Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
FMNH2 + NADH + H+ + O2 + alloxan = 5,6-dimethylbenzimidazole + D-erythrose 4-phosphate + NAD+ + dialuric acid
-
FMNH2 + NADH + H+ + O2 + H2O = 5,6-dimethylbenzimidazole + D-erythrose 4-phosphate + NAD+ + ?
-
FMNH2 + NADH + H+ + O2 = 5,6-dimethylbenzimidazole + D-erythrose 4-phosphate + NAD+ + ?
-
FMNH2 + NADPH + H+ + O2 = 5,6-dimethylbenzimidazole + D-erythrose 4-phosphate + NADP+ + ?
-
FMNH2 + O2 = 5,6-dimethylbenzimidazole + ?
-
FMNH2 + O2 = 5,6-dimethylbenzimidazole + D-erythrose 4-phosphate + dialiric acid + pyrimidinetrione + alloxan
-
FMNH2 + O2 = 5,6-dimethylbenzimidazole + D-erythrose 4-phosphate + other product(s)
-
FMNH2 + O2 = 5,6-dimethylbenzimidazole + D-erythrose 4-phosphate + urea + ?
-
ethylnitronate + O2 + FMNH2 = acetaldehyde + nitrite + FMN + H2O
-
propyl-1-nitronate + O2 + FMNH2 = ? + nitrite + FMN + H2O
-
propyl-2-nitronate + O2 + FMNH2 = ? + nitrite + FMN + H2O
-
long-chain aldehyde + FMNH2 + O2 = long-chain fatty acid + FMN + H2O + hv
-
EDTA + O2 + FMNH2 + H+ = ethylenediaminetriacetate + glyoxylate + H2O + FMN
-
nitrilotriacetate + FMNH2 + H+ + O2 = iminodiacetate + glyoxylate + FMN + H2O
-
nitrilotriacetate + O2 + FMNH2 + H+ = iminodiacetate + glyoxylate + H2O + FMN
-
(+)-bornane-2,5-dione + FMNH2 + O2 = (+)-5-oxo-1,2-campholide + FMN + H2O
-
(+)-bornane-2,5-dione + FMNH2 + O2 = 3,4,4-trimethyl-5-carboxy-methyl-DELTA2-cyclopentenone + FMN + H2O
-
(+)-bornane-2,5-dione + FMNH2 + O2 = ?
-
(+)-bornanone + FMNH2 + O2 = 1,2-campholide + FMN + H2O
-
(+)-camphor + FMNH2 + O2 = ?
-
6-oxocineole + FMNH2 + O2 = 3-(1-hydroxy-1-methylethyl)-6-oxoheptanoic acid + FMN + H2O
-
7,7-dimethylbicyclo[3.2.0] hept-2-en-6-one + FMNH2 + O2 = ?
-
7endo-methylbicyclo[3.2.0]hept-2-en-6-one + FMNH2 + O2 = ?
-
bicyclo[3.2.0]hept-2-en-6-one + FMNH2 + O2 = ?
-
3,17-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9-one + FMNH2 + O2 = 3,4,17-trihydroxy-9,10-seconandrost-1,3,5(10)-triene-9-one + FMN + H2O
-
3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 = 3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione + FMN + H2O
-
3-hydroxybiphenyl + FMNH2 + O2 = 2,3-dihydroxybiphenyl + FMN + H2O
-
4-(L-gamma-glutamylamino)butanoyl-[BtrI acyl-carrier protein] + FMNH2 + O2 = 4-(L-gamma-glutamylamino)-(2S)-2-hydroxybutanoyl-[BtrI acyl-carrier protein] + FMN + H2O
-
butanoyl-[BtrI acyl-carrier protein] + FMNH2 + O2 = (2S)-2-hydroxybutanoyl-[BtrI acyl-carrier protein] + FMN + H2O
-
octanoyl-[BtrI acyl-carrier protein] + FMNH2 + O2 = (2S)-2-hydroxyoctanoyl-[BtrI acyl-carrier protein] + FMN + H2O
-
(+)-camphor + FMNH2 + O2 = ? + FMN + H2O
-
(+/-)-cis-bicyclo[3.2.0]hept-2-en-6-one + FMNH2 + O2 = ?
-
(-)-bornane-2,5-dione + FMNH2 + O2 = 1,8,8-trimethyl-2-oxabicyclo[3.2.1]octane-3,6-dione + FMN + H2O
-
(-)-bornane-2,5-dione + FMNH2 + O2 = ?
-
(-)-bornane-2,5-dione + O2 + FMNH2 = (-)-5-oxo-1,2-campholide + FMN + H2O
-
(-)-bornanone + FMNH2 + O2 = ?
-
(-)-camphor + FMNH2 + O2 = ?
-
(-)-camphor + FMNH2 + O2 = ? + FMN + H2O
-
(R,R)-bicyclo[2.2.1]heptane-2,5-dione + FMNH2 + O2 = ?
-
2,3,4,5-tetramethyl-2-cyclopenten-1-one + FMNH2 + O2 = ?
-
2-cyclohexen-1-one + FMNH2 + O2 = ?
-
2-cyclopenten-1-one + FMNH2 + O2 = ?
-
2-decanone + FMNH2 + O2 = ?
-
3,5,5-trimethyl-2-cyclohexen-1-one + FMNH2 + O2 = ?
-
3,6-diketocamphane + FMNH2 + O2 = ? + NAD+ + H2O
-
3-methyl-2-cyclohexen-1-one + FMNH2 + O2 = ?
-
3-methyl-2-cyclopenten-1-one + FMNH2 + O2 = ?
-
4-phenyl-2-butanone + FMNH2 + O2 = ?
-
acetophenone + FMNH2 + O2 = ?
-
cyclobutanone + FMNH2 + O2 = ?
-
cyclohexanone + FMNH2 + O2 = ?
-
cyclopentanone + FMNH2 + O2 = ?
-
norcamphor + FMNH2 + O2 = ?
-
6-sulfo-D-quinovose + FMNH2 + O2 = 6-dehydro-D-glucose + FMN + sulfite + H2O
-
phenol + FMNH2 + O2 = catechol + FMN + H2O
-
1-methyldibenzothiophene + 2 FMNH2 + 2 O2 = 1-methyldibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O
-
2,8-dimethyldibenzothiophene + 2 FMNH2 + 2 O2 = 2,8-dimethyldibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O
-
2-ethyldibenzothiophene + 2 FMNH2 + 2 O2 = 2-ethyldibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O
-
2-methyldibenzothiophene + 2 FMNH2 + 2 O2 = 2-methyldibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O
-
3,4,6,7-tetramethyldibenzothiophene + 2 FMNH2 + 2 O2 = 3,4,6,7-tetramethyldibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O
-
3,4,6-trimethyldibenzothiophene + 2 FMNH2 + 2 O2 = 3,4,6-trimethyldibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O
-
3,4-benzo-dibenzothiophene + 2 FMNH2 + 2 O2 = 3,4-benzo-dibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O
-
3-ethyldibenzothiophene + 2 FMNH2 + 2 O2 = 3-ethyldibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O
-
3-methylbenzothiophene + 2 FMNH2 + 2 O2 = 3-methylbenzothiophene-1,1-dioxide + 2 FMN + 2 H2O
-
3-methyldibenzothiophene + 2 FMNH2 + 2 O2 = 3-methyldibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O
-
4,6-diethyldibenzothiophene + 2 FMNH2 + 2 O2 = 4,6-diethyldibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O
-
4,6-dimethyldibenzothiophene + 2 FMNH2 + 2 O2 = 4,6-dimethyldibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O
-
4-methyldibenzothiophene + 2 FMNH2 + 2 O2 = 4-methyldibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O
-
5-methylbenzothiophene + 2 FMNH2 + 2 O2 = 5-methylbenzothiophene-5,5-dioxide + 2 FMN + 2 H2O
-
benzothiophene + 2 FMNH2 + 2 O2 = benzothiophene-5,5-dioxide + 2 FMN + 2 H2O
-
dibenzothiophene + 2 FMNH2 + 2 O2 = dibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O
735792, 736522, 735525, 736146, 735584, 735527, 392304, 658301, 735524, 735798, 736092, 736655, 735827, 736118, 735833, 735785, 737211, 736855, 737210, 735585, 736340, 735526
-
dibenzothiophene-5,5-dioxide + 2 FMNH2 + O2 = 2'-hydroxybiphenyl-2-sulfinate + 2 FMN + H2O
-
thioxanthen-9-one + 2 FMNH2 + 2 O2 = ?
-
2,7-diethylbenzothiophene + FMNH2 + O2 = ?
-
2-ethylbenzothiophene + FMNH2 + O2 = ?
-
2-methylbenzothiophene + FMNH2 + O2 = ?
-
3-methylbenzothiophene + FMNH2 + O2 = ?
-
5-methylbenzothiophene + FMNH2 + O2 = ?
-
7-ethylbenzothiophene + FMNH2 + O2 = ?
-
dibenzothiophene + FMNH2 + O2 = dibenzothiophene-5-oxide + FMN + H2O
-
dibenzothiophene-5-oxide + FMNH2 + O2 = dibenzothiophene-5,5-dioxide + FMN + H2O
-
thioxanthen-9-one + FMNH2 + O2 = ?
-
1-methyldibenzothiophene-5,5-dioxide + 2 FMNH2 + O2 = ?
-
2-methyldibenzothiophene-5,5-dioxide + 2 FMNH2 + O2 = ?
-
3,4,6-trimethyldibenzothiophene-5,5-dioxide + 2 FMNH2 + O2 = ?
-
3,6-dimethyldibenzothiophene-5,5-dioxide + 2 FMNH2 + O2 = ?
-
3-methyldibenzothiophene-5,5-dioxide + 2 FMNH2 + O2 = ?
-
3-methyldibenzothiophene-5,5-dioxide + 2 FMNH2 + O2 = ? + 2 FMN + H2O
-
4,6-dimethyldibenzothiophene-5,5-dioxide + 2 FMNH2 + O2 = ?
-
4-methyldibenzothiophene-5,5-dioxide + 2 FMNH2 + O2 = ?
-
dibenzothiophene-5,5-dioxide + 2 FMNH2 + O2 = 2'-hydroxybiphenyl-2-sulfinate + 2 FMN + H2O
736522, 735525, 736146, 735584, 735826, 736855, 735527, 392304, 735524, 735798, 736529, 736655, 735833, 735585, 736530
-
dibenz[c,e][1,2] oxathiin 6-oxide + 2 FMNH2 + O2 = 2,2'-dihydroxybiphenyl + 2 FMN + H2O
-
dibenz[c,e][1,2]oxathiin 6,6-dioxide + 2 FMNH2 + O2 = 2,2'-dihydroxybiphenyl + 2 FMN + H2O
-
a long-chain alkane + FMNH2 + O2 = a long-chain primary alcohol + FMN + H2O
-
docosan + FMNH2 + O2 = 1-docosanol + FMN + H2O
-
dotriacontan + FMNH2 + O2 = 1-dotriacontanol + FMN + H2O
-
hexacosan + FMNH2 + O2 = 1-hexacosanol + FMN + H2O
-
hexadecane + FMNH2 + O2 = 1-hexadecanol + FMN + H2O
-
hexatriacontan + FMNH2 + O2 = 1-hexatriacontanol + FMN + H2O
-
octacosan + FMNH2 + O2 = 1-octacosanol + FMN + H2O
-
octadecane + FMNH2 + O2 = 1-octadecanol + FMN + H2O
-
pentadecane + FMNH2 + O2 = 1-pentadecanol + FMN + H2O
-
tetracosan + FMNH2 + O2 = 1-tetracosanol + FMN + H2O
-
decanal + FMNH + O2 = decanoic acid + FMN + H2O + light
348578, 348550, 348560, 348580, 348582, 348585, 348587, 348596, 348556, 348586, 348590, 348591, 348593, 348561, 698992, 704579, 348545, 348546, 348547, 348548, 348549, 348551, 348552, 348553, 348554, 348555, 348557, 348558, 348559, 348562, 348564, 348565, 348566, 348567, 348568, 348569, 348570, 348571, 348572, 348573, 348574, 348575, 348576, 348577, 348579, 348581, 348583, 348584, 348588, 348589, 348597, 348599, 348600, 348601, 348602, 348604, 348607, 348608, 348543, 348598, 348544, 348563, 348542, 348592, 348594, 348595, 702318
-
dodecanal + FMNH + O2 = dodecanoic acid + FMN + H2O + light
348578, 348550, 348560, 348580, 348582, 348585, 348587, 348596, 348556, 348586, 348590, 348591, 348593, 348561, 704579, 348545, 348546, 348547, 348548, 348549, 348551, 348552, 348553, 348554, 348555, 348557, 348558, 348559, 348562, 348564, 348565, 348566, 348567, 348568, 348569, 348570, 348571, 348572, 348573, 348574, 348575, 348576, 348577, 348579, 348581, 348583, 348584, 348588, 348589, 348597, 348599, 348600, 348601, 348602, 348604, 348607, 348608, 348543, 348598, 348544, 348563, 348542, 348592, 348594, 348595, 702318
-
dodecyl aldehyde + FMNH + O2 = ?
-
myristic aldehyde + FMNH + O2 = myristic acid + FMN + H2O + light
-
octanal + FMNH + O2 = octanoic acid + FMN + H2O + light
348578, 348550, 348560, 348580, 348582, 348585, 348587, 348596, 348556, 348586, 348590, 348591, 348593, 348561, 704579, 348545, 348546, 348547, 348548, 348549, 348551, 348552, 348553, 348554, 348555, 348557, 348558, 348559, 348562, 348564, 348565, 348566, 348567, 348568, 348569, 348570, 348571, 348572, 348573, 348574, 348575, 348576, 348577, 348579, 348581, 348583, 348584, 348588, 348589, 348597, 348599, 348600, 348601, 348602, 348604, 348607, 348608, 348543, 348598, 348544, 348563, 348542, 348592, 348594, 348595, 702318
-
decanal + FMNH- + O2 = decanoic acid + FMN + H2O + hv
-
(E)-dec-2-enal + FMNH2 + O2 = (E)-dec-2-enoate + FMN + H2O + hn
-
(E)-dodec-2-enal + FMNH2 + O2 = (E)-dodec-2-enoate + FMN + H2O + hn
-
(E)-oct-2-enal + FMNH2 + O2 = (2E)-oct-2-enoate + FMN + H2O + hn
-
(E)-tetradec-2-enal + FMNH2 + O2 = (E)-tetradec-2-enoate + FMN + H2O + hn
-
4-N,N-(dimethyl)aminonaphthalene-9-N-(11-aldehydedodecyl)-1,8-dicarboximide + FMNH2 + O2 = ? + FMN + H2O + hnu
-
4-N,N-(dimethyl)aminonaphthalene-9-N-(9-aldehyde-decyl)-1,8-dicarboximide + FMNH2 + O2 = ? + FMN + H2O + hnu
-
4-N-(11-aldehyde-dodecyl)-7-N,N-dimethylsulfonic-2,1,3-benzoxadiazole + FMNH2 + O2 = ? + FMN + H2O + hnu
-
4-N-(9-aldehyde-decyl)-7-N,N-dimethylsulfonic-2,1,3-benzoxadiazole + FMNH2 + O2 = ? + FMN + H2O + hnu
-
a long-chain aldehyde + FMNH2 + O2 = a long-chain fatty acid + FMN + H2O + hv
-
aldehyde + FMNH2 + O2 = ?
-
an aldehyde + FMNH2 + O2 = a carboxylate + FMN + H2O + hnu
-
beetle luciferin + FMNH2 + O2 = ?
-
coelenterazine + FMNH2 + O2 = CO2 + coelenteramide + FMN + light + H2O
-
decanal + FMNH2 + O2 = decanoate + FMN + H2O + hn
-
decanal + FMNH2 + O2 = decanoate + FMN + H2O + hnu
-
decanal + FMNH2 + O2 = decanoate + FMN + H2O + hv
-
decanal + FMNH2 + O2 = decanoic acid + FMN + H2O + hnu
-
decanal + FMNH2 + O2 = decanoic acid + FMN + H2O + hv
-
dodecanal + FMNH2 + O2 = dodecanoate + FMN + H2O + hn
-
dodecanal + FMNH2 + O2 = dodecanoic acid + FMN + H2O + hv
-
fatty aldehyde + FMNH2 + O2 = fatty acid + FMN + H2O + hn
-
n-caprinaldehyde + FMNH2 + O2 = n-caprinoate + FMN + H2O + hv
-
n-decanal + FMNH2 + O2 = n-decanoate + FMN + H2O + hn
-
nonanal + FMNH2 + O2 = nonanoate + FMN + H2O + hn
-
octanal + FMNH2 + O2 = octanoate + FMN + H2O + hn
-
RCHO + FMNH2 + O2 = RCOOH + FMN + H2O + hn
-
RCHO + FMNH2 + O2 = RCOOH + FMN + H2O + hnu
-
RCHO + FMNH2 + O2 = RCOOH + FMN + H2O + hv
-
tetradecanal + FMNH2 + O2 = tetradecanoate + FMN + H2O + hn
-
undecanal + FMNH2 + O2 = undecanoate + FMN + H2O + hn
-
2-methylpropanamine + FMNH2 + O2 = N-hydroxy-2-methylpropan-1-amine + FMN + H2O
-
ethylenediaminetetraacetate + 2 FMNH2 + 2 O2 = ethylenediamine-N,N'-diacetate + 2 glyoxylate + 2 FMN + 2 H2O
-
diethylenetriaminepentaacetate + FMNH2 + O2 = diethylenetriaminetetraacetate + glyoxylate + FMN + H2O
-
ethylenediaminetetraacetate + FMNH2 + O2 = ethylenediaminetriacetate + glyoxylate + FMN + H2O
-
ethylenediaminetriacetate + FMNH2 + O2 = ethylenediamine-N,N'-diacetate + glyoxylate + FMN + H2O
-
nitrilotriacetate + FMNH2 + O2 = nitrilodiacetate + glyoxylate + FMN + H2O
-
piperazine-N,N'-bis(2-ethanesulfonic acid) + 2 FMNH2 + 2 O2 = 2,2'-piperazine-1,4-diyldiacetaldehyde + 2 FMN + 2 sulfite + 2 H2O
-
ethanesulfonate + FMNH2 + O2 = acetaldehyde + FMN + sulfite + H2O
-
isethionate + FMNH2 + O2 = hydroxyacetaldehyde + FMN + sulfite + H2O
-
methanesulfonate + FMNH2 + O2 = formaldehyde + FMN + sulfite + H2O
-
morpholinepropanesulfonic acid + FMNH2 + O2 = 3-(morpholin-4-yl)propanal + FMN + sulfite + H2O
-
pentanesulfonate + FMNH2 + O2 = pentanal + FMN + sulfite + H2O
-
dimethyl sulfone + FMNH2 + O2 = methanesulfinate + formaldehyde + FMN + H2O
-
1,3-dioxo-2-isoindolineethanesulfonic acid + FMNH2 + O2 = (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)acetaldehyd + FMN + sulfite + H2O
-
2-(4-pyridyl)ethanesulfonic acid + FMNH2 + O2 = pyridin-4-ylacetaldehyde
-
2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonate + FMNH2 + O2 = ? + FMN + sulfite + H2O
-
3-(N-morpholino)propanesulfonate + FMNH2 + O2 = ? + FMN + sulfite + H2O
-
4-phenyl-1-butanesulfonic acid + FMNH2 + O2 = 4-phenylbutanol + FMN + sulfite + H2O
-
an alkanesulfonate + FMNH2 + O2 = an aldehyde + FMN + sulfite + H2O
-
an alkansulfonate + FMNH2 + O2 = an aldehyde + FMN + sulfite + H2O
-
butanesulfonic acid + FMNH2 + O2 = butanal + FMN + sulfite + H2O
-
decanesulfonic acid + FMNH2 + O2 = decanal + FMN + sulfite + H2O
-
hexadecanesulfonate + FMNH2 + O2 = hexadecanal + FMN + sulfite + H2O
-
hexanesulfonic acid + FMNH2 + O2 = hexanal + FMN + sulfite + H2O
-
methanesulfonate + FMNH2 + O2 = formaldehyde + FMN + sulfite + H2O
-
N-phenyltaurine + FMNH2 + O2 = anilinoacetaldehyde + FMN + sulfite + H2O
-
octanesulfonate + FMNH2 + O2 = octaldehyde + FMN + sulfite + H2O
-
octanesulfonate + FMNH2 + O2 = octanal + FMN + sulfite + H2O
-
octanesulfonic acid + FMNH2 + O2 = octanal + FMN + sulfite + H2O
-
pentanesulfonate + FMNH2 + O2 = pentaldehyde + FMN + sulfite + H2O
-
pentanesulfonic acid + FMNH2 + O2 = pentaldehyde + FMN + sulfite + H2O
-
piperazine-N,N'-bis(2-ethanesulfonate) + FMNH2 + O2 = ? + FMN + sulfite + H2O
-
R-CH2-SO3H + FMNH2 + O2 = R-CHO + FMN + sulfite + H2O
-
4-hydroxyphenylacetate + FMNH + O2 = 3,4-dihydroxyphenylacetate + FMN + H2O
-
octopamine + FMNH + O2 = norepinephrine + FMN + H2O
-
tyramine + FMNH + O2 = dopamine + FMN + H2O
-
3-hydroxyphenylacetate + FMNH2 + O2 = 3,4-hydroxyphenylacetate + FMN + H2O
-
4-aminophenylacetate + FMNH2 + O2 = 4-amino-3,5-dihydroxyphenylacetate + FMN + H2O
-
4-hydroxyphenylacetate + FMNH2 + O2 = 3,4-dihydroxyphenylacetate + FMN + H2O
-
thymine + FMNH2 + O2 = (Z)-2-methylureidoacrylate peracid + FMN
-
uracil + FMNH2 + O2 = (Z)-3-ureidoacrylate peracid + FMN
-
FMNH2 + NADP+ = FMN + NADPH + H+
-
FMNH2 + NADP+ = FMN + NADPH + H+
-
fumarate + FMNH2 = succinate + FMN
-
dehydro coenzyme F420-0 + FMNH2 = oxidized coenzyme F420-0 + FMN
-
FMNH2 + NADP+ = FMN + NADPH + H+
-
FMNH2 + NADP+ = FMN + NADPH + H+
-
FMNH2 + NAD(P)+ = FMN + NAD(P)H + H+
-
FMNH2 + NAD+ = FMN + NADH + H+
-
FMNH2 + NADP+ = FMN + NADPH + H+
-
FMNH2 + NAD+ = FMN + NADH + H+
-
7,8-dihydromethanopterin + FMNH2 = 5,6,7,8-tetrahydromethanopterin + FMN
-
FMNH2 + nitrate = FMN + nitrite
-
nitrite + FMNH2 = NH4+ + FMN
-
sulfite + 3 FMNH2 = sulfide + 3 FMN + 3 H2O
-
SO32- + FMNH2 = S2- + FMN + H2O
-
5,10-methylenetetrahydrofolate + dUMP + FMNH2 = dTMP + tetrahydrofolate + FMN
-
dimethylallyl phosphate + FMNH2 = prenylated FMNH2 + phosphate
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems
2000
Eichhorn, E.; van der Ploeg, J.R.; Leisinger, T.
J. Bacteriol.
182
2687-2795
-
Metabolism of 1,8-cineole by a Rhodococcus species: Ring cleavage reactions
1989
Williams, D.R.; Trudgill, P.W.; Taylor, D.G.
J. Gen. Microbiol.
135
1957-1967
Characterization of DELTA4-3-ketosteroid-5beta-reductase and 3beta-hydroxysteroid dehydrogenase in cell extracts of Clostridium innocuum
1985
Stokes, N.A.; Hylemon, P.B.
Biochim. Biophys. Acta
836
255-261
Purification of a hexaheme cytochrome c552 from Escherichia coli K 12 and its properties as a nitrite reductase
1986
Kajie, S.; Anraku, Y.
Eur. J. Biochem.
154
457-463
Detection of luciferase gene sequence in nonluminescent Vibrio cholerae by colony hybridization and polymerase chain reaction
1991
Palmer, L.M.; Colwell, R.R.
Appl. Environ. Microbiol.
57
1286-1293
Cloning and nucleotide sequences of lux genes and characterization of luciferase of Xenorhabdus luminescens from a human wound
1991
Xi, L.; Cho, K.W.; Tu, S.C.
J. Bacteriol.
173
1399-1405
Relationship of the luminous bacterial symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi (family Anomalopidae) to other luminous bacteria based on bacterial luciferase (luxA) genes
1990
Haygood, M.G.
Arch. Microbiol.
154
496-503
Nucleotide sequence, expression, and properties of luciferase coded by lux genes from a terrestrial bacterium
1990
Szittner, R.; Meighen, E.
J. Biol. Chem.
265
16581-16587
A cyanide-aldehyde complex inhibits bacterial luciferase
1990
Makemson, J.C.
J. Bacteriol.
172
4725-4727
Effects of general anesthetics on the bacterial luciferase enzyme from Vibrio harveyi: an anesthetic target site with differential sensitivity
1990
Curry, S.; Lieb, W.R.; Franks, N.P.
Biochemistry
29
4641-4652
Elicitation of an oxidase activity in bacterial luciferase by site-directed mutation of a noncatalytic residue
1990
Xi, L.; Cho, K.W.; Herndon, M.E.; Tu, S.C.
J. Biol. Chem.
265
4200-4203
Bacterial luciferase alpha beta fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature
1989
Escher, A.; O'Kane, D.J.; Lee, J.; Szalay, A.A.
Proc. Natl. Acad. Sci. USA
86
6528-6532
-
Localization of luciferase in luminous marine bacteria by gold immunocytochemical labelling
1989
Angell, P.; Langley, D.; Chamberlain, A.H.L.
FEMS Microbiol. Lett.
65
177-182
Active bacterial luciferase from a fused gene: expression of a Vibrio harveyi luxAB translational fusion in bacteria, yeast and plant cells
1989
Kirchner, G.; Roberts, J.L.; Gustafson, G.D.; Ingolia, T.D.
Gene
81
349-354
Bioluminescence emission of bacterial luciferase with 1-deaza-FMN. Evidence for the noninvolvement of N(1)-protonated flavin species as emitters
1989
Kurfurst, M.; Macheroux, P.; Ghisla, S.; Hastings, J.W.
Eur. J. Biochem.
181
453-457
-
Expression and localization of bacterial luciferase determined by imunogold labeling
1989
Colepicolo, P.; Nicolas, M.T.; Bassot, J.M.; Hastings, J.W.
Arch. Microbiol.
152
72-76
A plasmid vector and quantitative techniques for the study of transcription termination in Escherichia coli using bacterial luciferase
1989
Peabody, D.S.; Andrews, C.L.; Escudero, K.W.; Devine, J.H.; Baldwin, T.O.; Bear, D.G.
Gene
75
289-296
Organization of the lux structural genes of Vibrio harveyi. Expression under the T7 bacteriophage promoter, mRNA analysis, and nucleotide sequence of the luxD gene
1988
Miyamoto, C.M.; Boylan, M.; Graham, A.F.; Meighen, E.A.
J. Biol. Chem.
263
13393-13399
A new lux gene in bioluminescent bacteria codes for a protein homologous to the bacterial luciferase subunits
1988
Soly, R.R.; Mancini, J.A.; Ferri, S.R.; Boylan, M.; Meighen, E.A.
Biochem. Biophys. Res. Commun.
155
351-358
Expression of bacterial luciferase genes from Vibrio harveyi in Bacillus subtilis and in Escherichia coli
1989
Karp, M.
Biochim. Biophys. Acta
1007
84-90
Effects of 3 end deletions from the Vibrio harveyi luxB gene on luciferase subunit folding and enzyme assembly: generation of temperature-sensitive polypeptide folding mutants
1988
Sugihara, J.; Baldwin, T.O.
Biochemistry
27
2872-2880
Polypeptide folding and dimerization in bacterial luciferase occur by a concerted mechanism in vivo
1987
Waddle, J.J.; Johnston, T.C.; Baldwin, T.O.
Biochemistry
26
4917-4921
Purification of bacterial luciferase by affinity methods
1986
Baldwin, T.O.; Holzman, T.F.; Holzman, R.B.; Riddle, V.A.
Methods Enzymol.
133
98-108
Purification of bacterial luciferase by high-performance liquid chromatography
1986
O'Kane, D.J.; Ahmed, M.; Matheson, I.B.C.; Lee, J.
Methods Enzymol.
133
109-128
Expression and assembly of functional bacteria luciferase in plants
1987
Koncz, C.; Olsson, O.; Langridge, W.H.R.; Schell, J.; Szalay, A.A.
Proc. Natl. Acad. Sci. USA
84
131-135
Luciferase genes cloned from the unculturable luminous bacteroid symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi
1986
Haygood, MG.; Cohn, D.H.
Gene
45
203-209
-
Identificartions of the true carbon-13 nuclear magnetic resonance spectrum of the stable intermediate II in bacterial luciferase
1986
Vervoort, J.; Muller, F.; Lee, J.; van den Berg, W.A.M.; Moonen, C.T.W.
Biochemistry
25
8062-8067
Nucleotide sequence of the luxB gene of Vibrio harveyi and the complete amino acid sequence of the beta subunit of bacterial luciferase
1986
Johnston, T.C.; Thompson, R.B.; Baldwin, T.O.
J. Biol. Chem.
261
4805-4811
Nucleotide sequence of the luxA gene of Vibrio harveyi and the complete amino acid sequence of the alpha subunit of bacterial luciferase
1985
Cohn, D.H.; Milcham, A.J.; Simon, M.I.; Nealson, K.H.; Rausch, S.K.; Bonam, D.; Baldwin, T.O.
J. Biol. Chem.
260
6139-6146
Expression of the cloned subunits of bacterial luciferase from separate replicons
1985
Gupta, S.C.; O'Brien, D.; Hastings, J.W.
Biochem. Biophys. Res. Commun.
127
1007-1011
Crystals of luciferase from Vibrio harveyi. A preliminary characterization
1985
Swanson, R.; Weaver, L.H.; Remington, S.J.; Matthews, B.W.; Baldwin, T.O.
J. Biol. Chem.
260
1287-1289
Affinity labeling of the aldehyde site of bacterial luciferase
1984
Fried, A.; Tu, S.C.
J. Biol. Chem.
259
10754-10759
Cloning of the luciferase structural genes from Vibrio harveyi and expression of bioluminescence in Escherichia coli
1984
Baldwin, T.O.; Berends, T.; Bunch, T.A.; Holzman, T.F.; Rausch, S.K.; Shamansky, L.; Treat, M.L.; Ziegler, M.M.
Biochemistry
23
3663-3667
-
Reversible Inhibition of the bacterial luciferase catalyzed bioluminescence reaction by aldehyde substrate: Kinetic mechanism and Ligand effects
1983
Holzman, T.F.; Baldwin, T.O.
Biochemistry
22
2838-2846
Properties of bacterial luciferase/NADH:FMN oxidoreductase and firefly luciferase immobilized onto sepharose
1982
Wienhausen, G.K.; Kricka, L.J.; Hinkley, J.E.; DeLuca, M.
Appl. Biochem. Biotechnol.
7
463-473
Cloning of the Vibrio harveyi luciferase genes: use of a synthetic oligonucleotide probe
1983
Cohn, D.H.; Ogden, R.C.; Abelson, J.N.; Baldwin, T.O.; Nealson, K.H.; Simon, M.I.; Mileham, A.J.
Proc. Natl. Acad. Sci. USA
80
120-123
Isolation and properties of bacterial luciferase intermediates containing different oxygenated flavins
1982
Tu, S.C.
J. Biol. Chem.
257
3719-3725
Structure and catalytic inactivity of the bacterial luciferase neutral flavin radical
1982
Kurfurst, M.; Ghisla, S.; Presswood, R.; Hastings, J.W.
Eur. J. Biochem.
123
355-361
Active center studies on bacterial luciferase: modification of the enzyme with 2,4-dinitrofluorobenzene
1981
Welches, W.R.; Baldwin, T.O.
Biochemistry
20
512-517
Inactivation of luciferase from the Luminous marine bacterium Beneckea harveyi by proteases: evidence for a protease labile region and properties of the protein following inactivation
1980
Holzman, T.F.; Riley, P.L.; Baldwin, T.O.
Arch. Biochem. Biophys.
205
554-563
A proposed mechanism for light emission by bacterial luciferase involving dissociative electron transfer
1980
Kosower, E.M.
Biochem. Biophys. Res. Commun.
92
356-364
Bacterial luciferase: FMNH2-aldehyde oxidase
1978
Hastings, J.W.; Presswood, R.P.
Methods Enzymol.
53
558-570
Interactions of long-chain aldehydes with luciferase. A carbon-13 nuclear magnetic resonance study
1979
Viswanathan, T.S.; Campling, M.R.; Cushley, R.J.
Biochemistry
18
2504-2508
Reversible steps in the reaction of aldehydes with bacterial luciferase intermediates
1979
Baumstark, A.L.; Cline, T.W.; Hastings, J.W.
Arch. Biochem. Biophys.
193
449-455
-
Bacterial luciferase: Assay, purification, and properties
1978
Hastings, J.W.; Baldwin, T.O.; Nicoli, M.Z.
Methods Enzymol.
57
135-152
-
Preparation of the subunits of bacterial luciferase
1978
Tu, S.C.
Methods Enzymol.
57
171-174
-
Preparation of luciferases containing chemically modified subunits
1978
Meighen.E.A.
Methods Enzymol.
57
174-181
Bacterial bioluminescence light emission in the mixed function oxidation of reduced flavin and fatty aldehyde
1978
Hastings, J.W.
CRC Crit. Rev. Biochem.
5
163-184
Studies on luciferase from Photobacterium phosphoreum. XI. Interaction of 8-substituted FMNH2 with luciferase
1978
Watanabe, T.; Matsui, K.; Kasai, S.; Nakamura, T.
J. Biochem.
84
1441-1446
Activity and stability of the luciferase-flavin intermediate
1978
Becvar, J.E.; Tu, S.C.; Hastings, J.W.
Biochemistry
17
1807-1812
Structural studies on bacterial luciferase using energy transfer and emission anisotropy
1978
Tu, S.C.; Wu, C.W.; Hastings, J.W.
Biochemistry
17
987-993
The enthalpy of oxidation of flavin mononucleotide. Temperature dependence of in vitro bacterial luciferase bioluminescence
1975
Mangold, A.; Langerman, N.
Arch. Biochem. Biophys.
169
126-133
Studies on luciferase from Photobacterium phosphoreum. VII. Interaction with carboxylic acid
1974
Yoshida, K.; Nakamura, T.
J. Biochem.
76
985-990
Studies on luciferase from Photobacterium phosphoreum. VI. Stoichiometry and mode of binding of FMNH2 and O2 to stripped luciferase
1974
Watanabe, T.; Tomita, G.; Nakamura, T.
J. Biochem.
75
1249-1255
Bacterial luciferase. Chemistry of the reactive sulfhydryl
1974
Nicoli, M.Z.; Meighen, E.A.; Hastings, J.W.
J. Biol. Chem.
249
2385-2392
Studies on luciferase from Photobacterium phosphoreum. IV. Preparation and properties of stripped luciferase
1973
Yoshida, K.; Nakamura, T.
J. Biochem.
74
915-922
Purification and properties of bacterial luciferases
1972
Gunsalus-Miguel, A.; Meighen, E.A.; Nicoli, M.Z.; Nealson, K.H.
J. Biol. Chem.
247
398-404
The inhibition of bacterial luciferase by mixed function oxidase inhibitors
1972
Nealson, K.H.; Hastings, J.W.
J. Biol. Chem.
247
888-894
The reversibility of the denaturation of bacterial luciferase
1967
Friedland, J.; Hastings, J.W.
Biochemistry
6
2893-2900
Folding, stability, and physical properties of the alpha subunit of bacterial luciferase
1999
Noland, B.W.; Lawrence, J.D.; Baldwin, T.O.
Biochemistry
38
16136-16145
The turnover of bacterial luciferase is limited by a slow decomposition of the ternary enzyme-product complex of luciferase, FMN, and fatty acid
1994
Li, Z.; Meighen, E.A.
J. Biol. Chem.
269
6640-6644
Catalytically active forms of the individueal subunits of Vibrio harveyi luciferase and their kinetic properties
1995
Choi, H.; Tang, C.K.; Tu, S.C.
J. Biol. Chem.
270
16813-16819
Identification and Characterization of a catalytic base in bacterial luciferase by chemical rescue of a dark mutant
1997
Huang, S.; Tu, S.C.
Biochemistry
36
14609-14615
Interaction of bacterial luciferase with aldehyde substrates and inhibitors
1993
Francisco, W.A.; Abu-Soud, H.M.; Baldwin, T.O.; Raushel, F.M.
J. Biol. Chem.
268
24734-24741
Luciferase-dependent, cytochrome P-450-catalyzed dehalogenation in genetically engeneered Pseudomonas
1996
Shanker, R.; Atkins, W.M.
Biotechnol. Prog.
12
474-479
Purified native subunits of bacterial luciferase are active in the bioluminescence reaction but fail to assemble into the alphabeta structure
1993
Sinclair, J.F.; Waddle, J.J.; Waddill, E.F.; Baldwin, T.O.
Biochemistry
32
5036-5044
Relationship between the conserved alpha subunit arginine 107 and effects of phosphate on the activity and stability of Vibrio harveyi luciferase
1999
Moore, C.; Lei, B.; Tu, S.C.
Arch. Biochem. Biophys.
370
45-50
Functional implications of the unstructered loop in the (beta/alpha)8 barrel structure of the bacterial luciferase alpha subunit
2001
Sparks, J.M.; Baldwin, T.O.
Biochemistry
40
15436-15443
Carbon monoxide dehydrogenase from Methanosarcina barkeri. Disaggregation, purification, and physicochemical properties of the enzyme
1987
Grahame, D.A.; Stadtman, T.C.
J. Biol. Chem.
262
3706-3712
Purification and properties of carbon monoxide dehydrogenase from Methanococcus vannielii
1987
DeMoll, E.; Grahame, D.A.; Harnly, J.M.; Tsai, L.; Stadtman, T.C.
J. Bacteriol.
169
3916-3920
Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum
1980
Drake, H.L.; Hu, S.I.; Wood, H.G.
J. Biol. Chem.
255
7174-7180
Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase of Methanothrix soehngenii
1989
Jetten, M.S.M.; Stams, A.J.M.; Zehnder, A.J.B.
Eur. J. Biochem.
181
437-441
Reductive activation of the coenzyme A/acetyl-CoA isotopic exchange reaction catalyzed by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by nitrous oxide and carbon monoxide
1991
Lu, W.P.; Ragsdale, S.W.
J. Biol. Chem.
266
3554-3564
Fumarate reductase activity of Streptococcus faecalis
1967
Aue, B.J.; Deibel, R.H.
J. Bacteriol.
93
1770-1776
Fumarate reductase of Clostridium formicoaceticum. A peripheral membrane protein
1978
Dorn, M.; Andreesen, J.R.; Gottschalk, G.
Arch. Microbiol.
119
7-11
Properties and function of fumarate reductase (NADH) in Streptococcus lactis
1979
Hillier, A.J.; Jericho, R.E.; Green, S.M.; Jago, G.R.
Aust. J. Biol. Sci.
32
625-635
A sodium-stimulated membrane-bound fumarate reductase system in Bacteroides amylophilus
1985
Wetzstein, H.G.; Gottschalk, G.
Arch. Microbiol.
143
157-162
-
The enzymes and the enzyme complexes of the mitochondrial oxidative phosphorylation system
1976
Hatefi, Y.
The Enzymes of Biological Membranes (Martonosi, A. V. , ed. ) Plenum, New York
4
3-41
Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1
2001
Matsubara, T.; Ohshiro, T.; Nishina, Y.; Izumi, Y.
Appl. Environ. Microbiol.
67
1179-1184
-
Purification and partial characterization of nitrate reductase from barley leaves
1980
Kuo, T.; Kleinhofs, A.; Warner, R.L.
Plant Sci. Lett.
17
371-381
Inhibitor of nitrate reductase in the roots of rice seedlings and its effect on the enzyme activity in the presence of NADH
1974
Kadam, S.S.; Gandhi, A.P.; Sawhney, S.K.; Naik, M.S.
Biochim. Biophys. Acta
350
162-170
-
Effects of denaturing agents on spinach nitrate reductase
1977
De La Rosa, F.F.; Castillo, F.; Palacian, E.
Phytochemistry
16
875-879
Nitrate reductase from Spinacia oleracea. FAD and the inactivation by NAD (P) H
1976
Castillo, F.; De La Rosa, F.F.; Calero, F.; Palacian, E.
Biochem. Biophys. Res. Commun.
69
277-284
-
Purification and characterization of NADH-nitrate reductase from leaves of 2-row barley, and its activity as affected by some metabolites
1985
Oji, Y.; Mamano, T.; Ryoma, Y.; Miki, Y.; Okamoto, S.
J. Plant Physiol.
119
247-256
-
Purification and properties of NADH: nitrate reductase from the red alga Porphyra yezoensis
1993
Nakamura, Y.; Ikawa, T.
Plant Cell Physiol.
34
1239-1249
Catalytic properties of adenylylsulfate reductase from Desulfovibrio vulgaris Miyazaki
1996
Yagi, T.; Ogata, M.
Biochimie
78
838-846
Purification and characterization of the assimilatory NADPH-nitrate reductase of Aspergillus nidulans
1982
Minagawa, N.; Yoshimoto, A.
J. Biochem.
91
761-774
An enzyme system for cyclic ketone lactonization
1961
Conrad, H.E.; DuBus, R.; Gunsalus, I.C.
Biochem. Biophys. Res. Commun.
6
293-297
Monoxygenases. VII. Camphor ketolactonase I and the role of three protein components
1969
Yu, C.A.; Gunsalus, I.C.
J. Biol. Chem.
244
6149-6152
Camphor revisited: studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453
1986
Taylor, D.G.; Trudgill, P.W.
J. Bacteriol.
165
489-497
Mixed function oxidation. V. Flavin interaction with a reduced diphosphopyridine nucleotide dehydrogenase, one of the enzymes participating in camphor lactonization
1966
Trudgill, P.W.; DuBus, R.; Gunsalus, I.C.
J. Biol. Chem.
241
1194-1205
Mixed function oxidation. VI. Purification of a tightly coupled electron transport complex in camphor lactonization
1966
Trudgill, P.W.; DuBus, R.; Gunsalus, I.C.
J. Biol. Chem.
241
4288-4290
-
Biotransformation of organic sulfides. Predictive active site models for sulfoxidation catalyzed by 2,5-diketocamphane 1,2-monooxygenase and 3,6-diketocamphane 1,6-monooxygenase, enantiocomplementary enzymes from Pseudomonas putida NCIMB 10007
1998
Beecher, J.; Willetts, A.
Tetrahedron
9
1899-1916
Diketocamphane enantiomer-specific 'Baeyer-Villiger' monooxygenases from camphor-grown Pseudomonas putida ATCC 17453
1993
Jones, K.H.; Smith, R.T.; Trudgill, P.W.
J. Gen. Microbiol.
139
797-805
The purification and crystallization of 2,5-diketocamphane 1,2-monooxygenase and 3,6-diketocamphane 1,6-monooxygenase from Pseudomonas putida NCIMB 10007
1996
McGhie, E.J.; Littlechild, J.A.
Biochem. Soc. Trans.
24
29S
-
Enantioselective oxidations by the diketocamphane monooxygenase isoenzymes from Pseudomonas putida
1996
Beecher, J.; Grogan, G.; Roberts, S.; Willetts, A.
Biotechnol. Lett.
18
571-576
Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli
1999
Eichhorn, E.; van der Ploeg, J.R.; Leisinger, T.
J. Biol. Chem.
274
26639-26646
Sulfonate-sulfur metabolism and its regulation in Escherichia coli
2001
Van der Ploeg, J.R.; Eichhorn, E.; Leisinger, T.
Arch. Microbiol.
176
1-8
Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of Escherichia coli W: a prototype of a new flavin:NAD(P)H reductase subfamily
2000
Galan, B.; Diaz, E.; Prieto, M.A.; Garcia, J.L.
J. Bacteriol.
182
627-636
A novel two-protein component flavoprotein hydroxylase. p-Hydroxyphenylacetate hydroxylase from Acinetobacter baumannii
2001
Chaiyen, P.; Suadee, C.; Wilairat, P.
Eur. J. Biochem.
268
5550-5561
Reactions involved in bioluminescence systems of limpet (Latia neritoides) and luminous bacteria
1972
Shimomura, O.; Johnson, F.H.; Kohama, Y.
Proc. Natl. Acad. Sci. USA
69
2086-2089
An alternative flavin-dependent mechanism for thymidylate synthesis
2002
Myllykallio, H.; Lipowski, G.; Leduc, D.; Filee, J.; Forterre, P.; Liebl, U.
Science
297
105-107
Characterization of xanthine dehydrogenase from the anaerobic bacterium Veillonella atypica and identification of molybdopterin-cytosine-dinucleotide-containing molybdenum cofactor
1996
Gremer, L.; Meyer, O.
Eur. J. Biochem.
238
862-866
Crystal structure of the bifunctional chorismate synthase from Saccharomyces cerevisiae
2004
Quevillon-Cheruel, S.; Leulliot, N.; Meyer, P.; Graille, M.; Bremang, M.; Blondeau, K.; Sorel, I.; Poupon, A.; Janin, J.; van Tilbeurgh, H.
J. Biol. Chem.
279
619-625
Mechanism of chorismate synthase. Role of the two invariant histidine residues in the active site
2004
Kitzing, K.; Auweter, S.; Amrhein, N.; Macheroux, P.
J. Biol. Chem.
279
9451-9461
Crystal structure of chorismate synthase: a novel FMN-binding protein fold and functional insights
2004
Ahn, H.J.; Yoon, H.J.; Lee, B.2nd.; Suh, S.W.
J. Mol. Biol.
336
903-915
A unique reaction in a common pathway. Mechanism and function of chorismate synthase in the shikimate pathway
1999
Macheroux, P.; Schmid, J.; Amrhein, N.; Schaller, A.
Planta
207
325-334
Electron acceptor specificity of ferredoxin (flavodoxin):NADP+ oxidoreductase from Escherichia coli
2002
Wan, J.T.; Jarrett, J.T.
Arch. Biochem. Biophys.
406
116-126
Bright stable luminescent yeast using bacterial luciferase as a sensor
2003
Szittner, R.; Jansen, G.; Thomas, D.Y.; Meighen, E.
Biochem. Biophys. Res. Commun.
309
66-70
Altered mechanism of the alkanesulfonate FMN reductase with the monooxygenase enzyme
2005
Gao, B.; Ellis, H.R.
Biochem. Biophys. Res. Commun.
331
1137-1145
Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay
2005
Hosseinkhani, S.; Szittner, R.; Meighen, E.A.
Biochem. J.
385
575-580
Functional roles of conserved residues in the unstructured loop of Vibrio harveyi bacterial luciferase
2002
Low, J.C.; Tu, S.C.
Biochemistry
41
1724-1731
Reactivity, secondary structure, and molecular topology of the Escherichia coli sulfite reductase flavodoxin-like domain
2002
Champier, L.; Sibille, N.; Bersch, B.; Brutscher, B.; Blackledge, M.; Coves, J.
Biochemistry
41
3770-3780
Mutational analysis of the subunit interface of Vibrio harveyi bacterial luciferase
2002
Inlow, J.K.; Baldwin, T.O.
Biochemistry
41
3906-3915
Implications of the reactive thiol and the proximal non-proline cis-peptide bond in the structure and function of Vibrio harveyi luciferase
2002
Lin, L.Y.C.; Sulea, T.; Szittner, R.; Kor, C.; Purisima, E.O.; Meighen, E.A.
Biochemistry
41
9938-9945
Complex formation between Vibrio harveyi luciferase and monomeric NADPH:FMN oxidoreductase
2003
Jeffers, C.E.; Nichols, J.C.; Tu, S.C.
Biochemistry
42
529-534
Identity of the emitter in the bacterial luciferase luminescence reaction: binding and fluorescence quantum yield studies of 5-decyl-4a-hydroxy-4a,5-dihydroriboflavin-5'-phosphate as a model
2004
Lei, B.; Ding, Q.; Tu, S.C.
Biochemistry
43
15975-15982
Changes in the kinetics and emission spectrum on mutation of the chromophore-binding platform in Vibrio harveyi luciferase
2004
Lin, L.Y.C.; Szittner, R.; Friedman, R.; Meighen, E.A.
Biochemistry
43
3183-3194
Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells
2002
Zavilgelsky, G.B.; Kotova, V.Y.; Mazhul, M.M.; Manukhov, I.V.
Biochemistry (Moscow)
67
986-992
Thermostable flavin reductase that couples with dibenzothiophene monooxygenase, from thermophilic Bacillus sp. DSM411: purification, characterization, and gene cloning
2004
Ohshiro, T.; Yamada, H.; Shimoda, T.; Matsubara, T.; Izumi, Y.
Biosci. Biotechnol. Biochem.
68
1712-1721
Experimental evidence for the physiological role of bacterial luciferase in the protection of cells against oxidative stress
2003
Szpilewska, H.; Czyz, A.; Wegrzyn, G.
Curr. Microbiol.
47
379-382
Phenol hydroxylase from Bacillus thermoglucosidasius A7, a two-protein component monooxygenase with a dual role for FAD
2003
Kirchner, U.; Westphal, A.H.; Muller, R.; van Berkel, W.J.
J. Biol. Chem.
278
47545-47553
Cofactor activity of dihydroflavin mononucleotide and tetrahydrobiopterin for murine epididymal indoleamine 2,3-dioxygenase
1986
Ozaki, Y.; Reinhard, J.F., Jr.; Nichol, C.A.
Biochem. Biophys. Res. Commun.
137
1106-1111
Alternative luciferase for monitoring bacterial cells under adverse conditions
2005
Wiles, S.; Ferguson, K.; Stefanidou, M.; Young, D.B.; Robertson, B.D.
Appl. Environ. Microbiol.
71
3427-3432
Activity coupling of Vibrio harveyi luciferase and flavin reductase (FRP): oxygen as a probe
2006
Li, X.; Tu, S.C.
Arch. Biochem. Biophys.
454
26-31
Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase
2005
Li, C.H.; Tu, S.C.
Biochemistry
44
12970-12977
Probing the functionalities of alphaGlu328 and alphaAla74 of Vibrio harveyi luciferase by site-directed mutagenesis and chemical rescue
2005
Li, C.H.; Tu, S.C.
Biochemistry
44
13866-13873
Mechanism of flavin reduction in the alkanesulfonate monooxygenase system
2007
Gao, B.; Ellis, H.R.
Biochim. Biophys. Acta
1774
359-367
Detection of protein-protein interactions in the alkanesulfonate monooxygenase system from Escherichia coli
2006
Abdurachim, K.; Ellis, H.R.
J. Bacteriol.
188
8153-8159
Bacterial luciferase activity and the intracellular redox pool in Escherichia coli
2005
Koga, K.; Harada, T.; Shimizu, H.; Tanaka, K.
Mol. Genet. Genomics
274
180-188
Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase
2007
Sucharitakul, J.; Phongsak, T.; Entsch, B.; Svasti, J.; Chaiyen, P.; Ballou, D.P.
Biochemistry
46
8611-8623
Catalytic importance of the substrate binding order for the FMNH2-dependent alkanesulfonate monooxygenase enzyme
2008
Zhan, X.; Carpenter, R.A.; Ellis, H.R.
Biochemistry
47
2221-2230
Catalytic reduction of a tetrahydrobiopterin radical within nitric-oxide synthase
2008
Wei, C.C.; Wang, Z.Q.; Tejero, J.; Yang, Y.P.; Hemann, C.; Hille, R.; Stuehr, D.J.
J. Biol. Chem.
283
11734-11742
Activity coupling and complex formation between bacterial luciferase and flavin reductases
2008
Tu, S.C.
Photochem. Photobiol. Sci.
7
183-188
Structure of the monooxygenase component of a two-component flavoprotein monooxygenase
2007
Alfieri, A.; Fersini, F.; Ruangchan, N.; Prongjit, M.; Chaiyen, P.; Mattevi, A.
Proc. Natl. Acad. Sci. USA
104
1177-1182
Single-enzyme conversion of FMNH2 to 5,6-dimethylbenzimidazole, the lower ligand of B12
2007
Gray, M.J.; Escalante-Semerena, J.C.
Proc. Natl. Acad. Sci. USA
104
2921-2926
Nitronate monooxygenase, a model for anionic flavin semiquinone intermediates in oxidative catalysis
2009
Gadda, G.; Francis, K.
Arch. Biochem. Biophys.
493
53-61
Fre Is the Major Flavin Reductase Supporting Bioluminescence from Vibrio harveyi Luciferase in Escherichia coli
2009
Campbell, Z.T.; Baldwin, T.O.
J. Biol. Chem.
284
8322-8328
Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit
2009
Campbell, Z.T.; Weichsel, A.; Montfort, W.R.; Baldwin, T.O.
Biochemistry
48
6085-6094
Catalytic role of a conserved cysteine residue in the desulfonation reaction by the alkanesulfonate monooxygenase enzyme
2010
Carpenter, R.A.; Zhan, X.; Ellis, H.R.
Biochim. Biophys. Acta
1804
97-105
Steady-state bioluminescence of bacterial luciferase using electrochemical regeneration of flavin substrate and its application to inhibitory analysis
2009
Yamasaki, S.; Nakashima, S.; Yamada, S.; Takehara, K.
Bioelectrochemistry
75
67-70
Two lysine residues in the bacterial luciferase mobile loop stabilize reaction intermediates
2009
Campbell, Z.T.; Baldwin, T.O.
J. Biol. Chem.
284
32827-32834
BluB cannibalizes flavin to form the lower ligand of vitamin B12
2007
Taga, M.; Larsen, N.; Howard-Jones, A.; Walsh, C.; Walker, G.
Nature
446
449-453
Bacterial luciferase reporters: the swiss army knife of molecular biology
2011
Waidmann, M.; Bleichrodt, F.; Laslo, T.; Riedel, C.
Bioeng. Bugs
2
8-16
Analysis of the bacterial luciferase mobile loop by replica-exchange molecular dynamics
2010
Campbell, Z.T.; Baldwin, T.O.; Miyashita, O.
Biophys. J.
99
4012-4019
Plant carotene cis-trans isomerase CRTISO: a new member of the FADred-dependent flavopreoteins catalyzing non-redox reactions
2011
Yu, Q.; Ghisla, S.; Hirschberg, J.; Mann, V.; Beyer, P.
J. Biol. Chem.
286
8666-8676
Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line
2010
Close, D.M.; Patterson, S.S.; Ripp, S.; Baek, S.J.; Sanseverino, J.; Sayler, G.S.
PLoS ONE
5
e12441
Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter
2000
Borodina, E.; Kelly, D.; Rainey, F.; Ward-Rainey, N.; Wood, A.
Arch. Microbiol.
173
425-437
Intermediate-assisted multifunctional catalysis in the conversion of flavin to 5,6-dimethylbenzimidazole by BluB: a density functional theory study
2011
Wang, X.L.; Quan, J.M.
J. Am. Chem. Soc.
133
4079-4091
Purification and characterization of a two-component monooxygenase that hydroxylates nitrilotriacetate from "Chelatobacter" strain ATCC 29600
1992
Uetz, T.; Schneider, R.; Snozzi, M.; Egli, T.
J. Bacteriol.
174
1179-1188
A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism
2010
Dresen, C.; Lin, L.Y.; D'Angelo, I.; Tocheva, E.I.; Strynadka, N.; Eltis, L.D.
J. Biol. Chem.
285
22264-22275
Interactions with the substrate phenolic group are essential for hydroxylation by the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase
2011
Tongsook, C.; Sucharitakul, J.; Thotsaporn, K.; Chaiyen, P.
J. Biol. Chem.
286
44491-44502
Specificities and properties of three reduced pyridine nucleotide-flavin mononucleotide reductases coupling to bacterial luciferase
1982
Watanabe, H.; Hastings, J.W.
Mol. Cell. Biochem.
44
181-187
Crystallization and initial crystallographic characterization of the Corynebacterium glutamicum nitrilotriacetate monooxygenase component A
2006
Kim, K.J.; Kim, S.; Lee, S.; Kang, B.S.; Lee, H.S.; Oh, T.K.; Kim, M.H.
Acta Crystallogr. Sect. F
62
1141-1143
Structure of nitrilotriacetate monooxygenase component B from Mycobacterium thermoresistibile
2011
Zhang, Y.; Edwards, T.E.; Begley, D.W.; Abramov, A.; Thompkins, K.B.; Ferrell, M.; Guo, W.J.; Phan, I.; Olsen, C.; Napuli, A.; Sankaran, B.; Stacy, R.; Van Voorhis, W.C.; Stewart, L.J.; Myler, P.J.
Acta Crystallogr. Sect. F
67
1100-1105
Dynamics of substrate consumption and enzyme synthesis in Chelatobacter heintzii during growth in carbon-limited continuous culture with different mixtures of glucose and nitrilotriacetate
1996
Bally, M.; Egli, T.
Appl. Environ. Microbiol.
62
133-140
Completing the series of BVMOs involved in camphor metabolism of Pseudomonas putida NCIMB 10007 by identification of the two missing genes, their functional expression in E. coli, and biochemical characterization
2012
Kadow, M.; Loschinski, K.; Sass, S.; Schmidt, M.; Bornscheuer, U.
Appl. Microbiol. Biotechnol.
96
419-429
Iminodiacetate and nitrilotriacetate degradation by Kluyveromyces marxianus IMB3
2002
Ternan, N.G.; McMullan, G.
Biochem. Biophys. Res. Commun.
290
802-805
-
Degradation of metal - nitrilotriacetate complexes by nitrilotriacetate monooxygenase
1996
Xun, L.; Reeder, R.; Plymale, A.; Girvin, D.; Bolton Jr., H.
Environ. Sci. Technol.
30
1752-1755
Catalysis of a flavoenzyme-mediated amide hydrolysis
2010
Mukherjee, T.; Zhang, Y.; Abdelwahed, S.; Ealick, S.E.; Begley, T.P.
J. Am. Chem. Soc.
132
5550-5551
Cloning and characterization of the genes encoding nitrilotriacetate monooxygenase of Chelatobacter heintzii ATCC 29600
1996
Knobel, H.R.; Egli, T.; van der Meer, J.R.
J. Bacteriol.
178
6123-6132
Cloning, sequencing, and analysis of a gene cluster from Chelatobacter heintzii ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH:flavin mononucleotide oxidoreductase
1997
Xu, Y.; Mortimer, M.W.; Fisher, T.S.; Kahn, M.L.; Brockman, F.J.; Xun, L.
J. Bacteriol.
179
1112-1116
Purification and characterization of EDTA monooxygenase from the EDTA-degrading bacterium BNC1
1998
Payne, J.W.; Bolton, H.; Campbell, J.A.; Xun, L.
J. Bacteriol.
180
3823-3827
The surprising Rut pathway: An unexpected way to derive nitrogen from pyrimidines
2010
Parales, R.; Ingraham, J.
J. Bacteriol.
192
4086-4088
The Rut pathway for pyrimidine degradation: novel chemistry and toxicity problems
2010
Kim, K.S.; Pelton, J.G.; Inwood, W.B.; Andersen, U.; Kustu, S.; Wemmer, D.E.
J. Bacteriol.
192
4089-4102
Growth and regulation of enzyme synthesis in the nitrilotriacetic acid (NTA)-degrading bacterium Chelatobacter heintzii ATCC 29600
1994
Bally, M.; Wilberg, E.; Kuhni, M.; Egli, T.
Microbiology
140
1927-1936
Biosynthesis of the unique amino acid side chain of butirosin: possible protective-group chemistry in an acyl carrier protein-mediated pathway
2005
Li, Y.; Llewellyn, N.M.; Giri, R.; Huang, F.; Spencer, J.B.
Chem. Biol.
12
665-675
Expression of a soluble form of iodotyrosine deiodinase for active site characterization by engineering the native membrane protein from Mus musculus
2012
Buss, J.M.; McTamney, P.M.; Rokita, S.E.
Protein Sci.
21
351-361
Inhibition of electrochemically controlled bioluminescence of bacterial luciferase by n-alkyl alcohols
2011
Yamasaki, S.; Yamada, S.; Takehara, K.
Anal. Sci.
27
357
Immobilization of bacterial luciferase into poly(N-isopropylacrylamide) film for electrochemical control of a bioluminescence reaction
2012
Kawanami, Y.; Yamasaki, S.; Yamada, S.; Takehara, K.
Anal. Sci.
28
1013-1015
Bioluminescence inhibition of bacterial luciferase by aliphatic alcohol, amine and carboxylic acid: inhibition potency and mechanism
2013
Yamasaki, S.; Yamada, S.; Takehara, K.
Anal. Sci.
29
41-46
Luciferase and fluorescent protein as dual reporters analyzing the effect of n-dodecyltrimethylammonium bromide on the physiology of Pseudomonas putida
2012
Zhang, C.; Su, F.Y.; Zhang, J.F.; Yan, S.T.; Xing, X.H.
Appl. Microbiol. Biotechnol.
93
393-400
The transfer of reduced flavin mononucleotide from LuxG oxidoreductase to luciferase occurs via free diffusion
2013
Tinikul, R.; Pitsawong, W.; Sucharitakul, J.; Nijvipakul, S.; Ballou, D.P.; Chaiyen, P.
Biochemistry
52
6834-6843
Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms
2011
Thotsaporn, K.; Chenprakhon, P.; Sucharitakul, J.; Mattevi, A.; Chaiyen, P.
J. Biol. Chem.
286
28170-28180
The C-terminal domain of 4-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii is an autoinhibitory domain
2012
Phongsak, T.; Sucharitakul, J.; Thotsaporn, K.; Oonanant, W.; Yuvaniyama, J.; Svasti, J.; Ballou, D.P.; Chaiyen, P.
J. Biol. Chem.
287
26213-26222
The fusion Vibrio campbellii luciferase as a eukaryotic gene reporter
2012
Tinikul, R.; Thotsaporn, K.; Thaveekarn, W.; Jitrapakdee, S.; Chaiyen, P.
J. Biotechnol.
162
346-353
Coexpression of luxA and luxB genes of Vibrio fischeri in NIH3T3 mammalian cells and evaluation of its bioluminescence activities
2014
Tehrani, G.A.; Mirzaahmadi, S.; Bandehpour, M.; Kazemi, B.
Luminescence
29
13-19
Genomic and proteomic characterization of Gordonia sp. NB4-1Y in relation to 6: 2 fluorotelomer sulfonate biodegradation
2013
Van Hamme, J.; Bottos, E.; Bilbey, N.; Brewer, S.
Microbiology
159
1618-1628
-
Trigger factor-dependent refolding of bacterial luciferases in Escherichia coli: Kinetics, efficiency, and effect of bichaperone system
2013
Melkina, O.; Goryanin, I.; Manukhov, I.; Zavilgelskii, G.
Mol. Biol.
47
435-439
Activities, kinetics and emission spectra of bacterial luciferase-fluorescent protein fusion enzymes
2011
Ke, D.; Tu, S.C.
Photochem. Photobiol.
87
1346-1353
Bacillus megaterium has both a functional BluB protein required for DMB synthesis and a related flavoprotein that forms a stable radical species
2013
Collins, H.F.; Biedendieck, R.; Leech, H.K.; Gray, M.; Escalante-Semerena, J.C.; McLean, K.J.; Munro, A.W.; Rigby, S.E.; Warren, M.J.; Lawrence, A.D.
PLoS ONE
8
e55708
Active site residues critical for flavin binding and 5,6-dimethylbenzimidazole biosynthesis in the flavin destructase enzyme BluB
2012
Yu, T.Y.; Mok, K.C.; Kennedy, K.J.; Valton, J.; Anderson, K.S.; Walker, G.C.; Taga, M.E.
Protein Sci.
21
839-849
-
Serendipitous discovery of two highly selective inhibitors of bacterial luciferase
2013
Kim, T.; Spiegel, D.
Tetrahedron
69
7692-7698
Biochemistry: Molecular cannibalism
2007
Ealick, S.; Begley, T.
Nature
446
387-389
Substrate specificity of 2-hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum: toward a bio-based production of adipic acid
2011
Parthasarathy, A1.; Pierik, A.J.; Kahnt, J.; Zelder, O.; Buckel, W.
Biochemistry
50
3540-3550
2-Hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum
1999
Hans, M.; Sievers, J.; Müller, U.; Bill, E.; Vorholt, J.A.; Linder, D.; Buckel, W.
Eur. J. Biochem.
265
404-414
UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis
2015
White, M.D.; Payne, K.A.; Fisher, K.; Marshall, S.A.; Parker, D.; Rattray, N.J.; Trivedi, D.K.; Goodacre, R.; Rigby, S.E.; Scrutton, N.S.; Hay, S.; Leys, D.
Nature
522
502-506
Flavin reductase coupling with two monooxygenases involved in dibenzothiophene desulfurization: purification and characterization from a non-desulfurizing bacterium, Paenibacillus polymyxa A-1
2002
Ohshiro, T.; Aoi, Y.; Torii, K.; Izumi, Y.
Appl. Microbiol. Biotechnol.
59
649-657
Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10, capable of dibenzothiophene desulfurization
2002
Kayser, K.J.; Cleveland, L.; Park, H.S.; Kwak, J.H.; Kolhatkar, A.; Kilbane, J.J.
Appl. Microbiol. Biotechnol.
59
737-745
Purification and characterization of the monooxygenase catalyzing sulfur-atom specific oxidation of dibenzothiophene and benzothiophene from the thermophilic bacterium Paenibacillus sp. strain A11-2
2003
Konishi, J.; Ishii, Y.; Onaka, T.; Maruhashi, K.
Appl. Microbiol. Biotechnol.
60
128-133
Characterization of Gordonia sp. strain F.5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization
2006
Santos, S.C.; Alviano, D.S.; Alviano, C.S.; Padula, M.; Leitao, A.C.; Martins, O.B.; Ribeiro, C.M.; Sassaki, M.Y.; Matta, C.P.; Bevilaqua, J.; Sebastian, G.V.; Seldin, L.
Appl. Microbiol. Biotechnol.
71
355-362
A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro
1997
Xi, L.; Squires, C.H.; Monticello, D.J.; Childs, J.D.
Biochem. Biophys. Res. Commun.
230
73-75
Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp. A11-2
2000
Ishii, Y.; Konishi, J.; Okada, H.; Hirasawa, K.; Onaka, T.; Suzuki, M.
Biochem. Biophys. Res. Commun.
270
81-88
Both FMNH2 and FADH2 can be utilized by the dibenzothiophene monooxygenase from a desulfurizing bacterium Mycobacterium goodii X7B
2009
Li, J.; Feng, J.; Li, Q.; Ma, C.; Yu, B.; Gao, C.; Wu, G.; Xu, P.
Biores. Technol.
100
2594-2599
Novel reactivity of dibenzothiophene monooxygenase from Bacillus subtilis WU-S2B
2009
Ohshiro, T.; Nakura, S.; Ishii, Y.; Kino, K.; Kirimura, K.; Izumi, Y.
Biosci. Biotechnol. Biochem.
73
2128-2130
Purification, characterization and crystallization of enzymes for dibenzothiophene desulfurization
2000
Ohshiro, T.; Izumi, Y.
Bioseparation
9
185-188
Residue 345 of dibenzothiophene (DBT) sulfone monooxygenase is involved in C-S bond cleavage specificity of alkylated DBT sulfones
2003
Konishi, J.; Maruhashi, K.
Biotechnol. Lett.
25
1199-1202
Purification of dibenzothiophene monooxygenase from a recombinant Escherichia coli
2007
Gupta, N.; Adhikari, D.K.; Stobdan, T.; Roychoudhury, P.K.; Deb, J.K.
Biotechnol. Lett.
29
1465-1468
-
Phylogenetic characterization and novelty of organic sulphur metabolizing genes of Rhodococcus spp. (Eu-32)
2015
Akhtar, N.; Ghauri, M.; Anwar, M.; Heaphy, S.
Biotechnol. Lett.
37
837-847
Crystal structures of apo-DszC and FMN-bound DszC from Rhodococcus erythropolis D-1
2015
Guan, L.J.; Lee, W.C.; Wang, S.; Ohshiro, T.; Izumi, Y.; Ohtsuka, J.; Tanokura, M.
FEBS J.
282
3126-3135
Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by a single bacterial strain
2000
Kobayashi, M.; Onaka, T.; Ishii, Y.; Konishi, J.; Takaki, M.; Okada, H.; Ohta, Y.; Koizumi, K.; Suzuki, M.
FEMS Microbiol. Lett.
187
123-126
Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria
2015
Mohamed, M.El-S.; Al-Yacoub, Z.H.; Vedakumar, J.V.
Front. Microbiol.
6
112
Gene overexpression, purification, and identification of a desulfurization enzyme from Rhodococcus sp. strain IGTS8 as a sulfide/sulfoxide monooxygenase
1996
Lei, B.; Tu, S.C.
J. Bacteriol.
178
5699-5705
Dibenzothiophene desulfurizing enzymes from moderately thermophilic bacterium Bacillus subtilis WU-S2B: purification, characterization and overexpression
2005
Ohshiro, T.; Ishii, Y.; Matsubara, T.; Ueda, K.; Izumi, Y.; Kino, K.; Kirimura, K.
J. Biosci. Bioeng.
100
266-273
Purification and characterization of dibenzothiophene (DBT) sulfone monooxygenase, an enzyme involved in DBT desulfurization, from Rhodococcus erythropolis D-1
1999
Ohshiro, T.; Kojima, T.; Torii, K.; Kawasoe, H.; Izumi, Y.
J. Biosci. Bioeng.
88
610-616
Purification and characterization of dibenzothiophene sulfone monooxygenase and FMN-dependent NADH oxidoreductase from the thermophilic bacterium Paenibacillus sp. strain A11-2
2000
Konishi, J.; Ishii, Y.; Onaka, T.; Ohta, Y.; Suzuki, M.; Maruhashi, K.
J. Biosci. Bioeng.
90
607-613
Heterologous gene expression in Thermus thermophilus: beta-galactosidase, dibenzothiophene monooxygenase, PNB carboxy esterase, 2-aminobiphenyl-2,3-diol dioxygenase, and chloramphenicol acetyl transferase
2004
Park, H.S.; Kayser, K.J.; Kwak, J.H.; Kilbane, J.J.
J. Ind. Microbiol. Biotechnol.
31
189-197
Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase
2008
Li, L.; Liu, X.; Yang, W.; Xu, F.; Wang, W.; Feng, L.; Bartlam, M.; Wang, L.; Rao, Z.
J. Mol. Biol.
376
453-465
-
Purification and characterization of enzymes involved in desulfurization of dibezothiophene in fossil fuels
2001
Izumi, Y.; Ohshiro, T.
J. Mol. Catal. B
11
1061-1064
Molecular mechanisms of biocatalytic desulfurization of fossil fuels
1996
Gray, K.A.; Pogrebinsky, O.S.; Mrachko, G.T.; Xi, L.; Monticello, D.J.; Squires, C.H.
Nat. Biotechnol.
14
1705-1709
Crystal structure of DszC from Rhodococcus sp. XP at 1.79 A
2014
Liu, S.; Zhang, C.; Su, T.; Wei, T.; Zhu, D.; Wang, K.; Huang, Y.; Dong, Y.; Yin, K.; Xu, S.; Xu, P.; Gu, L.
Proteins
82
1708-1720
Structural insights into the stabilization of active, tetrameric DszC by its C-terminus
2014
Zhang, L.; Duan, X.; Zhou, D.; Dong, Z.; Ji, K.; Meng, W.; Li, G.; Li, X.; Yang, H.; Ma, T.; Rao, Z.
Proteins
82
2733-2743
-
System of oligonucleotide primers for detection and amplification of the emoA gene encoding bacterial ethylenediaminetetraacetate monooxygenase
2008
Kaparullina, E.; Fedorov, D.; Doronina, N.; Trotsenko, Y.
Appl. Biochem. Microbiol.
44
361-365
Cloning, sequencing, and characterization of a gene cluster involved in EDTA degradation from the bacterium BNC1
2001
Bohuslavek, J.; Payne, J.; Liu, Y.; Bolton H., J.; Xun, L.
Appl. Environ. Microbiol.
67
688-695
Characterization and identification of genes essential for dimethyl sulfide utilization in Pseudomonas putida strain DS1
2003
Endoh, T.; Kasuga, K.; Horinouchi, M.; Yoshida, T.; Habe, H.; Nojiri, H.; Omori, T.
Appl. Microbiol. Biotechnol.
62
83-91
Engineering of LadA for enhanced hexadecane oxidation using random- and site-directed mutagenesis
2012
Dong, Y.; Yan, J.; Du, H.; Chen, M.; Ma, T.; Feng, L.
Appl. Microbiol. Biotechnol.
94
1019-1029
Purification and characterization of isobutylamine N-hydroxylase from the valanimycin producer Streptomyces viridifaciens MG456-hF10
1997
Parry, R.; Li, W.
Arch. Biochem. Biophys.
339
47-54
The reduced flavin-dependent monooxygenase SfnG converts dimethylsulfone to methanesulfinate
2016
Wicht, D.K.
Arch. Biochem. Biophys.
604
159-166
Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of degradation long-chain alkanes
2012
Wang, W.; Shao, Z.
FEMS Microbiol. Ecol.
80
523-533
Cloning, analysis, and overexpression of the gene encoding isobutylamine N-hydroxylase from the valanimycin producer, Streptomyces viridifaciens
1997
Parry, R.J.; Li, W.; Cooper, H.N.
J. Bacteriol.
179
409-416
Identification and characterization of the two-enzyme system catalyzing oxidation of EDTA in the EDTA-degrading bacterial strain DSM 9103
1997
Witschel, M.; Nagel, S.; Egli, T.
J. Bacteriol.
179
6937-6943
A novel reduced flavin mononucleotide-dependent methanesulfonate sulfonatase encoded by the sulfur-regulated msu operon of Pseudomonas aeruginosa
1999
Kertesz, M.A.; Schmidt-Larbig, K.; Wueest, T.
J. Bacteriol.
181
1464-1473
Structural and biochemical characterization of EDTA monooxygenase and its physical interaction with a partner flavin reductase
2016
Jun, S.Y.; Lewis, K.M.; Youn, B.; Xun, L.; Kang, C.
Mol. Microbiol.
100
989-1003
The sigma54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization
2005
Endoh, T.; Habe, H.; Nojiri, H.; Yamane, H.; Omori, T.
Mol. Microbiol.
55
897-911
Gelatin and starch as stabilizers of the coupled enzyme system of luminous bacteria NADH FMN-oxidoreductase-luciferase
2014
Bezrukikh, A.; Esimbekova, E.; Nemtseva, E.; Kratasyuk, V.; Shimomura, O.
Anal. Bioanal. Chem.
406
5743-5747
Structural and functional study of ChuY from Escherichia coli strain CFT073
2017
Kim, H.; Chaurasia, A.; Kim, T.; Choi, J.; Ha, S.; Kim, D.; Kim, K.
Biochem. Biophys. Res. Commun.
482
1176-1182
Identification of novel nitroreductases from Bacillus cereus and their interaction with the CB1954 prodrug
2015
Gwenin, V.; Poornima, P.; Halliwell, J.; Ball, P.; Robinson, G.; Gwenin, C.
Biochem. Pharmacol.
98
392-402
Crystal structure of Escherichia coli SsuE defining a general catalytic cycle for FMN reductases of the flavodoxin-like superfamily
2014
Driggers, C.; Dayal, P.; Ellis, H.; Andrew Karplus, P.
Biochemistry
53
3509-3519
Transformation of a flavin-free FMN reductase to a canonical flavoprotein through modification of the Pi-helix
2016
Musila, J.; Ellis, H.
Biochemistry
55
6389-6394
Structure of dihydromethanopterin reductase, a cubic protein cage for redox transfer
2014
McNamara, D.E.; Cascio, D.; Jorda, J.; Bustos, C.; Wang, T.C.; Rasche, M.E.; Yeates, T.O.; Bobik, T.A.
J. Biol. Chem.
289
8852-8864
Improving the biodesulfurization of crude oil and derivatives a QM/MM investigation of the catalytic mechanism of NADH-FMN oxidoreductase (DszD)
2016
Sousa, S.F.; Sousa, J.F.; Barbosa, A.C.; Ferreira, C.E.; Neves, R.P.; Ribeiro, A.J.; Fernandes, P.A.; Ramos, M.J.
J. Phys. Chem. A
120
5300-5306
Trichomonas vaginalis flavin reductase 1 and its role in metronidazole resistance
2014
Leitsch, D.; Janssen, B.; Kolarich, D.; Johnson, P.; Duchene, M.
Mol. Microbiol.
91
198-208
A single-site mutation at Ser146 expands the reactivity of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase
2016
Dhammaraj, T.; Pinthong, C.; Visitsatthawong, S.; Tongsook, C.; Surawatanawong, P.; Chaiyen, P.
ACS Chem. Biol.
11
2889-2896
Hydroxylation of 4-hydroxyphenylethylamine derivatives by R263 variants of the oxygenase component of p-hydroxyphenylacetate-3-hydroxylase
2017
Chenprakhon, P.; Dhammaraj, T.; Chantiwas, R.; Chaiyen, P.
Arch. Biochem. Biophys.
620
1-11
Exploring the catalytic mechanism of alkanesulfonate monooxygenase using molecular dynamics
2014
Armacost, K.; Musila, J.; Gathiaka, S.; Ellis, H.R.; Acevedo, O.
Biochemistry
53
3308-3317
Exposing the alkanesulfonate monooxygenase protein-protein interaction sites
2015
Dayal, P.V.; Singh, H.; Busenlehner, L.S.; Ellis, H.R.
Biochemistry
54
7531-7538
Synthesis of alpha,beta-unsaturated aldehydes as potential substrates for bacterial luciferases
2017
Brodl, E.; Ivkovic, J.; Tabib, C.R.; Breinbauer, R.; Macheroux, P.
Bioorg. Med. Chem.
25
1487-1495
Enzymatic transformation of nitro-aromatic compounds by a flavin-free NADH azoreductase from Lysinibacillus sphaericus
2014
Misal, S.A.; Lingojwar, D.P.; Lokhande, M.N.; Lokhande, P.D.; Gawai, K.R.
Biotechnol. Lett.
36
127-131
Discovery of new substrates for LuxAB bacterial bioluminescence
2016
Jiang, T.; Wang, W.; Wu, X.; Wu, W.; Bai, H.; Ma, Z.; Shen, Y.; Yang, K.; Li, M.
Chem. Biol. Drug Des.
88
197-208
BluB/CobT2 fusion enzyme activity reveals mechanisms responsible for production of active form of vitamin B12 by Propionibacterium freudenreichii
2015
Deptula, P.; Kylli, P.; Chamlagain, B.; Holm, L.; Kostiainen, R.; Piironen, V.; Savijoki, K.; Varmanen, P.
Microb. Cell Fact.
14
186
Multiple native flavin reductases in camphor-metabolizing Pseudomonas putida NCIMB 10007 Functional interaction with two-component diketocamphane monooxygenase isoenzymes
2014
Willetts, A.; Kelly, D.
Microbiology
160
1783-1794
Camphor pathway redux functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions
2013
Iwaki, H.; Grosse, S.; Bergeron, H.; Leisch, H.; Morley, K.; Hasegawa, Y.; Lau, P.C.
Appl. Environ. Microbiol.
79
3282-3293
Kinetic and binding studies of Streptococcus pneumoniae type 2 isopentenyl diphosphate dimethylallyl diphosphate isomerase
2016
Janczak, M.W.; Poulter, C.D.
Biochemistry
55
2260-2268
-
Enantioselective oxidations by the diketocamphane monooxygenase isozymes from Pseudomonas putida
1996
Beecher, J.; Grogan, G.; Roberts, S.; Willetts, A.
Biotechnol. Lett.
18
571-576
Determination of kinetics and the crystal structure of a novel type 2 isopentenyl diphosphate dimethylallyl diphosphate isomerase from Streptococcus pneumoniae
2014
de Ruyck, J.; Janczak, M.W.; Neti, S.S.; Rothman, S.C.; Schubert, H.L.; Cornish, R.M.; Matagne, A.; Wouters, J.; Poulter, C.D.
ChemBioChem
15
1452-1458
The UbiX-UbiD system The biosynthesis and use of prenylated flavin (prFMN)
2017
Marshall, S.A.; Payne, K.A.P.; Leys, D.
Arch. Biochem. Biophys.
632
209-221
Ligand-driven conformational dynamics influences selectivity of UbiX
2018
Zaczek, S.; Kowalska, J.; Dybala-Defratyka, A.
ChemBioChem
19
2403-2409
Redox coenzyme F420 biosynthesis in thermomicrobia involves reduction by stand-alone nitroreductase superfamily enzymes
2020
Braga, D.; Hasan, M.; Kroeber, T.; Last, D.; Lackner, G.
Appl. Environ. Microbiol.
86
e00457
Protective role of bacterial alkanesulfonate monooxygenase under oxidative stress
2020
Park, C.; Shin, B.; Park, W.
Appl. Environ. Microbiol.
86
e00692
Unique biochemical and sequence features enable BluB to destroy flavin and distinguish BluB from the flavin monooxygenase superfamily
2018
Hazra, A.; Ballou, D.; Taga, M.
Biochemistry
57
1748-1757
Substrate-dependent mobile loop conformational changes in alkanesulfonate monooxygenase from accelerated molecular dynamics
2020
Thakur, A.; Somai, S.; Yue, K.; Ippolito, N.; Pagan, D.; Xiong, J.; Ellis, H.R.; Acevedo, O.
Biochemistry
59
3582-3593
The sulfoquinovosyl glycerol binding protein SmoF binds and accommodates plant sulfolipids
2022
Snow, A.J.D.; Sharma, M.; Lingford, J.P.; Zhang, Y.; Mui, J.W.; Epa, R.; Goddard-Borger, E.D.; Williams, S.J.; Davies, G.J.
Curr. Res. Struct. Biol.
4
51-58
Protonation status and control mechanism of flavin-oxygen intermediates in the reaction of bacterial luciferase
2021
Tinikul, R.; Lawan, N.; Akeratchatapan, N.; Pimviriyakul, P.; Chinantuya, W.; Suadee, C.; Sucharitakul, J.; Chenprakhon, P.; Ballou, D.P.; Entsch, B.; Chaiyen, P.
FEBS J.
288
3246-3260
Functional genomics and phylogenetic evidence suggest genus-wide cobalamin production by the globally distributed marine nitrogen fixer Trichodesmium
2018
Walworth, N.; Lee, M.; Suffridge, C.; Qu, P.; Fu, F.; Saito, M.; Webb, E.; Sanudo-Wilhelmy, S.; Hutchins, D.
Front. Microbiol.
9
189
Structures of the alkanesulfonate monooxygenase MsuD provide insight into C-S bond cleavage, substrate scope, and an unexpected role for the tetramer
2021
Liew, J.J.M.; El Saudi, I.M.; Nguyen, S.V.; Wicht, D.K.; Dowling, D.P.
J. Biol. Chem.
297
100823
QM/MM molecular modeling reveals mechanism insights into flavin peroxide formation in bacterial buciferase
2022
Lawan, N.; Tinikul, R.; Surawatanawong, P.; Mulholland, A.J.; Chaiyen, P.
J. Chem. Inf. Model.
62
399-411
Use of bacterial luciferase as a reporter gene in eukaryotic systems
2021
Phonbuppha, J.; Tinikul, R.; Chaiyen, P.
Methods Mol. Biol.
2274
53-65
Oxidative desulfurization pathway for complete catabolism of sulfoquinovose by bacteria
2022
Sharma, M.; Lingford, J.P.; Petricevic, M.; Snow, A.J.D.; Zhang, Y.; Jaerva, M.A.; Mui, J.W.; Scott, N.E.; Saunders, E.C.; Mao, R.; Epa, R.; da Silva, B.M.; Pires, D.E.V.; Ascher, D.B.; McConville, M.J.; Davies, G.J.; Williams, S.J.; Goddard-Borger, E.D.
Proc. Natl. Acad. Sci. USA
119
e2116022119
Enhanced brightness of bacterial luciferase by bioluminescence resonance energy transfer
2021
Kaku, T.; Sugiura, K.; Entani, T.; Osabe, K.; Nagai, T.
Sci. Rep.
11
14994