Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
1,4-benzoquinone + NADPH = ?
-
1,4-benzoquinone + NADPH = ? + NADP+
-
1,4-benzoquinone + NADPH + H+ = 1,4-benzoquinol + NADP+
-
D-galactose + 1,4-benzoquinone = 2-dehydro-D-galactose + 1,4-hydroquinone
-
D-galactose + 1,4-benzoquinone = 2-dehydro-D-galactose + hydroquinone
-
D-glucose + 1,4-benzoquinone = 2-dehydro-D-glucose + 1,4-hydroquinone
-
D-glucose + 1,4-benzoquinone = 2-dehydro-D-glucose + hydroquinone
-
D-glucose + 1,4-benzoquinone = ?
-
D-ribose + 1,4-benzoquinone = 2-dehydro-D-ribose + 1,4-hydroquinone
-
D-xylose + 1,4-benzoquinone = 2-dehydro-D-xylose + 1,4-hydroquinone
-
L-arabinose + 1,4-benzoquinone = 2-dehydro-L-arabinose + 1,4-hydroquinone
-
formaldehyde + p-benzoquinone = formic acid + p-benzoquinol
-
beta-D-glucose + 1,4-benzoquinone = D-glucono-1,5-lactone + hydroquinone
-
beta-D-glucose + 4-benzoquinone = D-glucono-1,5-lactone + 4-benzoquinol
-
beta-D-glucose + benzoquinone = D-glucono-1,5-lactone + hydroquinone
-
beta-D-glucose + p-benzoquinone = D-glucono-1,5-lactone + ?
-
sn-glycerol 3-phosphate + quinone = glycerone phosphate + quinol
-
(S)-malate + quinone = oxaloacetate + quinol
-
D-glucose + 1,4-benzoquinone = D-glucono-1,5-lactone + 1,4-benzoquinol
-
choline + p-benzoquinone = betaine aldehyde + reduced p-benzoquinone
-
cellobiose + 1,4-benzoquinone = cellobiono-1,5-lactone + reduced 1,4-benzoquinone
-
cellopentaose + 1,4-benzoquinone = ? + reduced 1,4-benzoquinone
-
cellotetraose + 1,4-benzoquinone = ? + reduced 1,4-benzoquinone
-
cellotriose + 1,4-benzoquinone = ? + reduced 1,4-benzoquinone
-
D-galactose + 1,4-benzoquinone = ? + reduced 1,4-benzoquinone
-
D-glucose + 1,4-benzoquinone = ? + reduced 1,4-benzoquinone
-
D-mannose + 1,4-benzoquinone = ? + reduced 1,4-benzoquinone
-
D-xylose + 1,4-benzoquinone = ? + reduced 1,4-benzoquinone
-
lactose + 1,4-benzoquinone = 4-O-(beta-D-galactopyranosyl)-D-glucono-1,5-lactone + 1,4-benzoquinol
-
lactose + 1,4-benzoquinone = ?
-
lactose + 1,4-benzoquinone = ? + reduced 1,4-benzoquinone
-
maltose + 1,4-benzoquinone = ? + reduced 1,4-benzoquinone
-
maltotetraose + 1,4-benzoquinone = ? + reduced 1,4-benzoquinone
-
maltotriose + 1,4-benzoquinone = ? + reduced 1,4-benzoquinone
-
mannopentaose + 1,4-benzoquinone = ? + reduced 1,4-benzoquinone
-
xylobiose + 1,4-benzoquinone = 4-O-beta-D-xylopyranosyl-D-xylono-1,5-lactone + reduced 1,4-benzoquinone
-
xylotriose + 1,4-benzoquinone = ? + reduced 1,4-benzoquinone
-
beta-D-lactose + benzoquinone = lactobiono-1,5-lactone + benzoquinol
-
maltose + benzoquinone = maltono-1,5-lactone + benzoquinol
-
2,3-didehydro-D-glucose + 1,4-benzoquinone = 3-dehydro-D-glucose + hydroquinone
-
2-dehydro-D-xylose + 1,4-benzoquinone = 2,3-didehydro-D-xylose + hydroquinone
-
2-deoxy-D-glucose + 1,4-benzoquinone = ?
-
3-dehydro-D-glucose + 1,4-benzoquinone = 2,3-didehydro-D-glucose + hydroquinone
-
aldopyranose + 1,4-benzoquinone = 2-aldoketose + hydroquinone
-
alpha,alpha-trehalose + 1,4-benzoquinone = 3,3'-didehydro-alpha,alpha-trehalose + hydroquinone
-
cellobiose + 1,4-benzoquinone = ?
-
cellotriose + 1,4-benzoquinone = ?
-
D-allose + 1,4-benzoquinone = 2-dehydro-D-allose + hydroquinone
-
D-arabino-2-hexosulose + 1,4-benzoquinone = ?
-
D-arabinose + 1,4-benzoquinone = 2-dehydro-D-arabinose + hydroquinone
-
D-galactose + 1,4-benzoquinone = 2-dehydro-D-galactose + hydroquinone
-
D-galactose + 1,4-benzoquinone = ?
-
D-glucono-1,5-lactone + 1,4-benzoquinone = ?
-
D-glucose + 1,4-benzoquinone = 2,3-didehydro-D-glucose + hydroquinone
-
D-glucose + 1,4-benzoquinone = 2-dehydro-D-glucose + ?
-
D-glucose + 1,4-benzoquinone = 2-dehydro-D-glucose + hydroquinone
-
D-glucose + 1,4-benzoquinone = 3-dehydro-D-glucose + hydroquinone
-
D-glucose + 1,4-benzoquinone = ?
-
D-lyxose + 1,4-benzoquinone = ?
-
D-mannose + 1,4-benzoquinone = ?
-
D-ribose + 1,4-benzoquinone = 2-dehydro-D-ribose + hydroquinone
-
D-xylose + 1,4-benzoquinone = 2-dehydro-D-xylose + hydroquinone
-
D-xylose + 1,4-benzoquinone = ?
-
erlose + 1,4-benzoquinone = 3-dehydroerlose + hydroquinone
-
L-arabinose + 1,4-benzoquinone = 2-dehydro-L-arabinose + hydroquinone
-
L-arabinose + 1,4-benzoquinone = ?
-
L-glucose + 1,4-benzoquinone = 2-dehydro-L-glucose + hydroquinone
-
L-sorbose + 1,4-benzoquinone = 2-dehydro-L-sorbose + hydroquinone
-
lactose + 1,4-benzoquinone = ?
-
maltose + 1,4-benzoquinone = ?
-
maltotriose + 1,4-benzoquinone = ?
-
melizitose + 1,4-benzoquinone = 3-dehydromelizitose + hydroquinone
-
methyl-alpha-D-galactopyranoside + 1,4-benzoquinone = ?
-
methyl-alpha-D-galactopyranoside + 1,4-benzoquinone = methyl-alpha-3-dehydro-D-galactopyranoside + hydroquinone
-
methyl-alpha-D-glucopyranoside + 1,4-benzoquinone = ?
-
methyl-alpha-D-glucopyranoside + 1,4-benzoquinone = methyl-alpha-3-dehydro-D-glucopyranoside + hydroquinone
-
methyl-beta-D-glucopyranoside + 1,4-benzoquinone = ?
-
methyl-beta-D-glucopyranoside + 1,4-benzoquinone = methyl-beta-3-dehydro-D-glucopyranoside + hydroquinone
-
sucrose + 1,4-benzoquinone = 3'-dehydrosucrose + hydroquinone
-
sucrose + 1,4-benzoquinone = ?
-
trehalose + 1,4-benzoquinone = ?
-
D-glucose + 2 1,4-benzoquinone = 2,3-didehydro-D-glucose + 2 hydroquinone
-
D-xylose + 2 1,4-benzoquinone = 2,3-didehydro-D-xylose + 2 hydroquinone
-
D-galactose + benzoquinone = 2,3-didehydro-D-galactose + hydroquinone
-
D-galactose + benzoquinone = 2-dehydro-D-galactose + hydroquinone
-
D-glucose + benzoquinone = 2,3-didehydro-D-glucose + hydroquinone
-
aldopyranose + quinone = 2-aldoketose + hydroquinone
-
H2O + 1,4-benzoquinone + hv = O2 + 1,4-benzoquinol
-
glutaredoxin + benzoquinone = glutaredoxin disulfide + H2O + hydroquinone
-
quinone + Fe2+ + O2 = ?
-
xanthine + p-benzoquinone + H2O = hypoxanthine + hydroquinone + ?
-
xanthine + p-benzoquinone + H2O = p-benzosemiquinone + urate
-
phenylacetyl-CoA + H2O + quinone = phenylglyoxylyl-CoA + quinol
-
4,4'-dihydroxy-beta-carotene + benzoquinone = canthaxanthin + benzoquinol
-
beta-carotene + benzoquinone + H2O = echinenone + benzoquinol + 2 H+
-
NADH + p-benzoquinone = NAD+ + p-benzoquinol
-
1,4-benzoquinone + NADP+ = ? + NADPH + H+
-
pyruvate + quinone + H2O = acetate + CO2 + quinol
-
CO + benzoquinone + H2O = CO2 + benzoquinol
-
1,4-benzoquinone + NADPH + H+ = ? + NADP+
-
L-galactono-1,4-lactone + 1,4-benzoquinone = L-ascorbate + reduced 1,4-benzoquinone
-
D-arabinono-1,4-lactone + 1,4-benzoquinone = ? + 1,4-benzoquinol
-
L-galactono-1,4-lactone + 1,4-benzoquinone = L-ascorbate + 1,4-benzoquinol
-
9,9'-dicis-zeta-carotene + 2 quinone = 7,9,7',9'-tetracis-lycopene + 2 quinol
-
zeta-carotene + 2 quinone = lycopene + 2 quinol
-
phytoene + quinone = 7,9,9'-tricis-neurosporene + quinol
-
1,4-benzoquinone + NADH + H+ = 1,4-benzoquinol + NAD+
-
1,4-benzoquinone + NADPH + H+ = 1,4-benzoquinol + NADP+
-
NADPH + H+ + 1,4-benzoquinone = NADP+ + 1,4-benzohydroquinol
-
NADPH + H+ + 1,4-benzoquinone = NADP+ + ?
-
benzoquinone + NADPH + H+ = benzoquinol + NADP+
-
benzoquinone + NADPH = benzohydroquinone + NADP+
-
NADPH + H+ + p-benzoquinone = NADP+ + p-benzohydroquinone
-
NADPH + H+ + quinone = NADP+ + ?
-
NADPH + H+ + quinone = NADP+ + quinol
-
1,4-benzoquinone + NAD(P)H + H+ = 1,4-benzoquinol + NAD(P)+
1,4-benzoquinone + NADH + H+ = 1,4-benzoquinol + NAD+
1,4-benzoquinone + NADPH = 1,4-benzosemiquinone + NADP+
benzoquinone + 2 NAD(P)H + H+ = benzohydroquinone + 2 NAD(P)+
NADH + H+ + benzoquinone = NAD+ + benzoquinol
NADPH + H+ + benzoquinone = NADP+ + benzoquinol
p-benzoquinone + NADH = benzohydroquinone + NAD+
p-benzoquinone + NADPH = p-benzohydroquinone + NADP+
NAD(P)H + H+ + quinone = NAD(P)+ + hydroquinone
NADPH + H+ + quinone = NADP+ + ?
quinone + NAD(P)H = hydroquinone + NAD(P)+
NADH + 1,4-benzoquinone = NAD+ + ?
-
NADH + p-benzoquinone = NAD+ + ?
-
1,4-benzoquinone + NADPH + H+ = 1,4-benzoquinol + NADP+
-
1,4-benzoquinone + NADPH + H+ = 1,4-benzosemiquinone + NADP+
-
1,4-benzoquinone + NADPH = 1,4-benzosemiquinone + NADP+
-
2 1,4-benzoquinone + NADPH + H+ = 2 1,4-benzosemiquinone + NADP+
-
2 1,4-benzoquinone + NADPH + H+ = ? + NADP+
-
NADPH + H+ + 2 quinone = NADP+ + 2 semiquinone
-
NADPH + H+ + p-benzoquinone = NADP+ + hydroquinone
-
p-benzoquinone + NADPH = NADP+ + hydroquinone
-
benzoquinone + NADH = benzoquinol + NAD+
-
NADPH + H+ + 1,4-benzoquinone = NADP+ + 1,4-benzoquinol
-
1,4-benzoquinone + NADPH + H+ = ?
-
1,4-benzoquinone + NADH = 1,4-benzoquinol + NAD+
-
HS- + quinone = polysulfide + quinol
-
sulfide + quinone = elemental sulfur + quinol
-
sulfide + quinone = sulfur + quinol
-
1,4-benzoquinone + 2-(glutathione-S-yl)-hydroquinone = ?
-
glutathione + 1,4-benzoquinone = ?
-
hydrogen sulfide + glutathione + quinone = S-sulfanylglutathione + quinol
-
[DsbA protein] with reduced L-cysteine residues + quinone = [DsbA protein] carrying a disulfide bond + quinol
-
NADH + H+ + 1,4-benzoquinone = NAD+ + 1,4-benzoquinol
-
benzoquinone + NADH + H+ = benzohydroquinone + NAD+
-
NADH + benzoquinone + H+ = NAD+ + benzoquinol
-
NADH + benzoquinone = NAD+ + benzoquinol
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
0.39
-
with D-glucose as cosubstrate, at pH 6.5 and 37°C
1.2
-
mutant enzyme F454A/S455A/Y456A, using D-galactose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
2
-
mutant enzyme F454P, using D-galactose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
2.7
-
mutant enzyme F454N, using D-galactose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
2.9
-
mutant enzyme F454A/Y456A, using D-galactose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
3
-
mutant enzyme H450Q, using D-galactose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
3.04
-
pH 6.5, 30°C, recombinant enzyme
3.3
-
mutant enzyme Y456W, using D-galactose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
3.8
-
wild type enzyme, using D-galactose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
4.37
-
E542R mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
4.64
-
L537G mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
4.72
-
L537G/E542K mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
4.75
-
L537G/E542R mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
4.77
-
L537W/E542R mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
4.79
-
wild-type, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
5.09
-
L537W/E542K mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
5.37
-
L537W mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
5.52
-
E542K mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
15
-
mutant enzyme F454A/S455A/Y456A, using D-glucose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
30
-
mutant enzyme F454P, using D-glucose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
61
-
mutant enzyme F454A/Y456A, using D-glucose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
92.3
-
using D-glucose as cosubstrate, at 30°C, pH 6.5
127
-
E542R mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
130
-
mutant enzyme F454N, using D-glucose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
152
-
wild-type, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
160
-
wild type enzyme, using D-glucose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
173
-
L537G/E542K mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
173
-
L537G/E542R mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
175
-
L537W/E542R mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
181
-
L537W/E542K mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
184
-
L537G mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
186
-
pH 6.5, 30°C, recombinant enzyme
189
-
E542K mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
205
-
L537W mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
220
-
mutant enzyme H450Q, using D-glucose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
220
-
mutant enzyme Y456W, using D-glucose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
324
-
soluble enzyme, 500 mM glucose used as electron acceptor, pH 5.0
400
-
substrate 1,4-benzoquinone (constant D-glucose concentration, 20 mM), activity determined spectrophotometrically at 420 nm by measuring formation of H2O2 with a horse-radish peroxidase-coupled assay using 2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid) as the chromogen, 30°C, pH 6.5
477
-
substrate 1,4-benzoquinone (constant D-glucose concentration, 20 mM), activity determined spectrophotometrically at 420 nm by measuring formation of H2O2 with a horse-radish peroxidase-coupled assay using 2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid) as the chromogen, 30°C, pH 4.5
13.4
-
mutant enzyme 700S, in 100 mM McIlvaine buffer, pH 6.0, at 30°C
20.8
-
pH 4.5, 30°C, reaction with lactose
27.5
-
pH 4.5, 30°C, reaction with lactose
43
-
recombinant wild type enzyme, in 100 mM McIlvaine buffer, pH 6.0, at 30°C
45
-
cellobiose as substrate, pH 3.5
3.57
-
isoform PDH3, with D-glucose as cosubstrate, at pH 4.0 and 30°C
12.89
-
with D-glucose as cosubstrate, at pH 4.0 and 30°C
13.6
-
mutant enzyme H103Y, with D-glucose as cosubstrate, at pH 4.0 and 30°C
23.4
-
isoform PDH2, with D-glucose as cosubstrate, at pH 4.0 and 30°C
34.82
-
with D-glucose as cosubstrate, at pH 4.0 and 30°C
44.2
-
with D-glucose as cosubstrate, in 100 mM sodium acetate pH 4.0, at 30°C
59
-
recombinant enzyme, with 25 mM D-glucose as cosubstrate, at 30°C in phosphate buffer, pH 2.0
65.4
-
isoform PDH1, with D-glucose as cosubstrate, at pH 4.0 and 30°C
65.4
-
recombinant enzyme, at pH 4.0 and 30°C
65.4
-
wild type enzyme, with D-glucose as cosubstrate, at pH 4.0 and 30°C
76
-
native enzyme, at pH 3.0 and 30°C
76
-
native enzyme, with 25 mM D-glucose as cosubstrate, at 30°C in phosphate buffer, pH 2.0
52.8
-
pH and temperature not specified in the publication
108
-
in the presence of L-galactono-1,4-lactone, in 50 mM sodium phosphate (pH 8.8), at 25°C
87
-
with NADPH as cosubstrate, at pH 7.5 and 25°C
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
0.16
-
pH 6.0, 25°C, recombinant enzyme
0.0088
-
pH 7.1, temperature not specified in the publication
0.0052
-
mutant enzyme F454N, using D-galactose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
0.0071
-
mutant enzyme F454P, using D-galactose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
0.0089
-
mutant enzyme F454A/S455A/Y456A, using D-galactose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
0.01
-
mutant enzyme Y456W, using D-galactose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
0.013
-
mutant enzyme H450Q, using D-galactose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
0.027
-
wild type enzyme, using D-galactose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
0.029
-
mutant enzyme F454A/S455A/Y456A, using D-glucose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
0.029
-
mutant enzyme F454A/Y456A, using D-glucose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
0.032
-
L537W/E542R mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.033
-
using D-glucose as cosubstrate, at 30°C, pH 6.5
0.036
-
L537W mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.037
-
L537G/E542R mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.038
-
L537W/E542K mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.04
-
E542R mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.04
-
L537G/E542K mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.042
-
substrate 1,4-benzoquinone (constant D-glucose concentration, 20 mM), activity determined spectrophotometrically at 420 nm by measuring formation of H2O2 with a horse-radish peroxidase-coupled assay using 2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid) as the chromogen, 30°C, pH 4.5
0.043
-
V546C/T169G mutant, substrate 1,4-benzoquinone (constant D-glucose concentration, 100 mM), activity determined spectrophotometrically at 420 nm by measuring formation of H2O2 with a horse-radish peroxidase-coupled assay using 2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid) as the chromogen, 30°C, pH 6.5
0.048
-
L537G mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.049
-
E542K mutant, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.052
-
mutant enzyme F454N, using D-glucose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
0.065
-
wild-type, substrate 1,4-benzoquinone (D-galactose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.072
-
mutant enzyme F454P, using D-glucose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
0.072
-
mutant enzyme Y456W, using D-glucose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
0.072
-
V546C/T169G/L537W mutant, substrate 1,4-benzoquinone (constant D-glucose concentration, 100 mM), activity determined spectrophotometrically at 420 nm by measuring formation of H2O2 with a horse-radish peroxidase-coupled assay using 2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid) as the chromogen, 30°C, pH 6.5
0.078
-
mutant enzyme F454A/Y456A, using D-galactose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
0.11
-
substrate 1,4-benzoquinone (constant D-glucose concentration, 20 mM), activity determined spectrophotometrically at 420 nm by measuring formation of H2O2 with a horse-radish peroxidase-coupled assay using 2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid) as the chromogen, 30°C, pH 6.5
0.12
-
with D-glucose as cosubstrate, at pH 6.5 and 37°C
0.13
-
L537W mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.136
-
E542R mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.137
-
L537W/E542R mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.14
-
L537W/E542K mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.14
-
wild type enzyme, using D-glucose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
0.15
-
L537G/E542K mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.15
-
pH 6.5, 30°C, recombinant enzyme
0.155
-
L537G/E542R mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.176
-
L537G mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.182
-
E542K mutant, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.24
-
mutant enzyme H450Q, using D-glucose as cosubstrate, in 50 mM KH2PO4 buffer (pH 6.5), at 30°C
0.241
-
wild-type, substrate 1,4-benzoquinone (D-glucose concentration constant, 100 mM), standard chromogenic ABTS assay (azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid), horse-radish peroxidase, measuring absorbtion at 420 nm), pH 6.5, 30°C
0.28
-
V546C/T169G mutant, substrate 1,4-benzoquinone (constant D-galactose concentration, 100 mM), activity determined spectrophotometrically at 420 nm by measuring formation of H2O2 with a horse-radish peroxidase-coupled assay using 2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid) as the chromogen, 30°C, pH 6.5
0.3
-
pH 4.5, substrate: D-glucose
0.3
-
soluble enzyme, 500 mM glucose used as electron acceptor, pH 5.0
0.31
-
pH 6.5, substrate: D-glucose
0.32
-
pH 6.5, 30°C, recombinant enzyme
0.37
-
V546C/E542K mutant, substrate 1,4-benzoquinone (constant D-glucose concentration, 100 mM), activity determined spectrophotometrically at 420 nm by measuring formation of H2O2 with a horse-radish peroxidase-coupled assay using 2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid) as the chromogen, 30°C, pH 6.5
1.18
-
V546C/T169G/L537W mutant, substrate 1,4-benzoquinone (constant D-galactose concentration, 100 mM), activity determined spectrophotometrically at 420 nm by measuring formation of H2O2 with a horse-radish peroxidase-coupled assay using 2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid) as the chromogen, 30°C, pH 6.5
1.5
2
V546C/E542K mutant, substrate 1,4-benzoquinone (constant D-galactose concentration, 100 mM), activity determined spectrophotometrically at 420 nm by measuring formation of H2O2 with a horse-radish peroxidase-coupled assay using 2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid) as the chromogen, 30°C, pH 6.5
0.011
-
pH 4.5, 30°C, reaction with lactose
0.019
-
pH 4.5, 30°C, reaction with lactose
0.022
-
recombinant wild type enzyme, in 100 mM McIlvaine buffer, pH 6.0, at 30°C
0.026
-
cellobiose as substrate, pH 3.5
0.056
-
mutant enzyme 700S, in 100 mM McIlvaine buffer, pH 6.0, at 30°C
0.0325
-
isoform PDH2, with D-glucose as cosubstrate, at pH 4.0 and 30°C
0.12
-
with D-glucose as cosubstrate, at pH 4.0 and 30°C
0.566
-
with D-glucose as cosubstrate, in 100 mM sodium acetate pH 4.0, at 30°C
1.03
-
recombinant enzyme, with 25 mM D-glucose as cosubstrate, at 30°C in phosphate buffer, pH 2.0
1.1
-
at 30°C with 25 mM glucose as susbtrate
1.38
-
isoform PDH1, with D-glucose as cosubstrate, at pH 4.0 and 30°C
1.38
-
recombinant enzyme, at pH 4.0 and 30°C
1.38
-
wild type enzyme, with D-glucose as cosubstrate, at pH 4.0 and 30°C
1.82
-
at 30°C with 50 mM glucose as susbtrate
1.82
-
native enzyme, at pH 3.0 and 30°C
1.82
-
native enzyme, with 25 mM D-glucose as cosubstrate, at 30°C in phosphate buffer, pH 2.0
1.88
-
isoform PDH3, with D-glucose as cosubstrate, at pH 4.0 and 30°C
3.25
-
with D-glucose as cosubstrate, at pH 4.0 and 30°C
3.64
-
mutant enzyme H103Y, with D-glucose as cosubstrate, at pH 4.0 and 30°C
0.28
-
wild type enzyme, in the presence of L-galactono-1,4-lactone, in 50 mM sodium phosphate (pH 8.8), at 25°C
14.9
-
at 0.02 mM, pH 6.0, 23°C
19
-
at 0.01 mM, pH 6.0, 23°C
19.3
-
at 0.05 mM, pH 6.0, 23°C
36.3
-
at 0.1 mM, pH 6.0, 23°C
0.37
-
with NADPH as cosubstrate, at pH 7.5 and 25°C
0.0149
-
pH 7.4, temperature not specified in the publication
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
-
Triosephosphate isomerase from rabbit liver
1975
Krietsch, W.K.G.
Methods Enzymol.
41B
438-442
Identification and characterization of the enzymatic activity of zeta-Crystallin from guinea pig lens
1992
Rao, P.V.; Krishna, C.M.; Zigler, J.S.
J. Biol. Chem.
267
96-102
Purification and characterization of zeta-crystallin from the camel lens
1995
Duhaiman, A.S.; Rabbani, N.; AlJafari, A.A.; Alhomida, A.S.
Biochem. Biophys. Res. Commun.
215
632-640
Kinetic properties of camel lens zeta-crystallin
1996
Duhaiman, A.S.
Int. J. Biochem. Cell Biol.
28
1163-1168
Quantitative effects of redox-cycling chemicals on the oxidant-sensitive enzyme dihydroxy-acid dehydratase
1995
Babu, B.N.; Brown, O.R.
Microbios
82
157-170
Hyaluronidases
1952
Meyer, K.; Rapport, M.M.
Adv. Enzymol. Relat. Subj. Biochem.
13
199-236
-
Hydrolysis of 3',4'-dichloropropionanilide by an aryl acylamidase from Taraxacum officinale
1975
Hoagland, R.E.
Phytochemistry
14
383-386
The purification and properties of an amidohydrolase from soybean
1974
Hoagland, R.E.; Graf, G.
Can. J. Biochem.
52
903-910
-
Glutaminase
1960
Roberts, E.
The Enzymes, 2nd Ed (Boyer, P. D. , Lardy, H. , Myrbäck, K. , eds. )
4
285-300
Carbonyl reductase activity of sepiapterin reductase from rat erythrocytes
1985
Sueoka, T.; Katoh, S.
Biochim. Biophys. Acta
843
193-198
-
Laccase-like activity of nucleoside oxidase in the presence of nucleosides
1989
Isono, Y.; Hoshino, M.
Agric. Biol. Chem.
53
2197-2203
-
Characterization of a cellobiose dehydrogenase from Humicola insolens
1998
Schou, C.; Christensen, M.H.; Schulein, M.
Biochem. J.
330
565-571
-
Partial purification and characterization of glyoxylate oxidase from the brown-rot basidiomycete Tyromyces palustris
1994
Akamatsu, Y.; Shimada, M.
Phytochemistry
37
649-653
A novel fungal enzyme, NADPH-dependent carbonyl reductase, showing high specificity to conjugated polyketones
1988
Shimizu, S.; Hattori, S.; Hata, H.; Yamada, H.
Eur. J. Biochem.
174
37-44
Inhibitory effects of flavonoids on rabbit heart carbonyl reductase
2000
Imamura, Y.; Migita, T.; Uriu, Y.; Otagiri, M.; Okawara, T.
J. Biochem.
127
653-658
-
Gluconsäure bildende Enzyme bei Aspergillus niger
1980
Matsushita, K.; Ohno, Y.; Shinagawa, E.; Adachi, O.; Ameyama, M.
Agric. Biol. Chem.
44
1505-1512
The 4-hydroxylation of cinnamic acid by sorghum microsomes and the requirement for cytochrome P-450
1974
Potts, J.R.M.; Weklych, R.; Conn, E.E.
J. Biol. Chem.
249
5019-5026
A novel type of D-mannitol dehydrogenase from Acetobacter xylinum: occurrence, purification, and basic properties
1997
Oikawa, T.; Nakai, J.; Tsukagawa, Y.; Soda, K.
Biosci. Biotechnol. Biochem.
61
1778-1782
Purification and characterization of pyranose oxidase from the white rot fungus Trametes multicolor
2001
Leitner, C.; Volc, J.; Haltrich, D.
Appl. Environ. Microbiol.
67
3636-3644
-
Preparative production of hydroquinone from benzoquinone catalysed by immobilized D-glucose oxidase
1982
Alberti, B.N.; Klibanov, A.M.
Enzyme Microb. Technol.
4
47-49
Purification and characterization of D-glucose oxidase from white-rot fungus Pleurotus ostreatus
1993
Shin, K.S.; Youn, H.D.; Han, Y.H.; Kang, S.O.; Hah, Y.C.
Eur. J. Biochem.
215
747-752
The reaction of choline dehydrogenase with some electron acceptors
1975
Barrett, M.C.; Dawson, A.P.
Biochem. J.
151
677-683
-
Identification of the prosthetic group and further characterization of a novel enzyme, polyethylne glycol dehydrogenase
1985
Kawai, F.; Yamanaka, H.; Ameyama, M.; Shinagawa, E.; Matsushita, K.; Adachi, O.
Agric. Biol. Chem.
49
1071-1076
-
Inducible or constitutive polyethylene glycol dehydrogenase involved in the aerobic metabolism of polyethylene glycol
1989
Yamanaka, H.; Kawai, F.
J. Ferment. Bioeng.
67
300-302
-
Purification and characterization of constitutive polyethylene glycol (PEG) dehydrogenase of a PEG 4000-utilizing Flavobacterium sp. No. 203
1989
Yamanaka, H.; Kawai, F.
J. Ferment. Bioeng.
67
324-330
Involvement of liver aldehyde oxidase in the reduction of nicotinamide N-oxide
1984
Kitamura, S.; Tatsumi, K.
Biochem. Biophys. Res. Commun.
120
602-606
Purification and properties of NADH dehydrogenase from a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius
1987
Wakao, H.; Wakagi, T.; Oshima, T.
J. Biochem.
102
255-262
-
Spectral characterization and chemical modification of FMN-containing ascorbyl free-radical reductase from Pleurotus ostreatus
1999
Yu, S.W.; Kim, Y.R.; Kang, S.O.
Biochem. J.
341
755-763
Purification and properties of three separate menadione reductases from hog liver
1969
Koli, A.K.; Yearby, C.; Scott, W.; Donaldson, K.O.
J. Biol. Chem.
244
621-629
-
NADH dehydrogenase activity of higher plant nitrate reductase (NADH)
1979
Smarrelli, J.; Campbell, W.H.
Plant Sci. Lett.
16
139-147
Catalytic properties of lipoamide dehydrogenase from Mycobacterium smegmatis
1997
Marcinkeviciene, J.; Blanchard, J.S.
Arch. Biochem. Biophys.
340
168-176
Lipoamide dehydrogenase from Streptomyces seoulensis: biochemical and genetic properties
1998
Youn, H.; Kwak, J.; Youn, H.D.; Hah, Y.C.; Kang, S.O.
Biochim. Biophys. Acta
1388
405-418
Rat liver cytosolic azoreductase. Electron transport properties and the mechanism of dicumarol inhibition of the purified enzyme
1979
Huang, M.T.; Miwa, G.T.; Cronheim, N.; Lu, A.Y.H.
J. Biol. Chem.
254
11223-11227
The reduction of vitamin K1 by an enzyme from dog liver
1960
Wosilait, W.D.
J. Biol. Chem.
235
1196-1201
Purification and properties of a soluble reduced nicotinamide-adenine dinucleotide (phosphate) dehydrogenase from the hepatopancreas of Octopus vulgaris
1967
Di Prisco, G.; Casola, L.; Giuditta, A.
Biochem. J.
105
455-460
-
Vitamin K-Reduktase, Darstellung und eigenschaften
1960
Märki, F.; Martius, C.
Biochem. Z.
333
111-135
Menadione reductase from Clostridium tyrobutyricum
1980
Petitdemange, H.; Marczak, R.; Raval, G.; Gay, R.
Can. J. Microbiol.
26
324-329
Characterization of FMN-dependent NADH-quinone reductase induced by menadione in Escherichia coli
1990
Hayashi, M.; Hasegawa, K.; Oguni, Y.; Unemoto, T.
Biochim. Biophys. Acta
1035
230-236
Vitamin K1 hydroquinone formation catalyzed by DT-diaphorase
1982
Fasco, M.J.; Principe, L.M.
Biochem. Biophys. Res. Commun.
104
187-192
Purification and characterization of two isofunctional forms of NAD(P)H: quinone reductase from mouse liver
1986
Prochaska, H.J.; Talalay, P.
J. Biol. Chem.
261
1372-1378
-
Isolation and characterization of an NAD(P)H dehydrogenase from the cyanobacterium, Microcystis aeruginosa
1985
Viljoen, C.C.; Cloete, F.; Scott, W.E.
Biochim. Biophys. Acta
827
247-259
-
Isolation and characterization of NAD(P)H-dehydrogenases from seeds of the castor bean
1983
Viljoen, C.C.; Cloete, F.; Botes, D.P.; Kruger, H.
Phytochemistry
22
365-370
Catalytic and potentiometric characterization of E201D and E201Q mutants of Trypanosoma congolense trypanothione reductase
1995
Zheng, R.; Cenas, N.; Blanchard, J.S.
Biochemistry
34
12697-12703
-
Characteristics of a new catechol 1,2-oxygenase from Trichosporon cutaneum WY 2-2
1981
Itoh, M.
Agric. Biol. Chem.
45
2787-2796
Blue color, metal content, and substrate binding in 4-hydroxyphenylpyruvate dioxygenase from Pseudomonas sp. strain P. J. 874
1982
Lindstedt, S.; Rundgren, M.
J. Biol. Chem.
257
11922-11931
The prosthetic group of methylamine dehydrogenase from Pseudomonas AM1: evidence for a quinone structure
1980
De Beer, R.; Duine, J.A.; Frank, J.; Large, P.J.
Biochim. Biophys. Acta
622
370-374
Isolation and properties of reduced nicotinamide adenine dinucleotiderubredoxin oxidoreductase of Clostridium acetobutylicum
1979
Petitdemange, H.; Marczak, R.; Blusson, H.; Gay, R.
Biochem. Biophys. Res. Commun.
91
1258-1265
Ceruloplasmin: the copper transport protein with essential oxidase activity
1976
Frieden, E.; Hsieh, H.S.
Adv. Enzymol. Relat. Areas Mol. Biol.
44
187-236
Purification of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes
1976
Miyamoto, T.; Ogino, N.; Yamamoto, S.; Hayaishi, O.
J. Biol. Chem.
251
2629-2636
-
Ascorbic acid oxidase
1963
Stark, G.R.; Dawson, C.R.
The Enzymes, 2nd Ed (Boyer, P. D. , Lardy, H. , Myrbäck, K. , eds. )
8
297-311
-
Herbicide Metabolism in plants-I. Purification and properties of UDP-glucose:arylamine N-glucosyltransferase from soybean
1968
Frear, D.S.
Phytochemistry
7
381-390
-
Further observations on the magnesium-protoporphyrin IX monomethyl ester (oxidative) cyclase system
1993
Whyte, B.J.; Castelfranco, P.A.
Biochem. J.
290
355-359
-
Preparation and properties of an o-diphenol:O2 oxidoreductase from cocoa husk
1978
Chaplin, M.F.
Phytochemistry
17
1897-1899
Enzymatic formation of aminomalonic acid from ketomalonic acid
1958
Nagayama, H.; Muramatsu, M.; Shimura, K.
Nature
181
417-418
Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase
1992
Banasik, M.; Komura, H.; Shimoyama, M.; Ueda, K.
J. Biol. Chem.
267
1569-1575
-
D-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound
1982
Matsushita, K.; Ameyama, M.
Methods Enzymol.
89
149-154
Pyranose 2-dehydrogenase, a novel sugar oxidoreductase from the basidiomycete fungus Agaricus bisporus
1997
Volc, J.; Kubátová, E.; Wood, D.; Daniel, G.
Arch. Microbiol.
167
119-125
-
C-2 and C-3 oxidation of D-Glc, and C-2 oxidation of D-Gal by pyranose dehydrogenase from Agaricus bisporus
1998
Volc, J.; Sedmera, P.; Halada, P.; Pøikyrlová, V.; Daniel, G.
Carbohydr. Res.
310
151-156
Double oxidation of D-xylose to D-glycero-pentos-2,3-diulose (2,3-diketo-D-xylose) by pyranose dehydrogenase from the mushroom Agaricus bisporus
2000
Volc, J.; Sedmera, P.; Halada, P.; Pøikyrlová, V.; Haltrich, D.
Carbohydr. Res.
329
219-225
Screening of basidiomycete fungi for the quinone-dependent sugar C-2/C-3 oxidoreductase, pyranose dehydrogenase, and properties of the enzyme from Macrolepiota rhacodes
2001
Volc, J.; Kubátová, E.; Daniel, G.; Sedmera, P.; Haltrich, D.
Arch. Microbiol.
176
178-186
-
C-3 oxidation of non-reducing sugars by a fungal pyranose dehydrogenase: spectral characterization
2002
Volc, J.; Sedmera, P.; Halada, P.; Daniel, G.; Pøikyrlová, V.; Haltrich, D.
J. Mol. Catal. B
17
91-100
Preparation of bovine milk xanthine oxidase as a dehydrogenase form
1982
Nakamura, M.; Yamazaki, I.
J. Biochem.
92
1279-1286
Phenylacetyl-CoA:acceptor oxidoreductase, a membrane-bound molybdenum-iron-sulfur enzyme involved in anaerobic metabolism of phenylalanine in the denitrifying bacterium Thauera aromatica
1999
Rhee, S.K.; Fuchs, G.
Eur. J. Biochem.
262
507-515
Phenylacetyl-CoA:acceptor oxidoreductase, a new a-oxidizing enzyme that produces phenylglyoxylate. Assay, membrane localization, and differential production in Thauera aromatica
1998
Schneider, S.; Fuchs, G.
Arch. Microbiol.
169
509-516
Characterization of cellobiose dehydrogenase from the white rot fungi Trametes pubescens and Trametes villosa
2004
Ludwig, R.; Salamon, A.; Varga, J.; Zamocky, M.; Peterbauer, C.K.; Kulbe, K.D.; Haltrich, D.
Appl. Microbiol. Biotechnol.
64
213-222
Molecular cloning and characterization of an NADPH quinone oxidoreductase from Kluyveromyces marxianus
2003
Kim, W.H.; Chung, J.H.; Back, J.H.; Choi, J.; Cha, J.H.; Koh, H.Y.; Han, Y.S.
J. Biochem. Mol. Biol.
36
442-449
-
Stereoselective reduction of 4-benzoylpyridine by recombinant pig heart carbonyl reductase
2003
Shimada, H.; Fujiki, S.; Oginuma, M.; Asakawa, M.; Okawara, T.; Kato, K.; Yamamura, S.; Akita, H.; Hara, A.; Imamura, Y.
J. Mol. Catal. B
23
29-35
The chemical mechanism of action of glucose oxidase from Aspergillus niger
2004
Wohlfahrt, G.; Trivic, S.; Zeremski, J.; Pericin, D.; Leskovac, V.
Mol. Cell. Biochem.
260
69-83
Two-electron reduction of quinones by rat liver NAD(P)H:quinone oxidoreductase: quantitative structure-activity relationships
2002
Anusevicius, Z.; Sarlauskas, J.; Cenas, N.
Arch. Biochem. Biophys.
404
254-262
Structural and functional diversity of lysyl oxidase and the LOX-like proteins
2003
Molnar, J.; Fong, K.S.K.; He, Q.P.; Hayashi, K.; Kim, Y.; Fong, S.F.T.; Fogelgren, B.; Molnarne Szauter, K.; Mink, M.; Csiszar, K.
Biochim. Biophys. Acta
1647
220-224
Purification and characterization of NAD(P)H quinone reductase from the latex of Hevea brasiliensis Müll.-Arg. (Euphorbiaceae)
2002
Chareonthiphakorn, N.; Wititsuwannakul, D.; Golan-Goldhirsh, A.; Wititsuwannakul, R.
Phytochemistry
61
123-128
zeta-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene
2005
Breitenbach, J.; Sandmann, G.
Planta
220
785-793
Structure-activity study of the interaction of bioreductive benzoquinone alkylating agents with DNA topoisomerase II
2006
Hasinoff, B.B.; Wu, X.; Begleiter, A.; Guziec, L.J.; Guziec, F.Jr.; Giorgianni, A.; Yang, S.; Jiang, Y.; Yalowich, J.C.
Cancer Chemother. Pharmacol.
57
221-233
Effects of benzene metabolites on DNA cleavage mediated by human topoisomerase II alpha: 1,4-hydroquinone is a topoisomerase II poison
2005
Lindsey, R.H., Jr.; Bender, R.P.; Osheroff, N.
Chem. Res. Toxicol.
18
761-770
FAD semiquinone stability regulates single- and two-electron reduction of quinones by Anabaena PCC7119 ferredoxin:NADP+ reductase and its Glu301Ala mutant
2005
Anusevicius, Z.; Miseviciene, L.; Medina, M.; Martinez-Julvez, M.; Gomez-Moreno, C.; Cenas, N.
Arch. Biochem. Biophys.
437
144-150
Purification and characterization of succinate:menaquinone oxidoreductase from Corynebacterium glutamicum
2005
Kurokawa, T.; Sakamoto, J.
Arch. Microbiol.
183
317-324
Purification and cDNA cloning of chloroplastic monodehydroascorbate reductase from spinach
2005
Sano, S.; Tao, S.; Endo, Y.; Inaba, T.; Hossain, M.A.; Miyake, C.; Matsuo, M.; Aoki, H.; Asada, K.; Saito, K.
Biosci. Biotechnol. Biochem.
69
762-772
WrbA from Escherichia coli and Archaeoglobus fulgidus is an NAD(P)H:quinone oxidoreductase
2006
Patridge, E.V.; Ferry, J.G.
J. Bacteriol.
188
3498-3506
Quinone-induced enhancement of DNA cleavage by human topoisomerase IIalpha: adduction of cysteine residues 392 and 405
2007
Bender, R.P.; Ham, A.J.; Osheroff, N.
Biochemistry
46
2856-2864
Mutation of cysteine residue 455 to alanine in human topoisomerase IIalpha confers hypersensitivity to quinones: enhancing DNA scission by closing the N-terminal protein gate
2007
Bender, R.P.; Osheroff, N.
Chem. Res. Toxicol.
20
975-981
ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2.
2005
Gonzalez, C.F.; Ackerley, D.F.; Lynch, S.V.; Matin, A.
J. Biol. Chem.
280
22590-22595
-
Oxygen can be replaced by artificial electron acceptors in reactions catalyzed by alcohol oxidase
2007
Shumakovich, G.P.; Shleev, S.V.; Morozova, O.V.; Gonchar, M.V.; Yaropolov, A.I.
Appl. Biochem. Microbiol.
43
15-20
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production
2005
Stansen, C.; Uy, D.; Delaunay, S.; Eggeling, L.; Goergen, J.-L.; Wendisch, V.F.
Appl. Environ. Microbiol.
71
5920-5928
Alternative sites for proton entry from the cytoplasm to the quinone binding site in Escherichia coli succinate dehydrogenase
2008
Cheng, V.W.; Johnson, A.; Rothery, R.A.; Weiner, J.H.
Biochemistry
47
9107-9116
Properties of pyranose dehydrogenase purified from the litter-degrading fungus Agaricus xanthoderma
2007
Kujawa, M.; Volc, J.; Halada, P.; Sedmera, P.; Divne, C.; Sygmund, C.; Leitner, C.; Peterbauer, C.; Haltrich, D.
FEBS J.
274
879-894
L-galactono-gamma-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis
2008
Leferink, N.G.; van den Berg, W.A.; van Berkel, W.J.
FEBS J.
275
713-726
Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum
2008
Georgi, T.; Engels, V.; Wendisch, V.F.
J. Bacteriol.
190
963-971
Characterization of pyranose dehydrogenase from Agaricus meleagris and its application in the C-2 specific conversion of D-galactose
2008
Sygmund, C.; Kittl, R.; Volc, J.; Halada, P.; Kubatova, E.; Haltrich, D.; Peterbauer, C.K.
J. Biotechnol.
133
334-342
Comparing soluble and co-immobilized catalysts for 2-ketoaldose production by pyranose 2-oxidase and auxiliary enzymes
2008
Sukyai, P.; Rezic, T.; Lorenz, C.; Mueangtoom, K.; Lorenz, W.; Haltrich, D.; Ludwig, R.
J. Biotechnol.
135
281-290
Inhibition of jack bean urease by p-benzoquinone: elucidation of the role of thiols and reversibility of the process
2006
Kot, M.
J. Enzyme Inhib. Med. Chem.
21
697-701
Synthesis and evaluation of 3-aryloxymethyl-1,2-dimethylindole-4,7-diones as mechanism-based inhibitors of NAD(P)H:quinone oxidoreductase 1 (NQO1) activity
2007
Colucci, M.A.; Reigan, P.; Siegel, D.; Chilloux, A.; Ross, D.; Moody, C.J.
J. Med. Chem.
50
5780-5789
Role of nitric oxide in downregulation of cytochrome P450 1a1 and NADPH: Quinone oxidoreductase 1 by tumor necrosis factor-alpha and lipopolysaccharide
2007
Gharavi, N.; El-Kadi, A.O.
J. Pharm. Sci.
96
2795-2807
The NADPH quinone reductase MdaB confers oxidative stress resistance to Helicobacter hepaticus
2008
Hong, Y.; Wang, G.; Maier, R.J.
Microb. Pathog.
44
169-174
The Nrf2 transcription factor contributes to the induction of alpha-class GST isoenzymes in liver of acute cadmium or manganese intoxicated rats: comparison with the toxic effect on NAD(P)H:quinone reductase
2007
Casalino, E.; Calzaretti, G.; Landriscina, M.; Sblano, C.; Fabiano, A.; Landriscina, C.
Toxicology
237
24-34
Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS
2008
Giusti, S.; Converso, D.P.; Poderoso, J.J.; Fiszer de Plazas, S.
Eur. J. Neurosci.
27
123-131
The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae
1998
Larsson, C.; Pahlman, I.L.; Ansell, R.; Rigoulet, M.; Adler, L.; Gustafsson, L.
Yeast
14
347-357
Cellobiose dehydrogenase from the ligninolytic basidiomycete Ceriporiopsis subvermispora
2009
Harreither, W.; Sygmund, C.; Duenhofen, E.; Vicuna, R.; Haltrich, D.; Ludwig, R.
Appl. Environ. Microbiol.
75
2750-2757
-
Pyranose dehydrogenases: biochemical features and perspectives of technological applications
2009
Peterbauer, C.; Volc, J.
Appl. Microbiol. Biotechnol.
146
491-499
Human carbonyl reductase 4 is a mitochondrial NADPH-dependent quinone reductase
2008
Endo, S.; Matsunaga, T.; Kitade, Y.; Ohno, S.; Tajima, K.; El-Kabbani, O.; Hara, A.
Biochem. Biophys. Res. Commun.
377
1326-1330
Crystal structures of Pseudomonas syringae pv. tomato DC3000 quinone oxidoreductase and its complex with NADPH.
2009
Pan, X.; Zhang, H.; Gao, Y.; Li, M.; Chang, W.
Biochem. Biophys. Res. Commun.
390
597-602
Biocatalytic cascade oxidation using laccase for pyranose 2-oxidase regeneration
2009
Van Hecke, W.; Salaheddin, C.; Ludwig, R.; Dewulf, J.; Haltrich, D.; Van Langenhove, H.
Biores. Technol.
100
5566-5573
A thermostable triple mutant of pyranose 2-oxidase from Trametes multicolor with improved properties for biotechnological applications
2009
Spadiut, O.; Radakovits, K.; Pisanelli, I.; Salaheddin, C.; Yamabhai, M.; Tan, T.C.; Divne, C.; Haltrich, D.
Biotechnol. J.
4
525-534
Probing active-site residues of pyranose 2-oxidase from Trametes multicolor by semi-rational protein design
2009
Salaheddin, C.; Spadiut, O.; Ludwig, R.; Tan, T.C.; Divne, C.; Haltrich, D.; Peterbauer, C.
Biotechnol. J.
4
535-543
A novel NADPH:diamide oxidoreductase activity in Arabidopsis thaliana P1 zeta-crystallin
2000
Mano, J.; Babiychuk, E.; Belles-Boix, E.; Hiratake, J.; Kimura, A.; Inze, D.; Kushnir, S.; Asada, K.
Eur. J. Biochem.
267
3661-3671
Improving thermostability and catalytic activity of pyranose 2-oxidase from Trametes multicolor by rational and semi-rational design
2009
Spadiut, O.; Leitner, C.; Salaheddin, C.; Varga, B.; Vertessy, B.G.; Tan, T.C.; Divne, C.; Haltrich, D.
FEBS J.
276
776-792
Characterization of a flavin reductase from a thermophilic dibenzothiophene-desulfurizing bacterium, Bacillus subtilis WU-S2B
2009
Takahashi, S.; Furuya, T.; Ishii, Y.; Kino, K.; Kirimura, K.
J. Biosci. Bioeng.
107
38-41
Engineering of pyranose 2-oxidase: improvement for biofuel cell and food applications through semi-rational protein design
2009
Spadiut, O.; Pisanelli, I.; Maischberger, T.; Peterbauer, C.; Gorton, L.; Chaiyen, P.; Haltrich, D.
J. Biotechnol.
139
250-257
Pyranose 2-oxidase from Phanerochaete chrysosporium--expression in E. coli and biochemical characterization
2009
Pisanelli, I.; Kujawa, M.; Spadiut, O.; Kittl, R.; Halada, P.; Volc, J.; Mozuch, M.D.; Kersten, P.; Haltrich, D.; Peterbauer, C.
J. Biotechnol.
142
97-106
-
Highly efficient and versatile anodes for biofuel cells based on cellobiose dehydrogenase from Myriococcum thermophilum
2008
Tasca, F.; Gorton, L.; Harreither, W.; Haltrich, D.; Ludwig, R.; Nöll, G.
J. Phys. Chem. C Nanomater. Interfaces
112
13668-13673
Effect of quinone on the fluorescence decay dynamics of endogenous flavin bound to bacterial luciferase
2009
Vetrova, E.V.; Kudryasheva, N.S.; Cheng, K.H.
Biophys. Chem.
141
59-65
Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3
2009
Zhang, J.J.; Liu, H.; Xiao, Y.; Zhang, X.E.; Zhou, N.Y.
J. Bacteriol.
191
2703-2710
Catalytic properties of an expressed and purified higher plant type zeta-carotene desaturase from Capsicum annuum
1999
Breitenbach, J.; Kuntz, M.; Takaichi, S.; Sandmann, G.
Eur. J. Biochem.
265
376-383
A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation
2000
Josse, E.M.; Simkin, A.J.; Gaffé, J.; Labouré, A.M.; Kuntz, M.; Carol, P.
Plant Physiol.
123
1427-1436
Heterologous expression of an Agaricus meleagris pyranose dehydrogenase-encoding gene in Aspergillus spp. and characterization of the recombinant enzyme
2010
Pisanelli, I.; Kujawa, M.; Gschnitzer, D.; Spadiut, O.; Seiboth, B.; Peterbauer, C.
Appl. Microbiol. Biotechnol.
86
599-606
Structural and kinetics properties of a mutated phytoene desaturase from Rubrivivax gelatinosus with modified product specificity
2011
Stickforth, P.; Sandmann, G.
Arch. Biochem. Biophys.
505
118-122
Localized deposition of Au nanoparticles by direct electron transfer through cellobiose Ddhydrogenase
2010
Malel, E.; Ludwig, R.; Gorton, L.; Mandler, D.
Chemistry
16
11697-11706
Carotene desaturation is linked to a respiratory redox pathway in Narcissus pseudonarcissus chromoplast membranes. Involvement of a 23-kDa oxygen-evolving-complex-like protein
1995
Nievelstein, V.; Vandekerchove, J.; Tadros, M.H.; Lintig, J.V.; Nitschke, W.; Beyer, P.
Eur. J. Biochem.
233
864-872
Importance of the gating segment in the substrate-recognition loop of pyranose 2-oxidase
2010
Spadiut, O.; Tan, T.C.; Pisanelli, I.; Haltrich, D.; Divne, C.
FEBS J.
277
2892-2909
Alteration of product specificity of Rhodobacter sphaeroides phytoene desaturase by directed evolution
2001
Wang, C.W.; Liao, J.C.
J. Biol. Chem.
276
41161-41164
Characterisation of recombinant pyranose oxidase from the cultivated mycorrhizal basidiomycete Lyophyllum shimeji (hon-shimeji)
2010
Salaheddin, C.; Takakura, Y.; Tsunashima, M.; Stranzinger, B.; Spadiut, O.; Yamabhai, M.; Peterbauer, C.K.; Haltrich, D.
Microb. Cell Fact.
9
57
Preliminary X-ray crystallographic analysis of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans
2009
Zhang, Y.; Cherney, M.M.; Solomonson, M.; Liu, J.; James, M.N.; Weiner, J.H.
Acta Crystallogr. Sect. F
F65
839-842
Characterization of the ubiquinone binding site in the alternative NADH-quinone oxidoreductase of Saccharomyces cerevisiae by photoaffinity labeling
2010
Murai, M.; Yamashita, T.; Senoh, M.; Mashimo, Y.; Kataoka, M.; Kosaka, H.; Matsuno-Yagi, A.; Yagi, T.; Miyoshi, H.
Biochemistry
49
2973-2980
The rotenone-insensitive reduction of quinones and nitrocompounds by mitochondrial NADH:ubiquinone reductase
1991
Bironaite, D.; Cenas, N.; Kulys, J.
Biochim. Biophys. Acta
1060
203-209
NADPH-specific quinone reductase is induced by 2-methylene-4-butyrolactone in Escherichia coli
1996
Hayashi, M.; Ohzeki, H.; Shimada, H.; Unemoto, T.
Biochim. Biophys. Acta
1273
165-170
Sulfide-quinone reductase from Rhodobacter capsulatus: requirement for growth, periplasmic localization, and extension of gene sequence analysis
1999
Schuetz, M.; Maldener, I.; Griesbeck, C.; Hauska, G.
J. Bacteriol.
181
6516-6523
Fluorescence induction of Photosystem II membranes shows the steps till reduction and protonation of the quinone pool
2003
Heredia, P.; De Las Rivas, J.
J. Plant Physiol.
160
1499-1506
A new structure-based classification of sulfide:quinone oxidoreductases
2010
Marcia, M.; Ermler, U.; Peng, G.; Michel, H.
Proteins
78
1073-1083
First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G
2012
Li, M.; Shandilya, S.M.; Carpenter, M.A.; Rathore, A.; Brown, W.L.; Perkins, A.L.; Harki, D.A.; Solberg, J.; Hook, D.J.; Pandey, K.K.; Parniak, M.A.; Johnson, J.R.; Krogan, N.J.; Somasundaran, M.; Ali, A.; Schiffer, C.A.; Harris, R.S.
ACS Chem. Biol.
7
506-517
An NAD(P)H-nicotine blue oxidoreductase is part of the nicotine regulon and may protect Arthrobacter nicotinovorans from oxidative stress during nicotine catabolism
2007
Mihasan, M.; Chiribau, C.B.; Friedrich, T.; Artenie, V.; Brandsch, R.
Appl. Environ. Microbiol.
73
2479-2485
Catalytic properties and reaction mechanism of the CrtO carotenoid ketolase from the cyanobacterium Synechocystis sp. PCC 6803
2013
Breitenbach, J.; Gerjets, T.; Sandmann, G.
Arch. Biochem. Biophys.
529
86-91
Purification and characterization of malate:quinone oxidoreductase from thermophilic Bacillus sp. PS3
2013
Kabashima, Y.; Sone, N.; Kusumoto, T.; Sakamoto, J.
J. Bioenerg. Biomembr.
45
131-136
Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation
2012
Sygmund, C.; Kracher, D.; Scheiblbrandner, S.; Zahma, K.; Felice, A.K.; Harreither, W.; Kittl, R.; Ludwig, R.
Appl. Environ. Microbiol.
78
6161-6171
Pyranose dehydrogenases: Biochemical features and perspectives of technological applications
2010
Peterbauer, C.; Volc, J.
Appl. Microbiol. Biotechnol.
85
837-848
Heterologous expression and biochemical characterization of novel pyranose 2-oxidases from the ascomycetes Aspergillus nidulans and Aspergillus oryzae
2012
Pisanelli, I.; Wuehrer, P.; Reyes-Dominguez, Y.; Spadiut, O.; Haltrich, D.; Peterbauer, C.
Appl. Microbiol. Biotechnol.
93
1157-1166
Simple and efficient expression of Agaricus meleagris pyranose dehydrogenase in Pichia pastoris
2012
Sygmund, C.; Gutmann, A.; Krondorfer, I.; Kujawa, M.; Glieder, A.; Pscheidt, B.; Haltrich, D.; Peterbauer, C.; Kittl, R.
Appl. Microbiol. Biotechnol.
94
695-704
ArsH from the cyanobacterium Synechocystis sp. PCC 6803 is an efficient NADPH-dependent quinone reductase
2012
Hervas, M.; Lopez-Maury, L.; Leon, P.; Sanchez-Riego, A.M.; Florencio, F.J.; Navarro, J.A.
Biochemistry
51
1178-1187
Galactonolactone oxidoreductase from Trypanosoma cruzi employs a FAD cofactor for the synthesis of vitamin C
2011
Kudryashova, E.V.; Leferink, N.G.; Slot, I.G.; van Berkel, W.J.
Biochim. Biophys. Acta
1814
545-552
Sepiapterin Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells
2013
Yang, S.; Jan, Y.H.; Gray, J.P.; Mishin, V.; Heck, D.E.; Laskin, D.L.; Laskin, J.D.
J. Biol. Chem.
288
19221-19237
Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide production
2013
Sygmund, C.; Santner, P.; Krondorfer, I.; Peterbauer, C.K.; Alcalde, M.; Nyanhongo, G.S.; Guebitz, G.M.; Ludwig, R.
Microb. Cell Fact.
12
38
Reduction of quinones and phenoxy radicals by extracellular glucose dehydrogenase from Glomerella cingulata suggests a role in plant pathogenicity
2011
Sygmund, C.; Klausberger, M.; Felice, A.K.; Ludwig, R.
Microbiology
157
3203-3212
Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate
2010
Kato, O.; Youn, J.; Stansen, K.; Matsui, D.; Oikawa, T.; Wendisch, V.
BMC Microbiol.
10
321
Benzoquinones as inhibitors of botulinum neurotoxin serotype A
2014
Bremer, P.; Hixon, M.; Janda, K.
Bioorg. Med. Chem.
22
3971-3981
Reaction of the molybdenum- and copper-containing carbon monoxide dehydrogenase from Oligotropha carboxydovorans with quinones
2011
Wilcoxen, J.; Zhang, B.; Hille, R.
Biochemistry
50
1910-1916
Orbital contributions to CO oxidation in Mo-Cu carbon monoxide dehydrogenase
2014
Stein, B.; Kirk, M.
Chem. Commun. (Camb.)
50
1104-1106
The aerobic CO dehydrogenase from Oligotropha carboxidovorans
2015
Hille, R.; Dingwall, S.; Wilcoxen, J.
J. Biol. Inorg. Chem.
20
243-251
Characterization of three pyranose dehydrogenase isoforms from the litter-decomposing basidiomycete Leucoagaricus meleagris (syn. Agaricus meleagris)
2017
Graf, M.M.; Weber, S.; Kracher, D.; Kittl, R.; Sygmund, C.; Ludwig, R.; Peterbauer, C.; Haltrich, D.
Appl. Microbiol. Biotechnol.
101
2879-2891
Pyranose dehydrogenase from Agaricus campestris and Agaricus xanthoderma: characterization and applications in carbohydrate conversions
2013
Staudigl, P.; Krondorfer, I.; Haltrich, D.; Peterbauer, C.K.
Biomolecules
3
535-552
Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations
2015
Kracher, D.; Zahma, K.; Schulz, C.; Sygmund, C.; Gorton, L.; Ludwig, R.
FEBS J.
282
3136-3148
Electrochemical characterization of the pyranose 2-oxidase variant N593C shows a complete loss of the oxidase function with full preservation of substrate (dehydrogenase) activity
2016
Brugger, D.; Suetzl, L.; Zahma, K.; Haltrich, D.; Peterbauer, C.K.; Stoica, L.
Phys. Chem. Chem. Phys.
18
32072-32077
Engineering pyranose 2-oxidase for modified oxygen reactivity
2014
Brugger, D.; Krondorfer, I.; Shelswell, C.; Huber-Dittes, B.; Haltrich, D.; Peterbauer, C.K.
PLoS ONE
9
e109242
Engineering of pyranose dehydrogenase for increased oxygen reactivity
2014
Krondorfer, I.; Lipp, K.; Brugger, D.; Staudigl, P.; Sygmund, C.; Haltrich, D.; Peterbauer, C.K.
PLoS ONE
9
e91145
Transcription analysis of pyranose dehydrogenase from the basidiomycete Agaricus bisporus and characterization of the recombinantly expressed enzyme
2016
Gonaus, C.; Kittl, R.; Sygmund, C.; Haltrich, D.; Peterbauer, C.
Protein Expr. Purif.
119
36-44
Proteomics of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates
2015
Goris, T.; Schiffmann, C.L.; Gadkari, J.; Schubert, T.; Seifert, J.; Jehmlich, N.; von Bergen, M.; Diekert, G.
Sci. Rep.
5
13794
-
Characterization of a bacterial pyranose 2-oxidase from Arthrobactersiccitolerans
2016
Mendesa, S.; Banhaa, C.; Madeiraa, J.; Santosa, M.; Mirandaa, V.; Manzanerab, M.; Venturaa, M.R.; van Berkel,W.J.H.; Martinsa, L.O.
J. Mol. Catal. B
133
s34-S43
Specificity of glucose oxidase from Penicillium funiculosum 46.1 towards some redox mediators
2013
Semashko, T.; Mikhailova, R.; Ramanaviciene, A.; Ramanavicius, A.
Appl. Biochem. Biotechnol.
171
1739-1749
The gene cluster for para-nitrophenol catabolism is responsible for 2-chloro-4-nitrophenol degradation in Burkholderia sp. strain SJ98
2014
Min, J.; Zhang, J.J.; Zhou, N.Y.
Appl. Environ. Microbiol.
80
6212-6222
Reduction of quinones and nitroaromatic compounds by Escherichia coli nitroreductase A (NfsA) Characterization of kinetics and substrate specificity
2017
Valiauga, B.; Williams, E.M.; Ackerley, D.F.; Cenas, N.
Arch. Biochem. Biophys.
614
14-22
Characterization of a cellobiose dehydrogenase from Humicola insolens
1998
Schou, C.; Christensen, M.; Schülein, M.
Biochem. J.
330
565-571
A new paradigm for electron transfer through Escherichia coli nitrate reductase A
2014
Fedor, J.; Rothery, R.; Weiner, J.
Biochemistry
53
4549-4556
The vertebrate homologue of sulfide-quinone reductase in mammalian mitochondria
2014
Ackermann, M.; Kubitza, M.; Hauska, G.; Pina, A.L.
Cell Tissue Res.
358
779-792
Genes involved in degradation of para-nitrophenol are differentially arranged in form of non-contiguous gene clusters in Burkholderia sp. strain SJ98
2013
Vikram, S.; Pandey, J.; Kumar, S.; Raghava, G.P.
PLoS ONE
8
e84766
Improving kinetic or thermodynamic stability of an azoreductase by directed evolution
2014
Brissos, V.; Goncalves, N.; Melo, E.; Martins, L.
PLoS ONE
9
e87209
-
Molecular recognition of naphthoquinone-containing compounds against human DNA topoisomerase IIalpha ATPase domain A molecular modeling study
2017
Mahalapbutr, P.; Chusuth, P.; Kungwan, N.; Chavasiri, W.; Wolschann, P.; Rungrotmongkol, T.
J. Mol. Liq.
247
374-385
Prosper, P.M.; Winger, A.M.; Hecker, A.; Hirasawa, M. Knaff, D.B.; Gans, P.; Jacquot, J.P.; Navaza, A.; Haouz, A.; Rouhier, N. In the absence of thioredoxins, what are the reductants for peroxiredoxins in Thermotoga maritima
2013
Couturier, J.
Antioxid. Redox Signal.
18
1613-1622
Oxidoreductase disulfide bond proteins DsbA and DsbB form an active redox pair in Chlamydia trachomatis, a bacterium with disulfide dependent infection and development
2019
Christensen, S.; Halili, M.; Strange, N.; Petit, G.; Huston, W.; Martin, J.; McMahon, R.
PLoS ONE
14
e0222595
Structural insights into inhibitor binding to a fungal ortholog of aspartate semialdehyde dehydrogenase
2018
Dahal, G.P.; Viola, R.E.
Biochem. Biophys. Res. Commun.
503
2848-2854
Characterization of pyranose oxidase variants for bioelectrocatalytic applications
2020
Abrera, A.; Chang, H.; Kracher, D.; Ludwig, R.; Haltrich, D.
Biochim. Biophys. Acta
1868
140335
Aspartate semialdehyde dehydrogenase inhibition suppresses the growth of the pathogenic fungus Candida albicans
2020
Dahal, G.P.; Launder, D.; McKeone, K.M.M.; Hunter, J.P.; Conti, H.R.; Viola, R.E.
Drug Dev. Res.
81
736-744
Ligand-based design, synthesis and biochemical evaluation of potent and selective inhibitors of Schistosoma mansoni dihydroorotate dehydrogenase
2019
Calil, F.A.; David, J.S.; Chiappetta, E.R.C.; Fumagalli, F.; Mello, R.B.; Leite, F.H.A.; Castilho, M.S.; Emery, F.S.; Nonato, M.C.
Eur. J. Med. Chem.
167
357-366
alpha-Ketothioamide derivatives a promising tool to interrogate phosphoglycerate dehydrogenase (PHGDH)
2017
Ravez, S.; Corbet, C.; Spillier, Q.; Dutu, A.; Robin, A.D.; Mullarky, E.; Cantley, L.C.; Feron, O.; Frederick, R.
J. Med. Chem.
60
1591-1597
Heterologous expression of Phanerochaete chrysosporium cellobiose dehydrogenase in Trichoderma reesei
2021
Wohlschlager, L.; Csarman, F.; Chang, H.; Fitz, E.; Seiboth, B.; Ludwig, R.
Microb. Cell Fact.
20
2
-
Bio catalytic oxidation of sulphide laden wastewater from leather industry using sulfide Quinone oxidoreductase immobilized bio reactor
2020
Mannacharaju, M.; Chittybabu, S.; Sheikh John, S.; Somasundaram, S.; Ganesan, S.
Biocatal. Biotransform.
38
123-137
Kinetic characterization of PA1225 from Pseudomonas aeruginosa PAO1 reveals a new NADPH quinone reductase
2018
Flores, E.; Gadda, G.
Biochemistry
57
3050-3058
Kinetic investigation of a presumed nitronate monooxygenase from Pseudomonas aeruginosa PAO1 establishes a new class of NAD(P)H quinone reductases
2019
Reis, R.A.G.; Salvi, F.; Williams, I.; Gadda, G.
Biochemistry
58
2594-2607
A novel Xanthomonas citri subsp. citri NADPH quinone reductase involved in salt stress response and virulence
2020
Barcarolo, M.; Garavaglia, B.; Gottig, N.; Ceccarelli, E.; Catalano-Dupuy, D.; Ottado, J.
Biochim. Biophys. Acta
1864
129514
Discovery of a first-in-class inhibitor of sulfide quinone oxidoreductase that protects against adverse cardiac remodeling and heart failure
2022
Jackson, M.R.; Cox, K.D.; Baugh, S.D.P.; Wakeen, L.; Rashad, A.A.; Lam, P.Y.S.; Polyak, B.; Jorns, M.S.
Cardiovasc. Res.
118
1771-1784
A catalytic trisulfide in human sulfide quinone oxidoreductase catalyzes coenzyme A persulfide synthesis and inhibits butyrate oxidation
2019
Landry, A.P.; Moon, S.; Kim, H.; Yadav, P.K.; Guha, A.; Cho, U.S.; Banerjee, R.
Cell Chem. Biol.
26
1515-1525.e4
Structural characterization of the Xi class glutathione transferase from the haloalkaliphilic archaeon Natrialba magadii
2019
Di Matteo, A.; Federici, L.; Masulli, M.; Carletti, E.; Santorelli, D.; Cassidy, J.; Paradisi, F.; Di Ilio, C.; Allocati, N.
Front. Microbiol.
10
9
12-Oxophytodienoic acid reductase 3 (OPR3) functions as NADPH-dependent alpha,beta-ketoalkene reductase in detoxification and monodehydroascorbate reductase in redox homeostasis
2020
Maynard, D.; Kumar, V.; Sproi, J.; Dietz, K.J.
Plant Cell Physiol.
61
584-595