III)-tyrosyl radical cofactor
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the MnIII2-tyrosyl radical cofactor, not the diferric-tyrosyl radical one, is the active metallocofactor in vivo
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
dimanganese(III)-tyrosyl radical cofactor
dimanganese(III)-tyrosyl radical cofactor
dimanganese(III)-tyrosyl radical cofactor
dimanganese(III)-tyrosyl radical cofactor
dimanganese(III)-tyrosyl radical cofactor
dimanganese(III)-tyrosyl radical cofactor
dimanganese(III)-tyrosyl radical cofactor
dimanganese(III)-tyrosyl radical cofactor
dimanganese(III)-tyrosyl radical cofactor
dimanganese(III)-tyrosyl radical cofactor
dimanganese(III)-tyrosyl radical cofactor
dimanganese(III)-tyrosyl radical cofactor
dimanganese(III)-tyrosyl radical cofactor
dimanganese(III)-tyrosyl radical cofactor
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
dimanganese(III)-tyrosyl radical cofactor
the enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(*)) cofactor in vivo
treatment of the periodate-oxidized enzyme with ascorbate results in a substantioal decrease in absorption, forming a complex that is spectroscopically identified as a Mn3+ species. Mn3+ form has a 5fold higher specific activity than native recombinant oxalate oxidase.
-
enzyme contains one atom of Mn(III) per 110000 Da enzyme
-
Mn3+ may play an important role on effective binding of phosphate and acceleration of hydrolysis of phosphomonoesters at pH 4-6
-
required for activity. Up to 16% of the electron paramagnetic resonance-visible manganese is in the +3 oxidation state at low pH in the presence of succinate buffer
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Mn(III)-containing acid phosphatase. Properties of Fe(III)-substituted enzyme and function of Mn(III) and Fe(III) in plant and mammalian acid phosphatases
1984
Kawabe, H.; Sugiura, Y.; Terauchi, M.; Tanaka, H.
Biochim. Biophys. Acta
784
81-89
Purification, enzymatic properties, and active site environment of a novel manganese(III)-containing acid phosphatase
1981
Sugiura, Y.; Kawabe, H.; Tanaka, H.; Fujimoto, S.; Ohara, A.
J. Biol. Chem.
256
10664-10670
Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium
1986
Paszczynski, A.; Huynh, V.B.; Crawford, R.L.
Arch. Biochem. Biophys.
244
750-765
Isozymes of lignin peroxidase and manganese(II) peroxidase from the white-rot basidiomycete Trametes versicolor. II. Partial sequences, peptide maps, and amino acid and carbohydrate compositions
1993
Johansson, T.; Welinder, K.G.; Nyman, P.O.
Arch. Biochem. Biophys.
300
57-62
Mn-dependent peroxidase from the lignin-degrading white rot fungus Phlebia radiata
1990
Karhunen, E.; Kantelinen, A.; Niku-Paavola, M.L.
Arch. Biochem. Biophys.
279
25-31
Stability testing of ligninase and Mn-peroxidase from Phanerochaete chrysosporium
1989
Aitken, M.; Irvine, R.L.
Biotechnol. Bioeng.
34
1251-1260
Isozymes of lignin peroxidase and manganese(II) peroxidase from the white-rot basidiomycete Trametes versicolor. I. Isolation of enzyme forms and characterization of physical and catalytic properties
1993
Johansson, T.; Nyman, P.O.
Arch. Biochem. Biophys.
300
49-56
Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium
1986
Glenn, J.K.; Akileswaran, L.; Gold, M.H.
Arch. Biochem. Biophys.
251
688-696
Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle
1988
Wariishi, H.; Akileswaran, L.; Gold, M.H.
Biochemistry
27
5365-5370
Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Transient state kinetics and reaction mechanism
1989
Wariishi, H.; Dunford, H.B.; MacDonald, I.D.; Gold, M.H.
J. Biol. Chem.
264
3335-3340
Characterization of extracellular peroxidases produced by acetate-buffered cultures of the lignin-degrading basidiomycete Phanerochaete chrysosporium
1990
Dass, S.B.; Reddy, C.A.
FEMS Microbiol. Lett.
69
221-224
-
Ligninolytic enzymes of the white rot basidiomycetes Phlebia brevispora and Ceriporiopsis subvermispora
1992
Ruttimann, C.; Schwember, E.; Salas, L.; Cullen, D.; Vicuna, R.
Biotechnol. Appl. Biochem.
16
64-76
1H NMR investigation of manganese peroxidase from Phanerochaete chrysosporium. A comparison with other peroxidases
1992
Banci, L.; Bertini, I.; Pease, E.A.; Tien, M.; Turano, P.
Biochemistry
31
10009-10017
Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators
1992
Wariishi, H.; Valli, K.; Gold, M.H.
J. Biol. Chem.
267
23688-23695
Oxidation of phenolic arylglycerol beta-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an alpha-carbonyl model compound
1992
Tuor, U.; Wariishi, H.; Schoemaker, H.E.; Gold, M.H.
Biochemistry
31
4986-4995
Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium
1992
Pease, E.A.; Tien, M.
J. Bacteriol.
174
3532-3540
The catalytic site of manganese peroxidase. Regiospecific addition of sodium azide and alkylhydrazines to the heme group
1991
Harris, R.Z.; Wariishi, H.; Gold, M.H.; Ortiz de Montellano, P.R.
J. Biol. Chem.
266
8751-8758
Oxidation of methoxybenzenes by manganese peroxidase and by Mn3+
1991
Popp, J.L.; Kirk, T.K.
Arch. Biochem. Biophys.
288
145-148
Characterization of reactions catalyzed by manganese peroxidase from Phanerochaete chrysosporium
1990
Aitken, M.; Irvine, R.L.
Arch. Biochem. Biophys.
276
405-414
Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay
1991
Datta, A.; Bettermann, A.; Kirk, T.K.
Appl. Environ. Microbiol.
57
1453-1460
Characteristics and N-terminal amino acid sequence of a manganese peroxidase purified from Lentinula edodes cultures grown on a commercial wood substrate
1990
Forrester, I.T.; Grabski, A.C.; Mishra, C.; Kelley, B.D.; Strickland, W.N.; Leatham, G.F.; Burgess, R.R.
Appl. Microbiol. Biotechnol.
33
359-365
Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium
1989
Wariishi, H.; Valli, K.; Renganathan, V.; Gold, M.H.
J. Biol. Chem.
264
14185-14191
-
Manganese peroxidase from Phanerochaete chrysosporium
1988
Gold, M.H.; Glenn, J.K.
Methods Enzymol.
161
258-264
-
Manganese peroxidase from Phanerochaete chrysosporium: Purification
1988
Paszczynski, A.; Crawford, R.L.; Huynh, V.B.
Methods Enzymol.
161
264-270
Mn-peroxidase from Bjerkandera adusta 90-41. Purification and substrate specificity
2000
Dzedzyulya, E.I.; Becker, E.G.
Biochemistry
65
707-712
Characteristics and N-terminal amino acid sequence of manganese peroxidase from solid substrate cultures of Agaricus bisporus
2001
Lankinen, V.P.; Bonnen, A.M.; Anton, L.H.; Wood, D.A.; Kalkkinen, N.; Hatakka, A.; Thurston, C.F.
Appl. Microbiol. Biotechnol.
55
170-176
Heterologous expression of a thermostable manganese peroxidase from Dichomitus squalens in Phanerochaete chrysosporium
2001
Youngs, L.D.; Gold, M.H.
Arch. Biochem. Biophys.
385
348-356
Lentinula edodes produces a multicomponent protein complex containing manganese (II)-dependent peroxidase, laccase and beta-glucosidase
2001
Makkar, R.S.; Tsuneda, A.; Tokuyasu, K.; Mori, Y
FEMS Microbiol. Lett.
200
175-179
Role of arginine 177 in the MnII binding site of manganese peroxidase. Studies with R177D, R177E, R177N, and R177Q mutants
2000
Gelpke, M.D.S.; Youngs, H.L.; Gold, M.H.
Eur. J. Biochem.
267
7038-7045
Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sadwust
2000
Giardina, P.; Palmieri, G.; Fontanella, B.; Rivieccio, V; Sannia, G.
Arch. Biochem. Biophys.
376
171-179
Purification, characterization, and chemical modification of manganese peroxidase from Bjerkandera adusta UAMH 8258
2002
Wang, Y.; Vazquez-Duhalt, R.; Pickard, M.A.
Curr. Microbiol.
45
77-87
Purification and characterization of two manganese peroxidase isoenzymes from the white-rot basidiomycete Dichomitus squalens
1996
Perie, F.H.; Sheng, D.; Gold, M.H.
Biochim. Biophys. Acta
1297
139-148
Engineering of the H2O2-binding pocket region of a recombinant manganese peroxidase to be resistant to H2O2
2001
Miyazaki, C.; Takahashi, H.
FEBS Lett.
509
111-114
Biochemical and molecular characterization of a manganese peroxidase isoenzyme from Pleurotus ostreatus
1997
Sarkar, S.; Martinez, A.T.; Martinez, M.J.
Biochim. Biophys. Acta
1339
23-30
Manganese peroxidases of the white rot fungus Phanerochaete sordida
1994
Ruttimann-Johnson, C.; Cullen, D.; Lamar, R.T.
Appl. Environ. Microbiol.
60
599-605
Characterization of manganese peroxidases from the hyperlignolytic fungus IZU-154
1996
Matsubara, M.; Suzuki, J.; Deguchi, T.; Miura, M.; Kitaoka, Y.
Appl. Environ. Microbiol.
62
4066-4072
Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii
1996
Martinez, M.J.; Ruiz-Duenas, F.J.; Guillen, F.; Martinez, A.T.
Eur. J. Biochem.
237
424-432
-
Large scale production of manganese-peroxidase using agaric white-rot fungi
2002
Nuske, J.; Scheibner, K.; Dornberger, U.; Ullrich, R.; Hofrichter, M.
Enzyme Microb. Technol.
30
556-561
-
Purification and characterization of a manganese peroxidases from the litter-decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla
2002
Steffen, K.T.; Hofrichter, M.; Hatakka, A.
Enzyme Microb. Technol.
30
550-555
Different fungal manganese-oxidizing peroxidases: A comparison between Bjerkandera sp. and Phanerochaete chrysosporium
2000
Palma, C.; Martinez, A.T.; Lema, J.M.; Martinez, M.J.
J. Biotechnol.
77
235-245
-
Review: Lignin conversion by manganese peroxidase (MnP)
2002
Hofrichter, M.
Enzyme Microb. Technol.
30
454-466
Site-directed mutations at phenylalanine-190 of manganese peroxidase: Effects on stability, function, and coordination
1997
Kishi, K.; Hildebrand, D.P.; Kusters-van Someren, M.; Gettemy, J.; Mauk, A.G.; Gold, M.H.
Biochemistry
36
4268-4277
Engineering a disulfide bond in recombinant manganese peroxidase results in increased thermostability
2000
Reading, N.S.; Aust, S.D.
Biotechnol. Prog.
16
326-333
Effects of cadmium on manganese peroxidase. Competitive inhibition of MnII oxidation and thermal stabilization of the enzyme
2000
Youngs, H.L.; Sundaramoorthy, M; Gold, M.H.
Eur. J. Biochem.
267
1761-1769
2.0 A structure of prostaglandin H2 synthase-1 reconstituted with a manganese porphyrin cofactor
2006
Gupta, K.; Selinsky, B.S.; Loll, P.J.
Acta crystallogr. Sect. D
62
151-156
Burst kinetics and redox transformations of the active site manganese ion in oxalate oxidase: Implications for the catalytic mechanism
2007
Whittaker, M.M.; Pan, H.Y.; Yukl, E.T.; Whittaker, J.W.
J. Biol. Chem.
282
7011-7023
Active cystathionine beta-synthase can be expressed in heme-free systems in the presence of metal-substituted porphyrins or a chemical chaperone
2008
Majtan, T.; Singh, L.R.; Wang, L.; Kruger, W.D.; Kraus, J.P.
J. Biol. Chem.
283
34588-34595
An active dimanganese(III)-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase
2010
Cotruvo, J.A.; Stubbe, J.
Biochemistry
49
1297-1309
Escherichia coli class Ib ribonucleotide reductase contains a dimanganese(III)-tyrosyl radical cofactor in vivo
2011
Cotruvo, J.A.; Stubbe, J.
Biochemistry
50
1672-1681
Direct identification of a bacterial manganese(II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species
2008
Dick, G.J.; Torpey, J.W.; Beveridge, T.J.; Tebo, B.M.
Appl. Environ. Microbiol.
74
1527-1534
Phylogenetic Relationships and Functional Genes Distribution of a gene (mnxG) encoding a putative manganese-oxidizing enzyme in Bacillus species
2008
Mayhew, L.E.; Swanner, E.D.; Martin, A.P.; Templeton, A.S.
Appl. Environ. Microbiol.
74
7265-7271
Multicopper manganese oxidase accessory proteins bind Cu and heme
2015
Butterfield, C.N.; Tao, L.; Chacon, K.N.; Spiro, T.G.; Blackburn, N.J.; Casey, W.H.; Britt, R.D.; Tebo, B.M.
Biochim. Biophys. Acta
1854
1853-1859
Biogenic manganese-oxide mineralization is enhanced by an oxidative priming mechanism for the multi-copper oxidase, MnxEFG
2017
Tao, L.; Simonov, A.N.; Romano, C.A.; Butterfield, C.N.; Fekete, M.; Tebo, B.M.; Bond, A.M.; Spiccia, L.; Martin, L.L.; Casey, W.H.
Chemistry
23
1346-1352
A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067
2007
Ridge, J.P.; Lin, M.; Larsen, E.I.; Fegan, M.; McEwan, A.G.; Sly, L.I.
Environ. Microbiol.
9
944-953
Mn(II) binding and subsequent oxidation by the multicopper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy
2015
Tao, L.; Stich, T.A.; Butterfield, C.N.; Romano, C.A.; Spiro, T.G.; Tebo, B.M.; Casey, W.H.; Britt, R.D.
J. Am. Chem. Soc.
137
10563-10575
Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12
2017
Butterfield, C.N.; Tebo, B.M.
Metallomics
9
183-191
Streptococcus sanguinis class Ib ribonucleotide reductase High activity with both iron and manganese cofactors and structural insights
2014
Makhlynets, O.; Boal, A.; Rhodes, D.; Kitten, T.; Rosenzweig, A.; Stubbe, J.
J. Biol. Chem.
289
6259-6272
Redox cycling, pH dependence, and ligand effects of Mn(III) in oxalate decarboxylase from Bacillus subtilis
2016
Twahir, U.T.; Ozarowski, A.; Angerhofer, A.
Biochemistry
55
6505-6516
Characterization of a novel endo-type alginate lyase derived from Shewanella sp. YH1
2018
Yagi, H.; Fujise, A.; Itabashi, N.; Ohshiro, T.
J. Biochem.
163
341-350