Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
0.003
-
37°C, pH 7.8, mutant enzyme Q269stop
0.028
-
37°C, pH 7.6, tRNALeu from calf liver, leucylation, full-length enzyme
0.059
-
37°C, pH 7.6, tRNALeu from calf liver, leucylation, DELTAChcLeuRS (a C-terminal 89-amino acid truncated enzyme form)
0.072
-
37°C, pH 7.8, mutant enzyme N152A
0.12
-
recombinant mitochondrial isozyme, pH 7.6, 37°C
0.177
-
truncation mutant DELTA911-913, pH 7.5, 37°C
0.2
-
pH 8.2, 45°C, mutant K142A
0.2
-
pH 8.2, 45°C, mutant K144A
0.31
-
37°C, pH 7.8, mutant enzyme R94A
0.32
-
37°C, pH 7.8, mutant enzyme V286stop
0.32
-
37°C, pH 7.8, wild-type enzyme
0.331
-
full-length enzyme, pH 7.5, 37°C
0.39
-
37°C, pH 7.8, mutant enzyme G237D
0.39
-
37°C, pH 7.8, mutant enzyme N163A
0.4
-
37°C, pH 7.8, mutant enzyme Q234H
0.42
-
37°C, pH 7.8, mutant enzyme K238A
0.47
-
37°C, pH 7.8, mutant enzyme M159A
0.59
-
37°C, pH 7.8, mutant enzyme L283F
0.66
-
37°C, pH 7.8, mutant enzyme K160N
0.7
-
pH 8.2, 45°C, recombinant mutant DELTAESI/DELTAHsESI
0.8
-
mutant E292K, pH 7.8, 37°C
0.8
-
pH 8.2, 45°C, mutant D173A
0.8
-
pH 8.2, 45°C, mutant K141A
0.8
-
pH 8.2, 45°C, mutant Q154A
0.84
-
37°C, pH 7.8, mutant enzyme A156V
0.9
-
pH 7.5, 37°C, recombinant LS-domain deletion mutant
1
-
pH 8.2, 45°C, recombinant mutant T341A
1.1
-
pH 8.2, 45°C, mutant S153A
1.1
-
pH 8.2, 45°C, recombinant mutant D444A
1.1
-
pH 8.2, 45°C, recombinant mutant T341R
1.2
-
pH 8.2, 45°C, mutant E167A
1.3
-
mutant enzyme, pH 7.8, 37°C
1.3
-
pH 8.2, 45°C, mutant K152A
1.3
-
pH 8.2, 45°C, recombinant mutant R338A
1.4
-
pH 8.2, 45°C, mutant K170A
1.5
-
pH 8.2, 45°C, mutant K139A
1.6
-
mutant E292S, pH 7.8, 37°C
1.8
-
mutant E292A, pH 7.8, 37°C
1.9
-
mutant E292Q, pH 7.8, 37°C
1.9
-
pH 8.2, 45°C, mutant K148A
2
-
mutant E292F, pH 7.8, 37°C
2.2
-
mutant E292D, pH 7.8, 37°C
2.4
-
mutant enzyme V910P, at pH 8.2 and 30°C
2.5
-
pH 8.2, 45°C, mutant W155A
2.7
-
mutant lacking residues Q281 to D294, 45°C
2.7
-
mutant lacking residues S295 to L304, 45°C
2.8
-
pH 8.2, 45°C, mutant E165A
2.8
-
pH 8.2, 45°C, mutant K166A
2.9
-
wild-type enzyme, pH 7.8, 37°C
4.7
-
37°C, pH 7.8, mutant enzyme T25D
5
-
mutant enzyme L949K, at pH 8.2 and 30°C
5
-
mutant enzyme Q915K, at pH 8.2 and 30°C
5
-
wild-type enzyme, pH 7.8, 37°C
5.1
-
37°C, pH 7.8, mutant enzyme T252E
5.1
-
37°C, pH 7.8, native enzyme
5.1
-
wild-type enzyme, pH 7.8, 37°C
5.6
-
mutant enzyme L949A, at pH 8.2 and 30°C
7
-
mutant enzyme V910A, at pH 8.2 and 30°C
7.2
-
mutant enzyme L964A, at pH 8.2 and 30°C
7.8
-
wild type enzyme, at pH 8.2 and 30°C
9.2
-
mutant enzyme V910W, at pH 8.2 and 30°C
9.6
-
pH 7.5, 37°C, recombinant wild-type enzyme
10.6
-
mutant enzyme L964K, at pH 8.2 and 30°C
10.6
-
mutant enzyme R921K, at pH 8.2 and 30°C
13.3
-
mutant enzyme Q915A, at pH 8.2 and 30°C
13.6
-
mutant enzyme R921A, at pH 8.2 and 30°C
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
0.0001
-
37°C, pH 7.8, mutant enzyme N163A
0.00011
-
37°C, pH 7.8, mutant enzyme K238A
0.00014
-
37°C, pH 7.8, mutant enzyme G237D
0.00018
-
37°C, pH 7.8, mutant enzyme L283F
0.0002
-
37°C, pH 7.8, wilde-type enzyme
0.00024
-
37°C, pH 7.8, mutant enzyme K160N
0.00025
-
37°C, pH 7.8, mutant enzyme Q234H
0.00029
-
37°C, pH 7.8, mutant enzyme N152A
0.00038
-
37°C, pH 7.8, mutant enzyme M159A
0.0005
-
37°C, pH 7.8, mutant enzyme R94A
0.00051
-
37°C, pH 7.8, mutant enzyme A156V
0.0006
-
wild-type enzyme
0.0007
-
wild-type enzyme
0.00073
-
pH 7.5, 37°C, recombinant wild-type enzyme
0.00085
-
substrate from E. coli
0.0011
-
mutant enzyme V910A, at pH 8.2 and 30°C
0.0011
-
wild type enzyme, at pH 8.2 and 30°C
0.0012
-
mutant E292K, pH 7.8, 37°C
0.0012
-
mutant enzyme L964A, at pH 8.2 and 30°C
0.0013
-
mutant enzyme Q915K, at pH 8.2 and 30°C
0.0014
-
37°C, pH 7.6, tRNALeu from calf liver, leucylation, DELTAChcLeuRS (a C-terminal 89-amino acid truncated enzyme form)
0.0014
-
mutant enzyme V910W, at pH 8.2 and 30°C
0.0015
-
aminoacylation reaction, wild-type enzyme, pH 7.8, 37°C
0.0016
-
of Euglena gracilis
0.0016
-
recombinant and native enzyme
0.00167
-
full-length enzyme, pH 7.5, 37°C
0.00179
-
truncation mutant DELTA911-913, pH 7.5, 37°C
0.0018
-
mutant enzyme R921K, at pH 8.2 and 30°C
0.0019
-
37°C, pH 7.6, tRNALeu from calf liver, leucylation, full-length enzyme
0.0019
-
mutant enzyme Q915A, at pH 8.2 and 30°C
0.002
-
pH 7.5, 37°C, recombinant LS-domain deletion mutant
0.0021
-
mutant E292A, pH 7.8, 37°C
0.0024
-
aminoacylation reaction, mutant enzyme, pH 7.8, 37°C
0.0024
-
mutant E292S, pH 7.8, 37°C
0.0025
-
37°C, pH 7.8, mutant enzyme T25D
0.0025
-
wild-type enzyme, pH 7.8, 37°C
0.0026
-
37°C, pH 7.8, native enzyme
0.0026
-
unfractionated substrate of E. coli
0.0031
-
mutant E292Q, pH 7.8, 37°C
0.0033
-
37°C, pH 7.8, mutant enzyme T252E
0.0035
-
37°C, pH 7.8, mutant enzyme V286stop
0.0035
-
pH 8.2, 45°C, mutant K142A
0.0038
-
pH 8.2, 45°C, mutant Q154A
0.004
-
mutants E292D and E292F, pH 7.8, 37°C
0.004
-
pH 8.2, 45°C, mutant S153A
0.0049
-
pH 8.2, 45°C, mutant E167A
0.005
-
pH 8.2, 45°C, mutant K148A
0.0051
-
pH 8.2, 45°C, mutant K141A
0.0051
-
pH 8.2, 45°C, mutant K152A
0.0051
-
pH 8.2, 45°C, mutant K170A
0.0052
-
mutant enzyme R921A, at pH 8.2 and 30°C
0.0052
-
pH 8.2, 45°C, mutant K144A
0.0056
-
pH 8.2, 45°C, recombinant mutant T341A
0.0057
-
pH 8.2, 45°C, recombinant mutant D444A
0.0059
-
pH 8.2, 45°C, mutant D173A
0.0059
-
pH 8.2, 45°C, recombinant mutant T341R
0.0071
-
pH 8.2, 45°C, mutant W155A
0.008
-
pH 8.2, 45°C, recombinant mutant R338A
0.0081
-
pH 8.2, 45°C, mutant K166A
0.0082
-
mutant lacking residues S295 to L304, 45°C
0.0083
-
mutant enzyme L949A, at pH 8.2 and 30°C
0.0083
-
pH 8.2, 45°C, mutant E165A
0.0092
-
mutant enzyme V910P, at pH 8.2 and 30°C
0.0093
-
pH 8.2, 45°C, recombinant mutant DELTAESI/DELTAHsESI
0.0095
-
37°C, pH 7.8, mutant enzyme Q269stop
0.0101
-
mutant lacking residues Q281 to D294, 45°C
0.0114
-
pH 8.2, 45°C, mutant K139A
0.014
-
recombinant mitochondrial isozyme, pH 7.6, 37°C
0.0174
-
mutant enzyme L964K, at pH 8.2 and 30°C
0.0273
-
mutant enzyme L949K, at pH 8.2 and 30°C
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Naldixic acid, oxolinic acid, and novobiocin inhibit yeast glycyl- and leucyl-transfer RNA synthetases
1981
Wright, H.T.; Nurse, K.C.; Goldstein, D.J.
Science
213
455-456
Leucyl-tRNA and arginyl-tRNA synthetases of wheat germ. Inactivation and ribosome effects
1978
Carias, J.R.; Mouricout, M.; Quintard, B.; Thomes, J.C.; Julien, R.
Eur. J. Biochem.
87
583-590
Leucine-tRNA ligase complexes
1988
Hampel, A.; Tritz, R.
Methods Enzymol.
166
260-265
Pyrophosphate-caused inhibition of the aminoacylation of tRNA by the leucyl-tRNA synthetase from Neurospora crassa
1986
Airas, R.K.; Cramer, F.
Eur. J. Biochem.
160
291-296
Membrane association of leucyl-tRNA synthetase during leucine starvation in Escherichia coli
1993
Williamson, R.M.
Biochem. Biophys. Res. Commun.
190
794-800
The multienzyme complex containing nine aminoacyl-tRNA synthetases is ubiquitous from Drosophila to mammals
1994
Kerjan, P.; Cerini, C.; Semeriva, M.; Mirande, M.
Biochim. Biophys. Acta
1199
293-297
Characteristics of a leucine aminoacyl transfer RNA synthetase from Tritrichomonas augusta
1991
Horner, J.; Champney, W.S.; Samuels, R.
Int. J. Parasitol.
21
275-277
Cloning and nucleotide sequence of the leucyl-tRNA synthetase gene of Bacillus subtilis
1992
vander Horn, P.B.; Zahler, S.A.
J. Bacteriol.
174
3928-3935
-
The enzymic synthesis of amino acyl derivatives of ribonucleic acid. The mechanism of leucyl-, valyl-, isoleucyl-, and methionyl ribonucleic acid formation
1961
Berg, P.; Bergmann, F.H.; Ofengand, E.J.; Dieckmann, M.
J. Biol. Chem.
236
1726-1734
Purification and properties of leucyl-tRNA synthetase from bakers' yeast
1973
Chirikjian, J.G.; Kanagalingam, K.; Lau, E.; Fresco, J.R.
J. Biol. Chem.
248
1074-1079
Leucyl-transfer ribonucleic acid synthetase in scenescing tobacco leaves
1974
Nathan, I.; Richmond, A.
Biochem. J.
140
169-173
Purification and properties of leucyl-tRNA synthetase from Candida utilis
1975
Murasugi, A.; Hayashi, H.
Eur. J. Biochem.
57
169-175
The absence of structural relationship between mitochondrial and cytoplasmic leucyl-tRNA synthetases from Tetrahymena pyriformis
1975
Chiu, A.O.S.; Suyama, Y.
Arch. Biochem. Biophys.
171
43-54
Kinetic studies of leucyl transfer RNA synthetase from bakers' yeast. Order of addition of substrates and release of products
1975
Lin, C.S.; Irwin, R.; Chirikjian, J.G.
J. Biol. Chem.
250
9299-9303
ATP-analogue as substrates for leucyl-TRNA synthetase from Escherichia coli MRE 600
1976
Marutzky, R.; Flossdorf, J.; Kula, M.R.
Nucleic Acids Res.
3
2067-2077
Chloroplast leucyl-tRNA synthetase from Euglena gracilis. Purification, kinetic analysis, and structural characterization
1981
Imbault, P.; Colas, B.; Sarantoglou, V.; Boulanger, Y.; Weil, J.H.
Biochemistry
20
5855-5859
-
Purification of Euglena gracilis cytoplasmic leucyl tRNA synthetase
1981
Sarantoglou, V.; Imbault, P.; Weil, J.H.
Plant Sci. Lett.
22
291-297
Chloroplastic and cytoplasmic valyl- and leucyl-tRNA synthetases from Euglena gracilis. Comparative study of their structural properties
1982
Colas, B.; Imbault, P.; Sarantoglou, V.; Boulanger, Y.; Weil, J.H.
Biochim. Biophys. Acta
697
71-77
Purification and properties of chloroplast leucyl-tRNA synthetase from a higher plant. Phaseolus vulgaris
1982
Souciet, G.; Dietrich, A.; Colas, B.; Razafimahatratra, P.; Weil, J.H.
J. Biol. Chem.
257
9598-9604
-
Properties of purified chloroplastic and cytoplasmic valyl- and leucyl-tRNA synthetases from Euglena gracilis
1982
Imbault, P.; Sarantoglou, V.; Weil, J.H.
Phytochemistry
21
1189-1193
Phaseolus vulgaris cytoplasmic leucyl-tRNA synthetase. Purification and comparison of its catalytic, structural, and immunological properties with those of the chloroplastic enzyme
1983
Dietrich, A.; Souciet, G.; Colas, B.; Weil, J.H.
J. Biol. Chem.
258
12386-12393
A complex from cultured Chinese hamster ovary cells containing nine aminoacyl-tRNA synthetases. Thermolabile leucyl-tRNA synthetase from the tsH1 mutant cell line is an integral component of this complex
1985
Mirande, M.; Le Corre, D.; Waller, J.P.
Eur. J. Biochem.
147
281-289
Leucyl-tRNA and lysyl-tRNA synthetases, derived from the high-Mr complex of sheep liver, are hydrophobic proteins
1985
Cirakoglu, B.; Waller, J.P.
Eur. J. Biochem.
151
101-110
Biochemical comparison of the Neurospora crassa wild type and the temperature-sensitive and leucine-auxotroph mutant leu-5
1986
Kunugi, S.; Uehara-Kunugi, Y.; v.d.Haar, F.; Schischkoff, J.; Freist, W.; Englisch, U.; Cramer, F.
Eur. J. Biochem.
158
43-49
Biochemical comparison of the Neurospora crassa wild-type and the temperature-sensitive leucine-auxotroph mutant leu-5
1986
Airas, R.K.; Schischkoff, J.; Cramer, F.
Eur. J. Biochem.
158
51-56
-
Kinetics of peptide synthesis by the leucyl-tRNA synthetase from Bacillus stearothermophilus
1986
Dombou, M.; Nakajima, H.; Kitabatake, S.; Tomita, K.; Imahori, K.
Agric. Biol. Chem.
50
2967-2972
Homology of yeast mitochondrial leucyl-tRNA synthetase and isoleucyl- and methionyl-tRNA synthetases of Escherichia coli
1988
Tzagoloff, A.; Akai, A.; Kurkulos, M.; Repetto, B.
J. Biol. Chem.
263
850-856
The NAM2 proteins from S. cerevisiae and S. douglasii are mitochondrial leucyl-tRNA synthetases, and are involved in mRNA splicing
1988
Herbert, C.J.; Labouesse, M.; Dujardin, G.; Slonimski, P.P.
EMBO J.
7
473-483
-
The Enzymic synthesis of amino acyl derivatives of ribonucleic acid. II. The preparation of leucyl-, valyl-, isoleucyl-, and methionyl ribonucleic acid synthetases from Escherichia coli
1961
Bergmann, F.H.; Berg, P.; Dieckmann, M.
J. Biol. Chem.
236
1735-1740
-
Directed evolution of amidase in Methylophilus methylotrophus; purification and properties of amidases from wild-type and mutants strains
1991
Silman, N.J.; Carver, A.M.; Jones, C.W.
J. Gen. Microbiol.
137
169-178
Kinetic mechanismen of the aliphatic amidase from Pseudomonas aeruginosa
1979
Woods, M.J.; Findlater, J.D.; Orsi, B.A.
Biochim. Biophys. Acta
567
225-237
-
Activity and regulation of an amidase, acylamide amidohydrolase EC 3.5.1.4, with a wide substrate spectrum from a Brevibacterium sp.
1984
Maestracci, M.; Thiery, A.; Bui, K.; Arnaud, A.; Galzy, P.
Arch. Microbiol.
138
315-320
-
A study of the mechanism of the reactions catalyzed by the amidase Brevibacterium sp. R312
1986
Maestracci, M.; Thiery, A.; Arnaud, A.; Galzy, P.
Agric. Biol. Chem.
50
2237-2241
A soluble enzyme from Escherichia coli which catalyzes the transfer of leucine and phenylalanine from tRNA to acceptor proteins
1969
Leibowitz, M.J.; Soffer, R.L.
Biochem. Biophys. Res. Commun.
36
47-53
Enzymatic modification of proteins. 3. Purification and properties of a leucyl, phenylalanyl transfer ribonucleic acid protein transferase from Escherichia coli
1970
Leibowitz, M.J.; Soffer, R.L.
J. Biol. Chem.
245
2066-2073
Peptide acceptors in the leucine, phenylalanine transfer reaction
1973
Soffer, R.L.
J. Biol. Chem.
248
8424-8428
Aminoacyl-tRNA: protein transferases
1984
Deutch, C.E.
Methods Enzymol.
106
198-205
Transfer of methionyl residues by leucyl, phenylalanyl-tRNA-protein transferase
1976
Scarpulla, R.C.; Deutch, C.E.; Soffer, R.L.
Biochem. Biophys. Res. Commun.
71
584-589
The leucyl/phenylalanyl-tRNA-protein transferase. Overexpression and characterization of substrate recognition, domain structure, and secondary structure
1995
Abrahamochkin, G.; Shrader, T.E.
J. Biol. Chem.
270
20621-20628
Aminoacyl-tRNA recognition by the leucyl/phenylalanyl-tRNA-protein transferase
1996
Abramochkin, G.; Shrader, T.E.
J. Biol. Chem.
271
22901-22907
Substrate recognition by the leucyl/phenylalanyl-tRNA-protein transferase. Conservation within the enzyme family and localization to the trypsin-resistant domain
1997
Ichetovkin, I.E.; Abramochkin, G.; Shrader, T.E.
J. Biol. Chem.
272
33009-33014
Crystallization and preliminary crystallographic analysis of Thermus thermophilus leucyl-tRNA synthetase and its complexes with leucine and a non-hydrolysable leucyl-adenylate analogue
2000
Yaremchuk, A.; Cusack, S.; Gudzera, O.; Grotli, M.; Tukalo, M.
Acta Crystallogr. Sect. D
56
667-669
The beta-subunit of Aquifex aeolicus leucyltRNA synthetase is responsible for cognate tRNA recognition
2002
Gouda, M.; Yokogawa, T.; Nishikawa, K.
Biochem. Biophys. Res. Commun.
297
950-955
The peptide bond between E292-A293 of Escherichia coli leucyl-tRNA synthetase is essential for its activity
1999
Li, T.; Guo, N.; Xia, X.; Wang, E.D.; Wang, Y.L.
Biochemistry
38
13063-13069
CP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function
2000
Chen, J.F.; Guo, N.N.; Li, T.; Wang, E.D.; Wang, Y.L.
Biochemistry
39
6726-6731
Effect of alanine-293 replacement on the activity, ATP binding, and editing of Escherichia coli leucyl-tRNA synthetase
2001
Chen, J.F.; Li, T.; Wang, E.D.; Wang, Y.L.
Biochemistry
40
1144-1149
Attenuation of the editing activity of the Escherichia coli leucyl-tRNA synthetase allows incorporation of novel amino acids into proteins in vivo
2002
Tang, Y.; Tirrell, D.A.
Biochemistry
41
10635-10645
Enzymes assembled from Aquifex aeolicus and Escherichia coli leucyl-tRNA synthetases
2003
Zhao, M.W.; Hao, R.; Chen, J.F.; Martin, F.; Eriani, G.; Wang, E.D.
Biochemistry
42
7694-7700
Expression and characterization of the human mitochondrial leucyl-tRNA synthetase
2000
Bullard, J.M.; Cai, Y.C.; Spremulli, L.L.
Biochim. Biophys. Acta
1490
245-258
Leucyl-tRNA synthetase from the extreme thermophile Aquifex aeolicus has a heterodimeric quaternary structure
2002
Gouda, M.; Yokogawa, T.; Asahara, H.; Nishikawa, K.
FEBS Lett.
518
139-143
Active aminoacyl-tRNA synthetases are present in nuclei as a high molecular weight multienzyme complex
2000
Nathanson, L.; Deutscher, M.P.
J. Biol. Chem.
275
31559-31562
Leucyl-tRNA synthetase consisting of two subunits from hyperthermophilic bacteria Aquifex aeolicus
2002
Xu, M.G.; Chen, J.F.; Martin, F.; Zhao, M.W.; Eriani, G.; Wang, E.D.
J. Biol. Chem.
277
41590-41596
Unique recognition style of tRNA(Leu) by Haloferax volcanii leucyl-tRNA synthetase
1999
Soma, A.; Uchiyama, K.; Sakamoto, T.; Maeda, M.; Himeno, H.
J. Mol. Biol.
293
1029-1038
E292 is important for the aminoacylation activity of Escherichia coli leucyl-tRNA synthetase
2003
Du, X.; Wang, E.D.
J. Protein Chem.
22
71-76
Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase
2003
Lincecum, T.L., Jr.; Tukalo, M.; Yaremchuk, A.; Mursinna, R.S.; Williams, A.M.; Sproat, B.S.; Van Den Eynde, W.; Link, A.; Van Calenbergh, S.; Grotli, M.; Martinis, S.A.; Cusack, S.
Mol. Cell
11
951-963
High-level expression and single-step purification of leucyl-tRNA synthetase from Escherichia coli
1999
Chen, J.; Li, Y.; Wang, E.; Wang, Y.
Protein Expr. Purif.
15
115-120
Human mitochondrial leucyl-tRNA synthetase with high activity produced from Escherichia coli
2003
Yao, Y.N.; Wang, L.; Wu, X.F.; Wang, E.D.
Protein Expr. Purif.
30
112-116
Groups on the side chain of T252 in Escherichia coli leucyl-tRNA synthetase are important for discrimination of amino acids and cell viability
2004
Xu, M.G.; Li, J.; Du, X.; Wang, E.D.
Biochem. Biophys. Res. Commun.
318
11-16
Crystal structures of the editing domain of E. coli leucyl-tRNA synthetase and its complexes with methionine and isoleucine reveal a lock-and-key mechanism for amino acid discrimination
2006
Liu, Y.; Liao, J.; Zhu, B.; Wang, E.; Ding, J.
Biochem. J.
394
399-407
An aminoacyl-tRNA synthetase with a defunct editing site
2005
Lue, S.W.; Kelley, S.O.
Biochemistry
44
3010-3016
Leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus recognizes minihelices
2004
Xu, M.G.; Zhao, M.W.; Wang, E.D.
J. Biol. Chem.
279
32151-32158
The C-terminal appended domain of human cytosolic leucyl-tRNA synthetase is indispensable in its interaction with arginyl-tRNA synthetase in the multi-tRNA synthetase complex
2005
Ling, C.; Yao, Y.N.; Zheng, Y.G.; Wei, H.; Wang, L.; Wu, X.F.; Wang, E.D.
J. Biol. Chem.
280
34755-34763
Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation
2005
Fukunaga, R.; Yokoyama, S.
J. Mol. Biol.
346
57-71
Two distinct domains of the beta subunit of Aquifex aeolicus leucyl-tRNA synthetase are involved in tRNA binding as revealed by a three-hybrid selection
2004
Zheng, Y.G.; Wei, H.; Ling, C.; Martin, F.; Eriani, G.; Wang, E.D.
Nucleic Acids Res.
32
3294-3303
Split leucine-specific domain of leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus
2006
Ma, J.J.; Zhao, M.W.; Wang, E.D.
Biochemistry
45
14809-14816
Modulation of substrate specificity within the amino acid editing site of leucyl-tRNA synthetase
2007
Zhai, Y.; Nawaz, M.H.; Lee, K.W.; Kirkbride, E.; Briggs, J.M.; Martinis, S.A.
Biochemistry
46
3331-3337
A single residue in leucyl-tRNA synthetase affecting amino acid specificity and tRNA aminoacylation
2007
Lue, S.W.; Kelley, S.O.
Biochemistry
46
4466-4472
The C-terminal domain of the archaeal leucyl-tRNA synthetase prevents misediting of isoleucyl-tRNA(Ile)
2007
Fukunaga, R.; Yokoyama, S.
Biochemistry
46
4985-4996
A unique insert of leucyl-tRNA synthetase is required for aminoacylation and not amino acid editing
2007
Vu, M.T.; Martinis, S.A.
Biochemistry
46
5170-5176
Isolated CP1 domain of Escherichia coli leucyl-tRNA synthetase is dependent on flanking hinge motifs for amino acid editing activity
2007
Betha, A.K.; Williams, A.M.; Martinis, S.A.
Biochemistry
46
6258-6267
-
Effect of aluminum ions on the activities of tRNALeu and leucyl-tRNA synthetase in mouse liver in vivo and in vitro
2006
Viezeliene, D.; Rodovicius, H.; Ivanov, L.
Biologija (Vilnius)
4
28-30
Functional divergence of a unique C-terminal domain of leucyl-tRNA synthetase to accommodate its splicing and aminoacylation roles
2006
Hsu, J.L.; Rho, S.B.; Vannella, K.M.; Martinis, S.A.
J. Biol. Chem.
281
23075-23082
A viable amino acid editing activity in the leucyl-tRNA synthetase CP1-splicing domain is not required in the yeast mitochondria
2006
Karkhanis, V.A.; Boniecki, M.T.; Poruri, K.; Martinis, S.A.
J. Biol. Chem.
281
33217-33225
Functional association between three archaeal aminoacyl-tRNA synthetases
2007
Praetorius-Ibba, M.; Hausmann, C.D.; Paras, M.; Rogers, T.E.; Ibba, M.
J. Biol. Chem.
282
3680-3687
Molecular and functional dissection of a putative RNA-binding region in yeast mitochondrial leucyl-tRNA synthetase
2007
Nawaz, M.H.; Pang, Y.L.; Martinis, S.A.
J. Mol. Biol.
367
384-394
A present-day aminoacyl-tRNA synthetase with ancestral editing properties
2007
Zhu, B.; Zhao, M.W.; Eriani, G.; Wang, E.D.
RNA
13
15-21
Functional segregation of a predicted hinge site within the beta-strand linkers of Escherichia coli leucyl-tRNA synthetase
2008
Mascarenhas, A.P.; Martinis, S.A.
Biochemistry
47
4808-4816
Unique residues crucial for optimal editing in yeast cytoplasmic Leucyl-tRNA synthetase are revealed by using a novel knockout yeast strain
2008
Yao, P.; Zhou, X.L.; He, R.; Xue, M.Q.; Zheng, Y.G.; Wang, Y.F.; Wang, E.D.
J. Biol. Chem.
283
22591-22600
The CP2 domain of leucyl-tRNA synthetase is crucial for amino acid activation and post-transfer editing
2008
Zhou, X.L.; Zhu, B.; Wang, E.D.
J. Biol. Chem.
283
36608-36616
A flexible peptide tether controls accessibility of a unique C-terminal RNA-binding domain in Leucyl-tRNA synthetases
2008
Hsu, J.L.; Martinis, S.A.
J. Mol. Biol.
376
482-491
Recognition of tRNALeu by Aquifex aeolicus leucyl-tRNA synthetase during the aminoacylation and editing steps
2008
Yao, P.; Zhu, B.; Jaeger, S.; Eriani, G.; Wang, E.D.
Nucleic Acids Res.
36
2728-2738
Two tyrosine residues outside the editing active site in Giardia lamblia leucyl-tRNA synthetase are essential for the post-transfer editing
2009
Zhou, X.L.; Wang, E.D.
Biochem. Biophys. Res. Commun.
386
510-515
A unique insertion in the CP1 domain of Giardia lamblia leucyl-tRNA synthetase
2009
Zhou, X.L.; Yao, P.; Ruan, L.L.; Zhu, B.; Luo, J.; Qu, L.H.; Wang, E.D.
Biochemistry
48
1340-1347
A paradigm shift for the amino acid editing mechanism of human cytoplasmic leucyl-tRNA synthetase
2009
Pang, Y.L.; Martinis, S.A.
Biochemistry
48
8958-8964
Introduction of an aliphatic ketone into recombinant proteins in a bacterial strain that overexpresses an editing-impaired leucyl-tRNA synthetase
2009
Tang, Y.; Wang, P.; Van Deventer, J.; Link, A.; Tirrell, D.
ChemBioChem
10
2188-2190
tRNA-independent pretransfer editing by class I leucyl-tRNA synthetase
2009
Zhu, B.; Yao, P.; Tan, M.; Eriani, G.; Wang, E.
J. Biol. Chem.
284
3418-3424
tRNA-dependent pre-transfer editing by prokaryotic leucyl-tRNA synthetase
2010
Tan, M.; Zhu, B.; Zhou, X.L.; He, R.; Chen, X.; Eriani, G.; Wang, E.D.
J. Biol. Chem.
285
3235-3244
Functional characterization of leucine-specific domain 1 from eukaryal and archaeal leucyl-tRNA synthetases
2010
Zhou, X.L.; Wang, M.; Tan, M.; Huang, Q.; Eriani, G.; Wang, E.D.
Biochem. J.
429
505-513
Post-transfer editing by a eukaryotic leucyl-tRNA synthetase resistant to the broad-spectrum drug AN2690
2010
Zhou, X.L.; Tan, M.; Wang, M.; Chen, X.; Wang, E.D.
Biochem. J.
430
325-333
Editing mechanism of aminoacyl-tRNA synthetases operates by a hybrid ribozyme/protein catalyst
2010
Hagiwara, Y.; Field, M.J.; Nureki, O.; Tateno, M.
J. Am. Chem. Soc.
132
2751-2758
Design, synthesis, and structure-activity relationship of Trypanosoma brucei leucyl-tRNA synthetase inhibitors as antitrypanosomal agents
2011
Ding, D.; Meng, Q.; Gao, G.; Zhao, Y.; Wang, Q.; Nare, B.; Jacobs, R.; Rock, F.; Alley, M.R.; Plattner, J.J.; Chen, G.; Li, D.; Zhou, H.
J. Med. Chem.
54
1276-1287
Modular pathways for editing non-cognate amino acids by human cytoplasmic leucyl-tRNA synthetase
2011
Chen, X.; Ma, J.J.; Tan, M.; Yao, P.; Hu, Q.H.; Eriani, G.; Wang, E.D.
Nucleic Acids Res.
39
235-247
Interdomain communication modulates the tRNA-dependent pre-transfer editing of leucyl-tRNA synthetase
2013
Tan, M.; Zhu, B.; Liu, R.J.; Chen, X.; Zhou, X.L.; Wang, E.D.
Biochem. J.
449
123-131
Leucyl-tRNA synthetase: double duty in amino acid sensing
2012
Duran, R.V.; Hall, M.N.
Cell Res.
22
1207-1209
Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
2012
Han, J.M.; Jeong, S.J.; Park, M.C.; Kim, G.; Kwon, N.H.; Kim, H.K.; Ha, S.H.; Ryu, S.H.; Kim, S.
Cell
149
410-424
The isolated carboxy-terminal domain of human mitochondrial leucyl-tRNA synthetase rescues the pathological phenotype of mitochondrial tRNA mutations in human cells
2014
Perli, E.; Giordano, C.; Pisano, A.; Montanari, A.; Campese, A.F.; Reyes, A.; Ghezzi, D.; Nasca, A.; Tuppen, H.A.; Orlandi, M.; Di Micco, P.; Poser, E.; Taylor, R.W.; Colotti, G.; Francisci, S.; Morea, V.; Frontali, L.; Zeviani, M.; dAmati, G.
EMBO Mol. Med.
6
169-182
Crucial role of the C-terminal domain of Mycobacterium tuberculosis leucyl-tRNA synthetase in aminoacylation and editing
2013
Hu, Q.H.; Huang, Q.; Wang, E.D.
Nucleic Acids Res.
41
1859-1872
Coexistence of bacterial leucyl-tRNA synthetases with archaeal tRNA binding domains that distinguish tRNALeu in the archaeal mode
2014
Fang, Z.P.; Wang, M.; Ruan, Z.R.; Tan, M.; Liu, R.J.; Zhou, M.; Zhou, X.L.; Wang, E.D.
Nucleic Acids Res.
42
5109-5124
Leucyl-tRNA synthetase editing domain functions as a molecular rheostat to control codon ambiguity in Mycoplasma pathogens
2013
Li, L.; Palencia, A.; Lukk, T.; Li, Z.; Luthey-Schulten, Z.A.; Cusack, S.; Martinis, S.A.; Boniecki, M.T.
Proc. Natl. Acad. Sci. USA
110
3817-3822
Leucyl-tRNA synthetase activates Vps34 in amino acid-sensing mTORC1 signaling
2016
Yoon, M.S.; Son, K.; Arauz, E.; Han, J.M.; Kim, S.; Chen, J.
Cell Rep.
16
1510-1517
Leucyl-tRNA synthetase is required for the myogenic differentiation of C2C12 myoblasts, but not for hypertrophy or metabolic alteration of myotubes
2018
Sato, Y.; Sato, Y.; Suzuki, R.; Obeng, K.; Yoshizawa, F.
Exp. Cell Res.
364
184-190
Leucyl-tRNA synthetase regulates lactation and cell proliferation via mTOR signaling in dairy cow mammary epithelial cells
2014
Wang, L.; Lin, Y.; Bian, Y.; Liu, L.; Shao, L.; Lin, L.; Qu, B.; Zhao, F.; Gao, X.; Li, Q.
Int. J. Mol. Sci.
15
5952-5969
Modulation of aminoacylation and editing properties of leucyl-tRNA synthetase by a conserved structural module
2015
Yan, W.; Ye, Q.; Tan, M.; Chen, X.; Eriani, G.; Wang, E.D.
J. Biol. Chem.
290
12256-12267
Identification of Mycobacterium tuberculosis leucyl-tRNA synthetase (LeuRS) inhibitors among the derivatives of 5-phenylamino-2H-[1,2,4]triazin-3-one
2016
Gudzera, O.I.; Golub, A.G.; Bdzhola, V.G.; Volynets, G.P.; Kovalenko, O.P.; Boyarshin, K.S.; Yaremchuk, A.D.; Protopopov, M.V.; Yarmoluk, S.M.; Tukalo, M.A.
J. Enzyme Inhib. Med. Chem.
31
201-207
Zinc is the molecular switch that controls the catalytic cycle of bacterial leucyl-tRNA synthetase
2015
Kumar, M.; Kumar, S.A.; Dimkovikj, A.; Baykal, L.N.; Banton, M.J.; Outlaw, M.M.; Polivka, K.E.; Hellmann-Whitaker, R.A.
J. Inorg. Biochem.
142
59-67
Kinetic origin of substrate specificity in post-transfer editing by leucyl-tRNA synthetase
2018
Dulic, M.; Cvetesic, N.; Zivkovic, I.; Palencia, A.; Cusack, S.; Bertosa, B.; Gruic-Sovulj, I.
J. Mol. Biol.
430
1-16
A bridge between the aminoacylation and editing domains of leucyl-tRNA synthetase is crucial for its synthetic activity
2014
Huang, Q.; Zhou, X.L.; Hu, Q.H.; Lei, H.Y.; Fang, Z.P.; Yao, P.; Wang, E.D.
RNA
20
1440-1450