Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
0.02
-
wild type enzyme with ferricyanide as electron acceptor
8.5
-
A198G/L230G mutant enzyme with ferricyanide as electron acceptor
0.0033
-
wild-type, pH 7.0, 25°C
6.6
-
mutant A95G, pH 7.0, 25°C
15.8
-
mutant A95G, pH 7.0, 25°C
1.2
-
at pH 7.5 and 28°C
0.04
-
pH 7.5, 20°C, mutant enzyme R165G/R277K
0.05
-
pH 7.5, 20°C, mutant enzyme G81V
0.09
-
mutant enzyme H274G, in presence of 20 mM imidazole
0.11
-
pH 7.5, 20°C, mutant enzyme G81D
0.23
-
mutant enzyme R277G, at 20°C, in 0.1 M potassium phosphate, pH 7.5
0.23
-
pH 7.5, 20°C, mutant enzyme R277G
0.27
-
pH 7.5, 20°C, mutant enzyme R277L
0.64
-
pH 7.5, 20°C, mutant enzyme R277G
1.1
-
pH 7.5, 20°C, mutant enzyme R165K/R277K
1.52
-
pH 7.5, 20°C, mutant enzyme R277H
1.6
-
pH 7.5, chimeric mutant of (S)-mandelate dehydrogenase with membrane anchoring loop replaced by a portion of glycolate oxidase from spinach
2.3
-
pH 7.5, 20°C, mutant enzyme, G81A/MDH-GOX2, a chimeric mutant of (S)-mandelate dehydrogenase with residues 177-215 replaced by residues 176-195 of glycolate oxidase from spinach and a G81A mutation in MDH
2.8
-
pH 7.5, 20°C, mutant enzyme G81S
3
6
pH 7.5, 25°C, electron acceptor: 2,6-dichloroindophenol
4.4
-
pH 7.5, 20°C, mutant enzyme R165E
9
-
pH 7.5, (S)-mandelate dehydrogenase with residues 2-4 deleted
13.2
-
pH 7.5, 20°C, mutant enzyme R165G
18.4
-
pH 7.5, 20°C, mutant enzyme R165M
19.2
-
pH 7.5, 20°C, mutant enzyme G81A
24
-
pH 7.5, (S)-mandelate dehydrogenase with 17 residues deleted at the carboxy terminus
49
-
pH 7.5, 25°C, electron acceptor: cytochrome c
66
-
mutant enzyme R277K, at 20°C, in 0.1 M potassium phosphate, pH 7.5
66
-
pH 7.5, 20°C, mutant enzyme R277K
73
-
pH 7.5, 20°C, mutant enzyme R277K
109
-
pH 7.5, 25°C, electron acceptor: ferricyanide
114
-
pH 7.5, 25°C, cosubstrate: ferricyanide
120
-
pH 7.5, 20°C, mutant enzyme R165K
174
-
pH 7.5, wild-type enzyme
205
-
pH 7.5, 20°C, cosubstrate: 2,6-dichloroindophenol, MDH-GOX2, a chimeric mutant of (S)-mandelate dehydrogenase with residues 177-215 replaced by residues 176-195 of glycolate oxidase from spinach
205
-
pH 7.5, 20°C, mutant enzyme MDH-GOX2, a chimeric mutant of (S)-mandelate dehydrogenase with 205 residues 177-215 replaced by residues 176-195 of glycolate oxidase from spinach
270
-
pH 7.5, 20°C, wild-type enzyme
290
-
pH 7.5, 20°C, cosubstrate: 2,6-dichloroindophenol, wild-type enzyme
360
-
pH 7.5, 20°C, wild-type enzyme
360
-
wild type enzyme, at 20°C, in 0.1 M potassium phosphate, pH 7.5
2.5
-
25°C, pH 7.5, mutant enzyme N197A
12
-
mutant enzyme F52W/Y64W
22
-
mutant A25V, pH 7.5, 25°C
22
-
mutant V26F, pH 7.5, 25°C
22
-
pH 7.5, 3.3 mM Mg2+, mutant A25V
22
-
pH 7.5, 3.3 mM Mg2+, mutant V26F
23
-
mutant V26L, pH 7.5, 25°C
23
-
pH 7.5, 3.3 mM Mg2+, mutant V26L
53
-
mutant V29F, pH 7.5, 25°C
53
-
pH 7.5, 3.3 mM Mg2+, mutant V29F
77
-
mutant V22A, pH 7.5, 25°C
77
-
pH 7.5, 3.3 mM Mg2+ mutant V22A
89
-
mutant V26A/V29L, pH 7.5, 25°C
89
-
pH 7.5, 3.3 mM Mg2+, mutant V26A/V29L
98
-
mutant V22F, pH 7.5, 25°C
98
-
pH 7.5, 3.3 mM Mg2+, mutant V22F
120
-
mutant T24S, pH 7.5, 25°C
120
-
pH 7.5, 3.3 mM Mg2+, mutant T24S
176
-
mutant V29A, pH 7.5, 25°C
176
-
pH 7.5, 3.3 mM Mg2+, mutant V29A
180
-
mutant V29L, pH 7.5, 25°C
180
-
pH 7.5, 3.3 mM Mg2+, mutant V29L
190
-
recombinant mandelate racemase, putative misfolded form with N-terminal hexahistidine tag, Na-HEPES buffer (0.1 M, pH 7.5), 3.3 mM MgCl2
447
-
25°C, pH 7.5, wild-type enzyme
470
-
pH 7.5, 3.3 mM Mg2+, wild-type
470
-
wild-type, pH 7.5, 25°C
472
-
recombinant mandelate racemase fusion protein bearing an N-terminal StrepII-tag and a C-terminal decahistidine tag, Na-HEPES buffer (0.1 M, pH 7.5), 3.3 mM MgCl2
492
-
pH 7.5, 20 mM Mg2+, wild-type
492
-
wild-type, pH 7.5, 25°C, presence of 20 mM Mg2+
550
-
mutant V26A, pH 7.5, 25°C
550
-
pH 7.5, 3.3 mM Mg2+, mutant V26A
637
-
pH 7.5, 25°C, recombinant wild-type enzyme
710
-
mutant V22I/V29L, pH 7.5, 25°C, presence of 20 mM Mg2+
710
-
pH 7.5, 3.3 mM Mg2+, mutant V26A/V29L
740
-
mutant V22I, pH 7.5, 25°C, presence of 20 mM Mg2+
740
-
pH 7.5, 3.3 mM Mg2+, mutant V22I
940
-
recombinant mandelate racemase represents correctly folded enzyme, with N-terminal hexahistidine tag, in Na-HEPES buffer (0.1 M, pH 7.5), 3.3 mM MgCl2
1124
-
recombinant enzyme replacement of the N-terminal hexahistidine tag by a StrepII-tag appears to ameliorate the folding problem yielding a single enzyme species, Na-HEPES buffer (0.1 M, pH 7.5), 3.3 mM MgCl2
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
0.3
-
wild-type, pH 7.0, 25°C
20
-
mutant A95G, pH 7.0, 25°C
0.04
-
pH 7.5, 20°C, mutant enzyme, G81A/MDH-GOX2, a chimeric mutant of (S)-mandelate dehydrogenase with residues 177-215 replaced by residues 176-195 of glycolate oxidase from spinach and a G81A mutation in MDH
0.085
-
pH 7.5, 20°C, cosubstrate: 2,6-dichloroindophenol, MDH-GOX2, a chimeric mutant of (S)-mandelate dehydrogenase with residues 177-215 replaced by residues 176-195 of glycolate oxidase from spinach
0.09
-
pH 7.5, 20°C, mutant enzyme MDH-GOX2, a chimeric mutant of (S)-mandelate dehydrogenase with residues 177-215 replaced by residues 176-195 of glycolate oxidase from spinach
0.12
-
pH 7.5, 20°C, wild-type enzyme
0.12
-
wild type enzyme, at 20°C, in 0.1 M potassium phosphate, pH 7.5
0.13
-
pH 7.5, 20°C, wild-type enzyme
0.15
-
pH 7.5, 20°C, mutant enzyme G81A
0.158
-
pH 7.5, (S)-mandelate dehydrogenase with 17 residues deleted at the carboxy terminus
0.17
-
pH 7.5, 20°C, mutant enzyme G81V
0.18
-
pH 7.5, 20°C, cosubstrate: 2,6-dichloroindophenol, wild-type enzyme
0.18
-
pH 7.5, 25°C, electron acceptor: 2,6-dichloroindophenol
0.206
-
pH 7.5, wild-type enzyme
0.225
-
pH 7.5, (S)-mandelate dehydrogenase with residues 2-4 deleted
0.229
-
pH 7.5, chimeric mutant of (S)-mandelate dehydrogenase with membrane anchoring loop replaced by a portion of glycolate oxidase from spinach
0.24
-
pH 7.5, 25°C, cosubstrate: ferricyanide
0.27
-
chitosan-immobilized enzyme, at pH 3.4 and 45°C
0.27
-
pH 7.5, 25°C, electron acceptor: ferricyanide
0.49
-
pH 7.5, 25°C, electron acceptor: cytochrome c
0.92
-
at pH 6.5 and 30°C
1.5
-
pH 7.5, 20°C, mutant enzyme R165K
2
-
pH 7.5, 20°C, mutant enzyme G81D
2.3
-
pH 7.5, 20°C, mutant enzyme G81S
4.4
-
pH 7.5, 20°C, mutant enzyme R165M
4.4
-
pH 7.5, 20°C, mutant enzyme R277K
5.6
-
mutant enzyme R277K, at 20°C, in 0.1 M potassium phosphate, pH 7.5
5.6
-
pH 7.5, 20°C, mutant enzyme R277K
5.8
-
pH 7.5, 20°C, mutant enzyme R165G
12
-
pH 7.5, 20°C, mutant enzyme R165E
13
-
mutant enzyme H274G, in presence of 20 mM imidazole
15.2
-
pH 7.5, 20°C, mutant enzyme R165K/R277K
17
-
mutant enzyme R277G, at 20°C, in 0.1 M potassium phosphate, pH 7.5
17
-
pH 7.5, 20°C, mutant enzyme R277G
19.2
-
pH 7.5, 20°C, mutant enzyme R277H
31.4
-
pH 7.5, 20°C, mutant enzyme R165G/R277K
47
-
pH 7.5, 20°C, mutant enzyme R277G
73
-
pH 7.5, 20°C, mutant enzyme R277L
0.3
-
recombinant mandelate racemase, putative misfolded form with N-terminal hexahistidine tag, Na-HEPES buffer (0.1 M, pH 7.5), 3.3 mM MgCl2
0.6
-
mutant V29L, pH 7.5, 25°C
0.6
-
pH 7.5 at 25°C, 3.3 mM Mg2+, mutant V29L
0.6
-
recombinant mrIII fusion protein bearing an N-terminal StrepII-tag and a C-terminal decahistidine tag, Na-HEPES buffer (0.1 M, pH 7.5), 3.3 mM MgCl2
0.62
-
25°C, pH 7.5, wild-type enzyme
0.8
-
recombinant mandelate racemase represents correctly folded enzyme with N-terminal hexahistidine tag, in Na-HEPES buffer (0.1 M, pH 7.5),3.3 mM MgCl2
0.97
-
pH 7.5 at 25°C, 3.3 mM Mg2+, wild-type
0.97
-
wild-type, pH 7.5, 25°C
1
-
pH 7.5, 25°C, recombinant wild-type enzyme
1.07
-
pH 7.5 at 25°C, 20 mM Mg2+, wild-type
1.07
-
wild-type, pH 7.5, 25°C, presence of 20 mM Mg2+
1.1
-
mutant V26A/V29L, pH 7.5, 25°C
1.1
-
mutant V26F, pH 7.5, 25°C
1.1
-
mutant V26L, pH 7.5, 25°C
1.1
-
mutant V29F, pH 7.5, 25°C
1.1
-
pH 7.5 at 25°C, 3.3 mM Mg2+, mutant V26A/V29L
1.1
-
pH 7.5 at 25°C, 3.3 mM Mg2+, mutant V26F
1.1
-
pH 7.5 at 25°C, 3.3 mM Mg2+, mutant V26L
1.1
-
pH 7.5 at 25°C, 3.3 mM Mg2+, mutant V29F
1.1
-
recombinant mandelate racemase, replacement of the N-terminal hexahistidine tag by a StrepII-tag appears to ameliorate the folding problem yielding a single enzyme species, Na-HEPES buffer (0.1 M, pH 7.5), 3.3 mM MgCl2
1.4
-
25°C, pH 7.5, mutant enzyme N197A
1.5
-
mutant V22I/V29L, pH 7.5, 25°C, presence of 20 mM Mg2+
1.5
-
pH 7.5 at 25°C, 3.3 mM Mg2+, mutant V26A/V29L
1.7
-
mutant V22I, pH 7.5, 25°C, presence of 20 mM Mg2+
1.7
-
mutant V26A, pH 7.5, 25°C
1.7
-
pH 7.5 at 25°C, 3.3 mM Mg2+, mutant V22I
1.7
-
pH 7.5 at 25°C, 3.3 mM Mg2+, mutant V26A
1.8
-
mutant A25V, pH 7.5, 25°C
1.8
-
pH 7.5 at 25°C, 3.3 mM Mg2+, mutant A25V
3
-
mutant T24S, pH 7.5, 25°C
3
-
pH 7.5 at 25°C, 3.3 mM Mg2+, mutant T24S
3.4
-
mutant V22A, pH 7.5, 25°C
3.4
-
pH 7.5 at 25°C, 3.3 mM Mg2+, mutant V22A
3.8
-
mutant enzyme F52W/Y64W
3.9
-
mutant V29A, pH 7.5, 25°C
3.9
-
pH 7.5 at 25°C, 3.3 mM Mg2+, mutant V29A
6.1
-
mutant V22F, pH 7.5, 25°C
6.1
-
pH 7.5 at 25°C, 3.3 mM Mg2+, mutant V22F
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Mandelate racemase and muconate lactonizing enzyme are mechanistically distinct and structurally homologous
1990
Neidhart, D.J.; Kenyon, G.L.; Gerlt, J.A.; Petsko, G.A.
Nature
347
692-694
Kinetics and mechanism of benzoylformate decarboxylase using 13C and solvent deuterium isotope effects on benzoylformate and benzoylformate analogues
1988
Weiss, P.M.; Garcia, G.A.; Kenyon, G.L.; Cleland, W.W.; Cook, P.F.
Biochemistry
27
2197-2205
Mandelate pathway of Pseudomonas putida: sequence relationships involving mandelate racemase, (S)-mandelate dehydrogenase, and benzoylformate decarboxylase and expression of benzoylformate decarboxylase in Escherichia coli
1990
Tsou, A.Y.; Ransom, S.C.; Gerlt, J.A.; Buechter, D.D.; Babbitt, P.C.; Kenyon, G.L.
Biochemistry
29
9856-9862
Preliminary X-ray data on crystals of mandelate racemase
1988
Neidhart, D.J.; Powers, V.M.; Kenyon, G.L.; Tsou, A.Y.; Ransom, S.C.; Gerlt, J.A.; Petsko, G.A.
J. Biol. Chem.
263
9268-9270
Cloning, DNA sequence analysis, and expression in Escherichia coli of the gene for mandelate racemase from Pseudomonas putida
1988
Ransom, S.C.; Gerlt, J.A.; Powers, V.M.; Kenyon, G.L.
Biochemistry
27
540-545
-
Evidence for the generation of alpha-carboxy-alpha-hydroxy-p-xylylene from p-(bromomethyl)mandelate by mandelate racemase
1988
Lin, D.T.; Powers, V.M.; Reynolds, L.J.; Whitman, C.P.; Kozarich, J.W.; Kenyon, G.L.
J. Am. Chem. Soc.
110
323-324
Symmetry and asymmetry in mandelate racemase catalysis
1985
Whitman, C.P.; Hegeman, G.D.; Cleland, W.W.; Kenyon, G.L.
Biochemistry
24
3936-3942
Mandelate racemase
1979
Kenyon, G.L.; Hegeman, G.D.
Adv. Enzymol. Relat. Areas Mol. Biol.
50
325-360
Mandelate racemase
1977
Kenyon, G.L.; Hegeman, G.D.
Methods Enzymol.
46
541-548
Mandelate racemase from Pseudomonas putida. Magnetic resonance and kinetic studies of the mechanism of catalysis
1975
Maggio, E.T.; Kenyon, G.L.; Mildvan, A.S.; Hegeman, G.D.
Biochemistry
14
1131-1139
Mandelate racemase from Pseudomonas putida. Affinity labeling of the enzyme by D,L-alpha-phenylglycidate in the presence of magnesium ion
1974
Fee, J.A.; Hegeman, G.D.; Kenyon, G.L.
Biochemistry
13
2533-2538
Mandelate racemase from pseudomonas putida. Subunit composition and absolute divalent metal ion requirement
1974
Fee, J.A.; Hegeman, G.D.; Kenyon, G.L.
Biochemistry
13
2528-2532
-
Mandelate racemase (Pseudomonas putida)
1970
Hegeman, G.D.
Methods Enzymol.
17
670-674
Mandelic acid racemase from Pseudomonas putida. Purification and properties of the enzyme
1970
Hegeman, G.D.; Rosenberg, E.Y.; Kenyon, G.L.
Biochemistry
9
4029-4036
Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the D270N mutant
1996
Schafer, S.L.; Barrett, W.C.; Kallarakal, A.T.; Mitra, B.; Kozarich, J.W.; Gerlt, J.A.
Biochemistry
35
5662-5669
A direct kinetic assay for mandelate racemase using circular dichroic measurements
1979
Sharp, T.R.; Hegeman, G.D.; Kenyon, G.L.
Anal. Biochem.
94
329-334
Mandelate racemase from Pseudomonas putida. Absence of detectable intermolecular proton transfer accompanying racemization
1977
Sharp, T.R.; Hegeman, G.D.; Kenyon, G.L.
Biochemistry
16
1123-1128
Mandelic acid racemase from Pseudomonas putida. Evidence favoring a carbanion intermediate in the mechanism of action
1970
Kenyon, G.L.; Hegeman, G.D.
Biochemistry
9
4036-4043
Selection and characterization of a mutant of the cloned gene for mandelate racemase that confers resistance to an affinity label by greatly enhanced production of enzyme
1989
Tsou, A.Y.; Ransom, S.C.; Gerlt, J.A.; Powers, V.M.; Kenyon, G.L.
Biochemistry
28
969-975
Restructuring catalysis in the mandelate pathway
1990
Neidhart, D.C.; Howell, P.L.; Petsko, G.A.; Gerlt, J.A.; Kozarich, J.W.; Powers, V.M.; Kenyon, G.L.
Biochem. Soc. Symp.
57
135-141
Mechanism of the reaction catalyzed by mandelate racemase. 3. Asymmetry in reactions catalyzed by the H297N mutant
1991
Landro, J.A.; Kallarakal, A.T.; Ransom, S.C.; Gerlt, J.A.; Kozarich, J.W.; Neidhart, D.J.; Kenyon, G.L.
Biochemistry
30
9274-9281
Mechanism of the reaction catalyzed by mandelate racemase. 2. Crystal structure of mandelate racemase at 2.5-A resolution: identification of the active site and possible catalytic residues
1991
Neidhart, D.J.; Howell, P.L.; Petsko, G.A.; Powers, V.M.; Li, R.; Kenyon, G.L.; Gerlt, J.A.
Biochemistry
30
9264-9273
Mechanism of the reaction catalyzed by mandelate racemase. 1. Chemical and kinetic evidence for a two-base mechanism
1991
Powers, V.M.; Koo, C.W.; Kenyon, G.L.; Gerlt, J.A.; Kozarich, J.W.
Biochemistry
30
9255-9263
-
Mandelate racemase and class-related enzymes
1992
Gerlt, J.A.; Kenyon, G.L.; Kozarich, J.W.; Neidhart, D.J.; Petsko, G.A.; Powers, V.M.
Curr. Opin. Struct. Biol.
2
736-742
The role of lysine 166 in the mechanism of mandelate racemase from Pseudomonas putida: mechanistic and crystallographic evidence for stereospecific alkylation by (R)-alpha-phenylglycidate
1994
Landro, J.A.; Gerlt, J.A.; Kozarich, J.W.; Koo, C.W.; Shah, V.J.; Kenyon, G.L.; Neidhart, D.J.; Fujita, S.; Petsko, G.A.
Biochemistry
33
635-643
-
Racemization of vinylglycolate catalyzed by mandelate racemase
1995
Li, R.; Powers, V.M.; Kozarich, J.W.; Kenyon, G.L.
J. Org. Chem.
60
3347-3351
Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the K166R mutant
1995
Kallarakal, A.T.; Mitra, B.; Kozarich, J.W.; Gerlt, J.A.; Clifton, J.G.; Petsko, G.A.; Kenyon, G.L.
Biochemistry
34
2788-2797
-
Large-scale production of mandelate racemase by Pseudomonas putida ATCC 12633: optimization of enzyme induction and development of a stable crude enzyme preparation
1997
Stecher, H.; Felfer, U.; Faber, K.
J. Biotechnol.
56
33-40
Mechanism of the reaction catalyzed by mandelate racemase: importance of electrophilic catalysis by glutamic acid 317
1995
Mitra, B.; Kallarakal, A.T.; Kozarich, J.W.; Gerlt, J.A.; Clifton, J.G.; Petsko, G.A.; Kenyon, G.L.
Biochemistry
34
2777-2787
Reaction intermediate analogues for mandelate racemase: interaction between Asn 197 and the alpha-hydroxyl of the substrate promotes catalysis
2000
ST.Maurice, M.; Bearne, S.L.
Biochemistry
39
13324-13335
Involvement of 4-hydroxymandelic acid in the degradation of mandelic acid by Pseudomonas convexa
1976
Bhat, S.G.; Vaidyanathan, C.S.
J. Bacteriol.
127
1108-1118
Production of R-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750
1991
Yamamoto, K.; Oishi, K.; Fujimatsu, I.; Komatsu, K.
Appl. Environ. Microbiol.
57
3028-3032
-
Mandelamide hydrolase from Pseudomonas putida
1997
Kooo, C.W.
Diss. Abstr. Int. B
58
1865
Re-design of Saccharomyces cerevisiae flavocytochrome b2: introduction of L-mandelate dehydrogenase activity
1998
Sinclair, R.; Reid, G.A.; Chapman, S.K.
Biochem. J.
333
117-120
Kinetic and crystallographic studies on the active site Arg289Lys mutant of flavocytochrome b2 (yeast L-lactate dehydrogenase)
2000
Mowat, C.G.; Beaudoin, I.; Durley, R.C.; Barton, J.D.; Pike, A.D.; Chen, Z.W.; Reid, G.A.; Chapman, S.K.; Mathews, F.S.; Lederer, F.
Biochemistry
39
3266-3275
The catalytic role of tyrosine 254 in flavocytochrome b2 (L-lactate dehydrogenase from baker's yeast). Comparison between the Y254F and Y254L mutant proteins
2001
Gondry, M.; Duboist, J.; Terrier, M.; Lederer, F.
Eur. J. Biochem.
268
4918-4927
The role of a beta barrel loop 4 extension in modulating the physical and functional properties of long-chain 2-hydroxy-acid oxidase isozymes
1996
Belmouden, A.; Lederer, F.
Eur. J. Biochem.
238
790-798
Rat kidney L-2-hydroxyacid oxidase. Structural and mechanistic comparison with flavocytochrome b2 from bakerÆs yeast
1988
Urban, P.; Chirat, I.; Lederer, F.
Biochemistry
27
7365-7371
Crystalline mammalian L-amino acid oxidase from rat kidney mitochondria
1966
Nakano, M.; Danowski, T.S.
J. Biol. Chem.
241
2075-2083
Studies on L-amino-acid oxidase. I. Effects of pH and competitive inhibitors
1968
De Kok, A.; Veeger, C.
Biochim. Biophys. Acta
167
35-47
Non-linear slow-binding inhibition of Aerococcus viridans lactate oxidase by Cibacron Blue 3GA
2001
Streitenberger, S.A.; Lopez-Mas, J.A.; Sanchez-Ferrer, A.; Garcia-Carmona, F.
J. Enzyme Inhib.
16
301-312
On the reaction mechanism of L-lactate oxidase: quantitative structure-activity analysis of the reaction with para-substituted L-mandelates
1997
Yorita, K.; Janko, K.; Aki, K.; Ghisla, S.; Palfey, B.A.; Massey, V.
Proc. Natl. Acad. Sci. USA
94
9590-9595
Conversion of L-lactate oxidase to a long chain alpha-hydroxyacid oxidase by site-directed mutagenesis of alanine 95 to glycine
1996
Yorita, K.; Aki, K.; Ohkuma-Soyejima, T.; Kokubo, T.; Misaki, H.; Massey, V.
J. Biol. Chem.
271
28300-28305
Mandelic acid-4-hydroxylase, a new inducible enzyme from Pseudomonas convexa
1973
Bhat, S.G.; Ramanarayanan, M.; Vaidyanathan, C.S.
Biochem. Biophys. Res. Commun.
52
834-842
Purifications and properties of L-mandelate-4-hydroxylase from Pseudomonas convexa
1976
Bhat, S.G.; Vaidyanathan, C.S.
Arch. Biochem. Biophys.
176
314-323
Kinetics and thermodynamics of mandelate racemase catalysis
2002
St Maurice, M.; Bearne, S.L.
Biochemistry
41
4048-4058
Hydrophobic nature of the active site of mandelate racemase
2004
St Maurice, M.; Bearne, S.L.
Biochemistry
43
2524-2532
Perturbing the hydrophobic pocket of mandelate racemase to probe phenyl motion during catalysis
2005
Siddiqi, F.; Bourque, J.R.; Jiang, H.; Gardner, M.; St Maurice, M.; Blouin, C.; Bearne, S.L.
Biochemistry
44
9013-9021
Reaction mechanism of the mandelate anion racemization catalyzed by mandelate racemase enzyme: A QM/MM Molecular Dynamics Free Energy Study
2005
Prat-Resina, X.; Gonzalez-Lafont, A.; Lluch, J.M.
J. Phys. Chem. B
109
21089-21101
L-mandelate dehydrogenase from Rhodotorula graminis: comparisons with the L-lactate dehydrogenase (flavocytochrome b2) from Saccharomyces cerevisiae
1993
Smekal, O.; Yasin, M.; Fewson, C.A.; Reid, G.A.; Chapman, S.K.
Biochem. J.
290
103-107
Substrate analogues as probes of the catalytic mechanism of L-mandelate dehydrogenase from Rhodotorula graminis
1994
Smekal, O.; Reid, G.A.; Chapman, S.K.
Biochem. J.
297
647-652
L-Mandelate dehydrogenase from Rhodotorula graminis: cloning, sequencing and kinetic characterization of the recombinant enzyme and its independently expressed flavin domain
1998
Illias, R.M.; Sinclair, R.; Robertson, D.; Neu, A.; Chapman, S.K.; Reid, G.A.
Biochem. J.
333
107-115
A novel structural basis for membrane association of a protein: construction of a chimeric soluble mutant of (S)-mandelate dehydrogenase from Pseudomonas putida
1993
Mitra, B.; Gerlt, J.A.; Babbitt, P.C.; Koo, C.W.; Kenyon, G.L.; Joseph, D.; Petsko, G.A.
Biochemistry
32
12959-12967
A highly active, soluble mutant of the membrane-associated (S)-mandelate dehydrogenase from Pseudomonas putida
1999
Xu, Y.; Mitra, B.
Biochemistry
38
12367-12376
(S)-Mandelate dehydrogenase from Pseudomonas putida: mutations of the catalytic base histidine-274 and chemical rescue of activity
1999
Lehoux, I.E.; Mitra, B.
Biochemistry
38
9948-9955
Role of arginine 277 in (S)-mandelate dehydrogenase from Pseudomonas putida in substrate binding and transition state stabilization
2000
Lehoux, I.E.; Mitra, B.
Biochemistry
39
10055-10065
Arginine 165/arginine 277 pair in (S)-mandelate dehydrogenase from Pseudomonas putida: role in catalysis and substrate binding
2002
Xu, Y.; Dewanti, A.R.; Mitra, B.
Biochemistry
41
12313-12319
A transient intermediate in the reaction catalyzed by (S)-mandelate dehydrogenase from Pseudomonas putida
2003
Dewanti, A.R.; Mitra, B.
Biochemistry
42
12893-12901
Role of glycine 81 in (S)-mandelate dehydrogenase from Pseudomonas putida in substrate specificity and oxidase activity
2004
Dewanti, A.R.; Xu, Y.; Mitra, B.
Biochemistry
43
10692-10700
High resolution structures of an oxidized and reduced flavoprotein. The water switch in a soluble form of (S)-mandelate dehydrogenase
2004
Sukumar, N.; Dewanti, A.R.; Mitra, B.; Mathews, F.S.
J. Biol. Chem.
279
3749-3757
Comparison of mandelate dehydrogenases from various strains of Acinetobacter calcoaceticus: similarity of natural and 'evolved' forms
1988
Fewson, C.A.; Allison, N.; Hamilton, I.D.; Jardine, J.; Scott, A.J.
J. Gen. Microbiol.
134
967-974
Structural and kinetic studies on ligand binding in wild-type and active-site mutants of penicillin acylase
2004
Alkema, W.B.; Hensgens, C.M.; Snijder, H.J.; Keizer, E.; Dijkstra, B.W.; Janssen, D.B.
Protein Eng. Des. Sel.
17
473-480
Intermediate analogue inhibitors of mandelate racemase: N-Hydroxyformanilide and cupferron
2007
Bourque, J.R.; Burley, R.K.; Bearne, S.L.
Bioorg. Med. Chem. Lett.
17
105-108
-
Biocatalytic enantioconvergent separation of racemic mandelic acid
2007
Choi, W.J.; Lee, K.Y.; Kang, S.H.; Lee, S.B.
Sep. Purif. Technol.
53
178-182
Esters of mandelic acid as substrates for (S)-mandelate dehydrogenase from Pseudomonas putida: implications for the reaction mechanism
2004
Dewanti, A.R.; Xu, Y.; Mitra, B.
Biochemistry
43
1883-1890
Purification and characterization of recombinant human liver glycolate oxidase
2007
Vignaud, C.; Pietrancosta, N.; Williams, E.L.; Rumsby, G.; Lederer, F.
Arch. Biochem. Biophys.
465
410-416
Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus
2007
White, T.A.; Krishnan, N.; Becker, D.F.; Tanner, J.J.
J. Biol. Chem.
282
14316-14327
Mutational analysis of the active site flap (20s loop) of mandelate racemase
2008
Bourque, J.R.; Bearne, S.L.
Biochemistry
47
566-578
Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates
2009
Sukumar, N.; Dewanti, A.; Merli, A.; Rossi, G.L.; Mitra, B.; Mathews, F.S.
Acta Crystallogr. Sect. D
65
543-552
Purification of recombinant mandelate racemase: improved catalytic activity
2010
Narmandakh, A.; Bearne, S.L.
Protein Expr. Purif.
69
39-46
Characterisation of a hydroxymandelate oxidase involved in the biosynthesis of two unusual amino acids occurring in the vancomycin group of antibiotics
2001
Li, T.L.; Choroba, O.W.; Charles, E.H.; Sandercock, A.M.; Williams, D.H.; Spencer, J.B.
Chem. Commun. (Camb. )
21
1752-1753
-
A bi-enzymatic system for efficient enantioselective bioconversion of racemic mandelic acid
2013
Wang, P.; Yang, J.; Jiang, L.; Feng, J.; Yang, C.; Li, D.
J. Mol. Catal. B
94
47-50
Redefining the minimal substrate tolerance of mandelate racemase. Racemization of trifluorolactate
2011
Nagar, M.; Narmandakh, A.; Khalak, Y.; Bearne, S.L.
Biochemistry
50
8846-8852
Structure of mandelate racemase with bound intermediate analogues benzohydroxamate and cupferron
2012
Lietzan, A.D.; Nagar, M.; Pellmann, E.A.; Bourque, J.R.; Bearne, S.L.; St Maurice, M.
Biochemistry
51
1160-1170
Potent inhibition of mandelate racemase by a fluorinated substrate-product analogue with a novel binding mode
2014
Nagar, M.; Lietzan, A.D.; St Maurice, M.; Bearne, S.L.
Biochemistry
53
1169-1178
The role of residue S139 of mandelate racemase: synergistic effect of S139 and E317 on transition state stabilization
2012
Gu, J.; Yu, H.
J. Biomol. Struct. Dyn.
30
585-593
-
Purification and characterization of D(-)-mandelate dehydrogenase from Rhodotorula graminis
1989
Baker, D.P.; Fewson, C.A.
Microbiology
135
2035-2044
Functional exchangeability of oxidase and dehydrogenase reactions in the biosynthesis of hydroxyphenylglycine, a nonribosomal peptide building block
2015
Diez, V.; Loznik, M.; Taylor, S.; Winn, M.; Rattray, N.J.; Podmore, H.; Micklefield, J.; Goodacre, R.; Medema, M.H.; Mueller, U.; Bovenberg, R.; Janssen, D.B.; Takano, E.
ACS Synth. Biol.
4
796-807
Immobilization of membrane-bounded (S)-mandelate dehydrogenase in sol-gel matrix for electroenzymatic synthesis
2015
Mazurenko, I.; Ghach, W.; Kohring, G.W.; Despas, C.; Walcarius, A.; Etienne, M.
Bioelectrochemistry
104
65-70
Highly enantioselective oxidation of alpha-hydroxyacids bearing a substituent with an aryl group: Co-production of optically active alpha-hydroxyacids and alpha-ketoacids
2013
Xue, Y.; Zhang, Y.; Wang, W.; Wang, Y.; Liu, Z.; Zou, S.; Zheng, Y.; Shen, Y.
Biores. Technol.
132
391-394
Stereoselective biotransformation of racemic mandelic acid using immobilized laccase and (S)-mandelate dehydrogenase
2017
Chen, X.; Yang, C.; Wang, P.; Zhang, X.; Bao, B.; Li, D.; Shi, R.
Bioresour. Bioproc.
4
2-2
Concurrent obtaining of aromatic (R)-2-hydroxyacids and aromatic 2-ketoacids by asymmetric oxidation with a newly isolated Pseudomonas aeruginosa ZJB1125
2013
Xue, Y.P.; Tian, F.F.; Ruan, L.T.; Liu, Z.Q.; Zheng, Y.G.; Shen, Y.C.
J. Biotechnol.
167
271-278
Structural distortions due to missense mutations in human formylglycine-generating enzyme leading to multiple sulfatase deficiency
2017
Meshach Paul, D.; Chadah, T.; Senthilkumar, B.; Sethumadhavan, R.; Rajasekaran, R.
J. Biomol. Struct. Dyn.
36
3575-3585
The Ala95-to-Gly substitution in Aerococcus viridans l-lactate oxidase revisited - structural consequences at the catalytic site and effect on reactivity with O2 and other electron acceptors
2015
Stoisser, T.; Rainer, D.; Leitgeb, S.; Wilson, D.K.; Nidetzky, B.
FEBS J.
282
562-578
Conversion of L-lactate oxidase to a long chain alpha-hydroxyacid oxidase by site-directed mutagenesis of alanine 95 to glycine
1996
Yorita, K.; Aki, K.; Ohkuma-Soyejima, T.; Kokubo, T.; Misaki, H.; Massey, V.
J. Biol. Chem.
271
28300-28305
On the reaction mechanism of L-lactate oxidase quantitative structure-activity analysis of the reaction with para-substituted L-mandelates
1997
Yorita, K.; Janko, K.; Aki, K.; Ghisla, S.; Palfey, B.A.; Massey, V.
Proc. Natl. Acad. Sci. USA
94
9590-9595
An additional role for the Broensted acid-base catalysts of mandelate racemase in transition state stabilization
2015
Nagar, M.; Bearne, S.L.
Biochemistry
54
6743-6752