Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
2-oxomethylthiobutyrate + NADH + H+ = ? + NAD+
-
4-(methylsulfanyl)-2-oxobutanoate + NADH + H+ = (2R)-2-hydroxy-4-(methylsulfanyl)butanoate + NAD+
-
4-methylthio-2-oxobutanoate + H2O2 = ?
-
2-oxo-4-methylthiobutanoate + NAD+ + CoA = 3-methylthiopropionyl-CoA + NADH + CO2
-
2-oxo-4-methyl-thio-butyrate + CoA + 2 methyl viologen = ?
-
2-oxo-4-methylthiobutyrate + CoA + 2 methyl viologen = 3-methylthiopropanoyl-CoA + CO2 + 2 reduced methyl viologen + 2 H+
-
4-methylthio-2-oxobutanoate + CoA + oxidized ferredoxin = 3-methylthio-2-oxopropanoyl-CoA + CO2 + reduced ferredoxin
-
2-keto-4-methylthiobutyrate + CoA + oxidized ferredoxin = CO2 + reduced ferredoxin + 3-methylthiopropionyl-CoA
-
4-methylthio-2-oxobutanoate + NH3 + NADPH + H+ = D-methionine + NADP+
-
2-oxo-4-methylthiobutanoate + NH3 + NADH = L-Met + NAD+ + H2O
-
2-keto-gamma-methylthiobutanoate + NH3 + NADH = L-Met + H2O + NAD+
-
4-(methylsulfanyl)-2-oxobutanoate + NH3 + NADH + H+ = L-methionine + H2O + NAD+
-
4-methylthio-2-oxobutyrate + NH3 + NADH = L-Met + H2O + NAD+
-
5,10-methylenetetrahydrofolate + 2-oxo-4-methylthiobutyrate = tetrahydrofolate + ?
-
acetyl-CoA + 4-methylthio-2-oxobutyrate + H2O = ?
-
2-oxo-4-methylthiobutanoate + acetyl-CoA + H2O = 2-(2'-methylthio)ethylmalate + CoA
-
4-methylthio-2-oxobutanoate + acetyl-CoA + H2O = 2-(2'-methylthioethyl)-malate + CoA
-
4-methylthio-2-oxobutanoate + acetyl-CoA + H2O = 2-(2'-methylthioethyl)malate + CoA
-
4-methylthio-2-oxobutyrate + acetyl-CoA + H2O = 2-(2'-methylthioethyl)malate + CoA
-
L-glutamine + 4-(methylsulfanyl)-2-oxobutanoate = 2-oxoglutaramate + L-methionine
-
L-histidine + 4-(methylsulfanyl)-2-oxobutanoate = 3-((1H-imidazo)-4-yl)-2-oxopropanoate + L-methionine
-
L-asparagine + 4-methylsulfanyl-2-oxobutanoate = 2-oxosuccinamate + L-methionine
-
L-glutamine + 4-methylsulfanyl-2-oxobutanoate = 2-oxoglutaramate + L-methionine
L-phenylalanine + 4-methylthio-2-oxobutanoate = phenylpyruvate + 2-amino-4-methylthiobutanoate
L-tryptophan + 2-oxomethylthiobutanoate = (indol-3-yl)pyruvate + 2-aminomethylthiobutanoate
-
4-methylsulfanyl-2-oxobutanoate + L-glutamate = L-methionine + 2-oxoglutarate
-
L-2-aminobutanoate + 4-methylthio-2-oxo-butanoate = 2-oxobutanoate + L-methionine
-
L-glutamate + 4-methylthio-2-oxo-butanoate = 2-oxoglutarate + L-methionine
-
L-isoleucine + 4-methylthio-2-oxo-butanoate = 3-methyl-2-oxopentanoate + L-methionine
-
L-leucine + 4-methylthio-2-oxo-butanoate = 4-methyl-2-oxopentanoate + L-methionine
-
L-phenylalanine + 4-methylthio-2-oxo-butanoate = phenylpyruvate + L-methionine
-
L-valine + 4-methylthio-2-oxo-butanoate = 2-oxoisopentanoate + L-methionine
-
4-methylthio-2-oxobutanoate + L-glutamate = L-methionine + 2-oxoglutarate
-
L-isoleucine + 4-methylthio-2-oxobutyrate = 3-methyl-2-oxopentanoate + L-methionine
-
L-alanine + 4-methylthio-2-oxobutyrate = pyruvate + L-methionine
-
4-methylthio-2-oxobutanoate + L-glutamate = ?
-
L-tyrosine + 4-methylthio-2-oxobutanoate = ?
-
L-tyrosine + alpha-ketomethiobutyrate = ?
-
alpha-ketomethiobutyrate + L-glutamine = 2-oxoglutaramide + L-methionine
-
alpha-ketomethiobutyrate + L-phenylalanine = L-methionine + phenylpyruvate
-
alpha-ketomethiobutyrate + L-tryptophan = L-methionine + indolepyruvate
-
alpha-ketomethiobutyrate + L-tyrosine = L-methionine + hydroxyphenylpyruvate
-
alpha-ketomethiobutyrate + phenylalanine = methionine + phenylpyruvate
-
alpha-ketomethiobutyrate + tryptophan = methionine + indolepyruvate
-
alpha-ketomethiobutyrate + tyrosine = methionine + hydroxyphenylpyruvate
-
arginine + alpha-ketomethiobutyrate = ? + methionine
-
L-alanine + alpha-ketomethiobutyrate = pyruvate + L-methionine
-
L-aspartate + alpha-ketomethiobutyrate = oxaloacetate + L-methionine
-
L-cysteine + alpha-ketomethiobutyrate = 2-oxo-3-thiopropanoate + L-methionine
-
L-histidine + alpha-ketomethiobutyrate = 3-(1H-imidazol-4-yl)-2-oxopropanoate + L-methionine
-
L-isoleucine + alpha-ketomethiobutyrate = 3-methyl-2-oxo-pentanoate + L-methionine
-
L-lysine + alpha-ketomethiobutyrate = 2-oxo-6-amino-hexanoate + L-methionine
-
L-valine + alpha-ketomethiobutyrate = 3-methyl-2-oxo-butanoate + L-methionine
-
L-phenylalanine + 2-oxo-4-methylthiobutyrate = phenylpyruvate + L-methionine
-
L-kynurenine + 4-methylsulfanyl-2-oxobutanoate = 4-(2-aminophenyl)-2,4-dioxobutanoate + L-methionine
-
L-glutamine + 2-oxo-4-methiolbutyrate = 2-oxoglutaramate + L-methionine
-
5-S-L-cysteinyl-L-DOPA + 4-(methylsulfanyl)-2-oxobutanoate = ?
-
5-S-L-cysteinyldopamine + 4-(methylsulfanyl)-2-oxobutanoate = ?
-
L-3-(1-naphthyl)alanine + 4-(methylsulfanyl)-2-oxobutanoate = ?
-
L-3-(2-naphthyl)alanine + 4-(methylsulfanyl)-2-oxobutanoate = ?
-
L-DOPA + 4-(methylsulfanyl)-2-oxobutanoate = ?
-
L-kynurenine + 4-(methylsulfanyl)-2-oxobutanoate = ?
-
L-phenylalanine + 4-(methylsulfanyl)-2-oxobutanoate = ?
-
L-phenylalanine + 4-(methylsulfanyl)-2-oxobutanoate = phenylpyruvate + L-methionine
-
L-tyrosine + 4-(methylsulfanyl)-2-oxobutanoate = ?
-
S-(1,1,2,2-tetrafluoroethyl)-L-cysteine + 4-(methylsulfanyl)-2-oxobutanoate = ?
-
S-(1,2-dichlorovinyl)-L-cysteine + 4-(methylsulfanyl)-2-oxobutanoate = ?
-
Se-methyl-L-selenocysteine + 4-(methylsulfanyl)-2-oxobutanoate = ?
-
L-glutamine + 4-methylsulfanyl-2-oxobutanoate = 2-oxoglutaramate + L-methionine
-
L-phenylalanine + 4-methylsulfanyl-2-oxobutanoate = phenylpyruvate + L-methionine
-
L-kynurenine + 2-oxo-4-methylthiobutyrate = ?
-
L-kynurenine + 2-oxo-4-methylthiobutyrate = kynurenate + L-methionine
-
L-kynurenine + 2-oxo-4-methylthiobutyrate = kynurenic acid + L-methionine
-
L-kynurenine + 2-oxomethylthiobutyric acid = ?
-
L-kynurenine + 4-methylsulfanyl-2-oxobutyrate = kynurenic acid + L-methionine + H2O
-
L-glutamine + 4-methylsulfanyl-2-oxobutanoate = 2-oxoglutarate + L-methionine
-
L-methionine + 4-methylsulfanyl-2-oxobutanoate = 4-methylsulfanyl-2-oxobutanoate + L-methionine
-
S-(4-bromophenyl)-L-cysteine + 4-methylsulfanyl-2-oxobutanoate = S-(4-bromophenyl)-3-thiopyruvate + methionine
-
2-oxo-4-methylthiobutanoate + an L-amino acid = L-methionine + a 2-oxo acid
-
2-oxo-4-methylthiobutanoate + L-glutamate = L-methionine + 2-oxoglutarate
-
2-oxo-4-methylthiobutanoate + L-glutamate = L-methionine + ?
-
2-oxo-4-methylthiobutanoate + L-isoleucine = L-methionine + 2-oxo-methylvalerate
-
2-oxo-4-methylthiobutanoate + L-leucine = L-methionine + 2-oxo-isocaproate
-
2-oxo-4-methylthiobutanoate + L-phenylalanine = L-methionine + 2-oxo-3-phenylpropanoate
-
2-oxo-4-methylthiobutanoate + L-phenylalanine = L-methionine + ?
-
2-oxo-4-methylthiobutanoate + L-tryptophan = L-methionine + 3-(1H-indol-3-yl)-2-oxopropanoate
-
2-oxo-4-methylthiobutanoate + L-tyrosine = L-methionine + 4-hydroxyhenylpyruvate
-
2-oxo-4-methylthiobutanoate + L-valine = L-methionine + 2-oxo-isovalerate
-
4-methylthio-2-oxobutanoate = 3-methylthiopropanal + CO2
-
4-methylthio-2-oxobutanoate = beta-methiopropanal + CO2
-
4-methylthio-2-oxobutanoic acid = ?
-
4-methylthio-2-oxobutanoate = 3-(methylsulfanyl)propanal + CO2
-
4-(methylsulfanyl)-2-oxobutanoic acid = 3-(methylsulfanyl)-propanal + CO2
-
4-methylthio-2-oxobutanoate = 3-methylthiopropanal + CO2
-
4-methylthio-2-oxobutanoic acid = 3-methylthiopropanal + CO2
-
4-(methylsulfanyl)-2-oxobutanoate + benzyl [(2R)-1-oxopropan-2-yl]carbamate = ?
-
4-(methylsulfanyl)-2-oxobutanoate + benzyl [(2S)-1-oxopropan-2-yl]carbamate = ?
-
alpha-keto-gamma-methiobutyric acid + L-aspartate = ?
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
DL-2-hydroxy-4-methylmercaptobutyrate + 2,6-dichlorophenolindophenol = 2-oxo-4-methylmercaptobutyrate + reduced 2,6-dichlorophenolindophenol
-
DL-2-hydroxy-4-methylthiobutanoic acid + 2,6-dichlorophenolindophenol = 2-oxo-4-methylthiobutanoic acid + reduced 2,6-dichlorophenolindophenol
-
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 = 4-(methylsulfanyl)-2-oxobutanoate + formate
-
1,2-dihydroxy-5-(methylthio)pent-1-en-3-one + O2 = 4-(methylthio)-2-oxobutanoate + formate
-
1,2-dihydroxy-5-(methylthio)pent-1-en-3-one + O2 = 4-methylthio-2-ketobutyrate + formate
-
1,2-dihydroxy-5-(methylthio)pent-1-en-3-one + O2 = 2-keto-4-methyl thiobutyrate + formate
1,2-dihydroxy-5-(methylthio)pent-1-en-3-one + O2 = 2-keto-4-methyl thiobutyrate + formate
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 = 4-(methylsulfanyl)-2-oxobutanoate + formate
1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 = 4-(methylsulfanyl)-2-oxobutanoate + formate
1,2-dihydroxy-5-(methylthio)pent-1-en-3-one + O2 = 4-(methylthio)-2-oxobutanoate + formate
1,2-dihydroxy-5-(methylthio)pent-1-en-3-one + O2 = 4-(methylthio)-2-oxobutanoate + formate
L-Met + O2 = 2-oxo-methiolbutyrate + NH3 + H2O2
-
L-methionine + H2O + NAD+ = 4-(methylsulfanyl)-2-oxobutanoate + NH3 + NADH
-
L-methionine + H2O + NAD+ = (4-methylsulfanyl)-2-oxobutanoate + NH3 + NADH
-
L-Met + H2O + NAD+ = 2-oxo-4-methylthiobutanoate + NH3 + NADH
-
L-methionine + H2O + NAD+ = (4-methylsulfanyl)-2-oxobutanoate + NH3 + NADH
-
L-methionine + H2O + NAD+ = 4-(methylthio)-2-oxobutanoic acid + NH3 + NADH
-
L-Met + H2O + NAD+ = 4-methylthio-2-oxobutyrate + NH3 + NADH + H+
-
D-methionine + H2O + O2 = 4-(methylsulfanyl)-2-oxobutanoic acid + NH3 + H2O2
-
L-methionine + H2O + O2 = 4-(methylsulfanyl)-2-oxobutanoate + NH3 + H2O2
-
DL-methionine + H2O + O2 = 4-methylsulfanyl-2-oxobutanoate + NH3 + H2O2
-
L-Met + H2O + O2 = 4-methylsulfanyl-2-oxobutanoate + NH3 + H2O2
-
L-methionine + H2O + O2 = 4-methylsulfanyl-2-oxobutanoate + NH3 + H2O2
-
L-Met + H2O + O2 = 4-methylthio-2-oxobutanoate + NH3 + H2O2
-
L-methionine + H2O + O2 = 4-methylthio-2-oxobutanoate + NH3 + H2O2
-
D-methionine + H2O + O2 = 2-oxo-4-methylthiobutyric acid + NH3 + H2O2
-
D-methionine + 2,6-dichloroindophenol = 4-methylsulfanyl-2-oxobutanoate + reduced 2,6-dichloroindophenol
-
D-methionine + H2O + O2 = 4-methylsulfanyl-2-oxobutanoate + NH3 + H2O2
-
D-Met + H2O + O2 = 4-methylthio-2-oxobutanoate + NH3 + H2O2
-
D-methionine + H2O + O2 = 4-methylthio-2-oxobutanoate + NH3 + H2O2
-
D-Met + H2O + O2 = 4-methylthio-2-oxobutanoic acid + NH3 + H2O2
-
D-methionine + H2O + O2 = 4-methylthio-2-oxobutanoic acid + NH3 + H2O2
-
D-methionine + oxidized 2,6-dichloroindophenol + H2O = 4-methylsulfanyl-2-oxobutanoate + NH3 + reduced 2,6-dichloroindophenol
-
D-methionine + oxidized 2,6-dichlorophenolindophenol + H2O = 4-methylsulfanyl-2-oxobutanoate + NH3 + reduced 2,6-dichlorophenolindophenol
-
D-methionine + oxidized acceptor + H2O = 4-methylsulfanyl-2-oxobutanoate + NH3 + reduced acceptor
-
D-Met + H2O + oxidized 2,6-dichlorophenolindophenol = 4-methylsulfanyl-2-oxobutanoate + NH3 + reduced 2,6-dichlorophenolindophenol
-
D-methionine + H2O + 2,6-dichlorophenolindophenol = 4-methylsulfanyl-2-oxobutanoate + NH3 + reduced 2,6-dichlorophenolindophenol
-
D-methionine + H2O + iodonitrotetrazolium chloride = 4-methylsulfanyl-2-oxobutanoate + NH3 + reduced iodonitrotetrazolium chloride
-
D-methionine + phenazine methosulfate + H2O = 4-methylsulfanyl-2-oxobutanoate + NH3 + reduced phenazine methosulfate
-
D-methionine + phenazine methosulfate = 4-methylsulfanyl-2-oxobutanoate + NH3 + reduced phenazine methosulfate
-
L-methionine + H2O + 2 cytochrome b = 4-methylsulfanyl-2-oxobutanoate + NH3 + 2 reduced cytochrome b
-
L-methionine + 2-oxoglutarate = L-glutamate + 4-methylsulfanyl-2-oxobutyric acid
-
2-oxosuccinamic acid + L-methionine = L-asparagine + 4-methylsulfanyl-2-oxobutanoate
-
phenylpyruvate + methionine = L-phenylalanine + 4-methylsulfanyl-2-oxobutanoate
-
2-oxoglutaramate + L-methionine = L-glutamine + 4-methylsulfanyl-2-oxobutanoate
glyoxylate + L-methionine = glycine + 4-methylsulfanyl-2-oxobutanoate
pyruvate + L-methionine = L-alanine + 4-methylsulfanyl-2-oxobutanoate
glyoxylate + methionine = glycine + 4-methylsulfanyl-2-oxobutanoate
-
L-methionine + 2-oxoglutarate = 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
D-methionine + 2-oxoglutarate = 4-methylsulfanyl-2-oxobutanoate + D-glutamate
-
D-methionine + pyruvate = 4-methylsulfanyl-2-oxobutanoate + D-alanine
-
D-methionine + pyruvate = 4-methylsulfanyl-2-oxobutanoate + L-alanine
-
phenylpyruvate + DL-methionine = phenylalanine + 4-methylsulfanyl-2-oxobutanoate
-
D-methionine + 2-oxoglutarate = 4-methylthio-2-oxobutanoate + L-glutamate
-
D-methionine + oxaloacetate = 4-methylthio-2-oxobutanoate + L-aspartate
-
D-methionine + pyruvate = 4-methylthio-2-oxobutanoate + L-alanine
-
L-methionine + pyruvate = 4-methylthio-2-oxobutanoate + L-alanine
-
L-methionine + 2-oxo-isohexanoate = 4-methylsulfanyl-2-oxobutanoate + L-leucine
-
L-methionine + 2-oxobutyrate = 4-methylsulfanyl-2-oxobutanoate + 2-aminobutyrate
-
L-methionine + 2-oxoglutarate = 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
L-methionine + 4-methyl-2-oxovalerate = 4-methylsulfanyl-2-oxobutanoate + L-leucine
-
L-methionine + pyruvate = 4-methylsulfanyl-2-oxobutanoate + L-alanine
-
L-methionine + 2-oxobutanoate = 4-methylthio-2-oxobutanoate + L-2-aminobutanoate
-
L-methionine + 2-oxoglutarate = 4-methylthio-2-oxobutanoate + L-glutamate
-
L-methionine + glyoxylate = 4-methylsulfanyl-2-oxobutanoate + glycine
-
L-methionine + pyruvate = 4-methylsulfanyl-2-oxobutanoate + L-alanine
-
L-methionine + 2-oxoglutarate = 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
L-methionine + glyoxylate = 4-methylsulfanyl-2-oxobutanoate + glycine
-
L-methionine + phenylpyruvate = 4-methylsulfanyl-2-oxobutanoate + L-phenylalanine
-
L-methionine + pyruvate = 4-methylsulfanyl-2-oxobutanoate + L-alanine
-
L-methionine + 2-oxoglutarate = 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
L-methionine + indole pyruvate = 4-methylsulfanyl-2-oxobutanoate + L-tryptophan
-
L-methionine + phenylpyruvate = 4-methylsulfanyl-2-oxobutanoate + L-phenylalanine
-
L-methionine + 2-oxoglutarate = 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
L-methionine + glyoxylate = 4-methylsulfanyl-2-oxobutanoate + glycine
-
L-methionine + 2-oxoglutaramate = L-glutamine + 4-methylsulfanyl-2-oxobutanoate
-
L-methionine + glyoxylate = 4-methylsulfanyl-2-oxobutanoate + glycine
-
L-methionine + phenylpyruvate = 4-methylsulfanyl-2-oxobutanoate + L-phenylalanine
-
L-methionine + 2-oxobutanoate = 4-methylsulfanyl-2-oxobutanoate + 2-aminobutanoate
-
L-methionine + 2-oxoglutarate = 4-methylsulfanyl-2-oxobutanoate + glutamate
-
L-methionine + 2-oxoglutarate = 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
L-methionine + 4-methylsulfanyl-2-oxobutanoate = 4-methylsulfanyl-2-oxobutanoate + L-methionine
-
L-methionine + glyoxylate = 4-methylsulfanyl-2-oxobutanoate + glycine
-
L-methionine + oxaloacetate = 4-methylsulfanyl-2-oxobutanoate + L-aspartate
-
L-methionine + pyruvate = 4-methylsulfanyl-2-oxobutanoate + L-alanine
-
D-methionine + 2-oxoadipate = 4-methylsulfanyl-2-oxobutanoate + 2-aminoadipate
-
L-methionine + pyruvate = 4-methylthio-2-oxo-butanoate + L-alanine
-
L-methionine + pyruvate = 4-methylthio-2-oxobutanoate + L-alanine
-
L-leucine + a 2-oxo acid = 2-oxo-4-methylthiobutanoate + an L-amino acid
-
L-methionine + 2-oxo-isocaproate = 2-oxo-4-methylthiobutanoate + L-leucine
-
L-methionine + 2-oxoglutarate = 2-oxo-4-methylthiobutanoate + L-glutamate
-
L-methionine + a 2-oxo acid = 2-oxo-4-methylthiobutanoate + an L-amino acid
-
L-methionine + indole-3-pyruvic acid = 2-oxo-4-methylthiobutanoate + L-tryptophan
-
L-methionine + 2-oxoglutarate = 4-(methylsulfanyl)-2-oxobutanoate + L-glutamate
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
-
Metabolism of phenylalanine. (Achromobacter eurydice)
1970
Fujioka, M.; Morino, Y.; Wada, H.
Methods Enzymol.
17
585-596
Enzymatic conversion of phenylpyruvate to phenylacetate
1968
Asakawa, T.; Wada, H.; Yamano, T.
Biochim. Biophys. Acta
170
375-391
Purification and characterization of human kidney cytosolic cysteine conjugate beta-lyase activity
1990
Lash, L.H.; Nelson, R.M.; van Dyke, R.A.; Anders, M.W.
Drug Metab. Dispos.
18
50-54
Glutamine transaminase K and omega-amidase activities in primary cultures of astrocytes and neurons and in embryonic chick forebrain: marked induction of brain glutamine transaminase K at time of hatching
1994
Makar, T.K.; Nedergaard, M.; Preuss, A.; Hertz, L.; Cooper, A.J.L.
J. Neurochem.
62
1983-1988
Branched-chain alpha-keto acid dehydrogenase and its kinase from rabbit liver and heart
1988
Paxton, R.
Methods Enzymol.
166
313-320
Purification and characterization of the branched chain alpha-ketoacid dehydrogenase complex from Saccharomyces cerevisiae
1993
Sinclair, D.A.; Dawes, I.W.; Dickinson, J.R.
Biochem. Mol. Biol. Int.
31
911-922
Branched-chain keto acid dehydrogenase of yeast
2000
Dickinson, J.R.
Methods Enzymol.
324
389-398
Phenylalanine dehydrogenase of Bacillus badius. Purification, characterization and gene cloning [published erratum appears in Eur J Biochem 1988 Jan 1;170(3):667]
1987
Asano, Y.; Nakazawa, A.; Endo, K.; Hibino, Y.; Ohmori, M.; Numao, N.; Kondo, K.
Eur. J. Biochem.
168
153-159
-
Isolation of L-phenylalanine dehydrogenase from Rhodococcus sp. M4 and its application for the production of L-phenylalanine
1987
Hummel, W.; Schuette, H.; Schmidt, E.; Wandrey, C.; Kula, M.R.
Appl. Microbiol. Biotechnol.
26
409-416
Construction and characterization of chimeric enzyme consisting of an amino-terminal domain of phenylalanine dehydrogenase and a carboxy-terminal domain of leucine dehydrogenase
1994
Kataoka, K.; Takada, H.; Tanizawa, K.; Yoshimura, T.; Esaki, N.; Ohshima, T.; Soda, K.
J. Biochem.
116
931-936
Site-directed mutagenesis of a hexapeptide segment involved in substrate recognition of phenylalanine dehydrogenase from Thermoactinomyces intermedius
1993
Kataoka, K.; Takada, H.; Yoshimura, T.; Furuyoshi, S.; Esaki, N.; Ohshima, T.; Soda, K.
J. Biochem.
114
69-75
-
L-Leucine dehydrogenase from Bacillus cereus
1985
Schuette, H.; Hummel, W.; Tsai, H.; Kula, M.R.
Appl. Microbiol. Biotechnol.
22
306-317
Isolation and characterization of leucine dehydrogenase from Bacillus subtilis
1988
Livesey, G.; Lund, P.
Methods Enzymol.
166
282-288
-
Purification and characterization of leucine dehydrogenase from the thermophile Bacillus caldolyticus
1989
Kaerst, U.; Schuette, H.; Baydoun, H.; Tsai, H.
J. Gen. Microbiol.
135
1305-1313
The role of a beta barrel loop 4 extension in modulating the physical and functional properties of long-chain 2-hydroxy-acid oxidase isozymes
1996
Belmouden, A.; Lederer, F.
Eur. J. Biochem.
238
790-798
L-alpha-Hydroxy acid oxidases of hog renal cortex
1962
Robinson, J.C.; Keay, L.; Molinari, R.; Sizer, I.W.
J. Biol. Chem.
237
2001-2010
Multiple molecular forms of diarylpropane oxygenase, an H2O2-requiring, lignin-degrading enzyme from Phanerochaete chrysosporium
1985
Renganathan, V.; Miki, K.; Gold, M.H.
Arch. Biochem. Biophys.
241
304-314
-
D-Amino acid dehydrogenase (Pseudomonas fluorescens)
1971
Tsukada, K.
Methods Enzymol.
17B
623-624
Oxidation and oxygenation of L-amino acids catalyzed by a L-phenylalanine oxidase (deaminating and decarboxylating) from Pseudomonas sp. P-501
1984
Koyama, H.
J. Biochem.
96
421-427
Mycobacterium tuberculosis ketopantoate hydroxymethyltransferase: Tetrahydrofolate-independent hydroxymethyltransferase and enolization reactions with alpha-keto acids
2003
Sugantino, M.; Zheng, R.; Yu, M.; Blanchard, J.S.
Biochemistry
42
191-199
Kynurenine-oxoglutarate aminotransferase from rat kidney
1987
Tobes, M.C.
Methods Enzymol.
142
217-224
Purification and characterization of yeast L-kynurenine aminotransferase with broad substrate specificity
1986
Asada, Y.; Sawa, Y.; Tanizawa, K.; Soda, K.
J. Biochem.
99
1101-1110
L-Kynurenine transaminase from Hansenula schneggii
1985
Tanizawa, K.; Asada, Y.; Soda, K.
Methods Enzymol.
113
90-95
Tissue expression and translational control of rat kynurenine aminotransferase/glutamine transaminase K mRNAs
2003
Mosca, M.; Croci, C.; Mostardini, M.; Breton, J.; Malyszko, J.; Avanzi, N.; Toma, S.; Benatti, L.; Gatti, S.
Biochim. Biophys. Acta
1628
1-10
Transamination of aromatic amino acids in Escherichia coli
1987
Mavrides, C.
Methods Enzymol.
142
253-267
-
Partial purification and some properties of an aromatic-amino-acid and an aspartate aminotransferase in Brevibacterium linens 47
1985
Lee, C.W.; Desmazeaud, M.J.
J. Gen. Microbiol.
131
459-467
Purification and properties of the aromatic amino acid aminotransferase from gramicidin S-producing Bacillus brevis
1987
Kanda, M.; Hori, K.; Kurotsu, T.; Miura, S.; Saito, Y.
J. Biochem.
101
871-878
-
Charakterisierung von drei aromatischen Aminotransferasen aus Candida maltosa
1984
Bode, R.; Birnbaum, D.
Z. Allg. Mikrobiol.
24
67-75
Aromatic amino acid transamination and methionine recycling in trypanosomatids
1996
Berger, B.J.; Dai, W.W.; Wang, H.; Stark, R.E.; Cerami, A.
Proc. Natl. Acad. Sci. USA
93
4126-4130
Purification and characterization of oligomeric species of an aromatic amino acid aminotransferase from Lactococcus lactis subsp. lactis S3
1998
Gao, S.; Steele, J.L.
J. Food Biochem.
22
197-211
-
An aminotransferase specific for the D-enantiomorph of methionine
1973
Durham, J.I.; Morgan, P.W.; Prescott, J.M.; Lyman, C.M.
Phytochemistry
12
2123-2126
Biosynthesis of ethylene. 4-methylmercapto-2-oxobutyric acid: an intermediate in the formation from methionine
1969
Mapson, L.W.; March, J.F.; Wardale, D.A.
Biochem. J.
115
653-661
Glutamate-glyoxylate aminotransferase in rat liver cytosol. Purification, properties and identity with alanine-2-oxoglutarate aminotransferase
1977
Noguchi, T.; Takada, Y.; Kido, R.
Hoppe-Seyler's Z. Physiol. Chem.
358
1533-1542
-
Some properties of aspartate and alanine aminotransferases from Trichoderma virie
1980
Eze, L.C.; Echetebu, C.O.
J. Gen. Microbiol.
120
523-527
D-Alanine-D-glutamate transaminase. I. Purification and characterization
1965
Martinez-Carrion, M.; Jenkins, W.T.
J. Biol. Chem.
240
3538-3546
Occurrence of D-amino acid aminotransferase in pea seedlings
1973
Ogawa, T.; Fukuda, M.
Biochem. Biophys. Res. Commun.
52
998-1002
D-amino acid aminotransferase of Bacillus sphaericus. Enzymologic and spectrometric properties
1975
Yonaha, K.; Misono, H.; Yamamoto, T.; Soda, K.
J. Biol. Chem.
250
6983-6989
Construction and properties of a fragmentary D-amino acid aminotransferase
1998
Fuchikami, Y.; Yoshimura, T.; Gutierrez, A.; Soda, K.; Esaki, N.
J. Biochem.
124
905-910
-
Allylglucosinolate biosynthesis in Brassica carinata
1988
Glover, J.R.; Chapple, C.C.S.; Rothwell, S.; Tober, I.; Ellis, B.E.
Phytochemistry
27
1345-1348
Purification and characterization of methionine:glyoxylate aminotransferase from Brassica carinata and Brassica napus
1990
Chapple, C.C.S.; Glover, J.R.; Ellis, B.E.
Plant Physiol.
94
1887-1896
Purification and characterization of aromatic-amino-acid-glyoxylate aminotransferase from monkey and rat liver
1978
Harada, I.; Noguchi, T.; Kido, R.
Hoppe-Seyler's Z. Physiol. Chem.
359
481-488
Aromatic-amino acid-glyoxylate aminotransferase from rat liver
1987
Takada, Y.; Noguchi, T.
Methods Enzymol.
142
273-279
Asparagine transaminase from rat liver
1977
Cooper, A.J.L.
J. Biol. Chem.
252
2032-2038
Kinetic properties and characteristics of mouse liver mitochondrial asparagine aminotransferase
1986
Maul, D.M.; Schuster, S.M.
Arch. Biochem. Biophys.
251
585-593
2-Keto acid oxidoreductases from Pyrococcus furiosus and Thermococcus litoralis
2001
Schut, G.J.; Menon, A.L.; Adams, M.W.W.
Methods Enzymol.
331
144-158
Glutamine transaminase L from rat liver
1985
Cooper, A.J.L.; Meister, A.
Methods Enzymol.
113
338-343
Isolation and properties of highly purified glutamine transaminase
1972
Cooper, A.J.L.; Meister, A.
Biochemistry
11
661-671
Isolation and properties of a new glutamine transaminase form rat kidney
1974
Cooper, A.J.L.; Meister, A.
J. Biol. Chem.
249
2554-2561
Characterization and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp. cremoris NCDO 763
2000
Yvon, M.; Chambellon, E.; Bolotin, A.; Roudot-Algaron, F.
Appl. Environ. Microbiol.
66
571-577
Co-purification of alanine-glyoxylate aminotransferase with 2-aminobutyrate aminotransferase in rat kidney
1982
Okuno, E.; Minatogawa, Y.; Kido, R.
Biochim. Biophys. Acta
715
97-104
Purification, properties, and identity of liver mitochondrial tyrosine aminotransferase
1971
Miller, J.E.; Litwack, G.
J. Biol. Chem.
246
3234-3240
Identity of isoenzyme 1 of histidine-pyruvate aminotransferase with serine-pyruvate aminotransferase
1976
Noguchi, T.; Okuno, E.; Kido, R.
Biochem. J.
159
607-613
Characteristics of hepatic serine-pyruvate aminotransferase in different mammalian species
1977
Noguchi, T.; Takada, Y.; Kido, R.
Biochem. J.
161
609-614
Glutamine transaminase from brain tissue. Further studies on kinetic properties and specificity of the enzyme
1976
Van Leuven, F.
Eur. J. Biochem.
65
271-274
Purification of soluble and mitochondrial glutamine transaminase K from rat kidney. Use of a sensitive assay involving transamination between L-phenylalanine and alpha-keto-gamma-methiolbutyrate
1978
Cooper, A.J.L.
Anal. Biochem.
89
451-460
Glutamine transaminase K from rat kidney
1985
Cooper, A.J.L.; Meister, A.
Methods Enzymol.
113
344-349
The transamination of L-cystathionine, L-cystine and related compounds by a bovine kidney transaminase
1986
Ricci, G.; Nardini, M.; Federici, G.; Cavallini, D.
Eur. J. Biochem.
157
57-63
-
Glutamine metabolism in skeletal muscles from the broiler chick (Gallus domesticus) and the laboratory rat (Rattus norvegicus)
1991
Wu, G.; Thompson, J.R.; Baracos, V.E.
Biochem. J.
274
769-774
Purification and characterization of cysteine conjugate transaminases from rat liver
1988
Tomisawa, H.; Ichimoto, N.; Takanohashi, Y.; Ichihara, S.; Fukazawa, H.; Tateishi, M.
Xenobiotica
18
1015-1028
Plant 5-methylthioribose kinase
1983
Guranowski, A.
Plant Physiol.
71
932-935
Characterization of 2-ketoisovalerate ferredoxin oxidoreductase, a new and reversible coenzyme A-dependent enzyme involved in peptide fermentation by hyperthermophilic archaea
1996
Heider, J.; Mai, X.; Adams, M.W.
J. Bacteriol.
178
780-787
Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A new enzyme involved in peptide fermentation
1994
Mai, X.; Adams, M.W.
J. Biol. Chem.
269
16726-16732
-
A new bacterial L-amino acid oxidase with a broad substrate specificity: purification and characterization
2002
Geueke, B.; Hummel, W.
Enzyme Microb. Technol.
31
77-87
Purification and characterisation of a novel cysteine conjugate beta-lyase from the tapeworm Moniezia expansa
2000
Adcock, H.J.; Brophy, P.M.; Teesdale-Spittle, P.H.; Buckberry, L.D.
Int. J. Parasitol.
30
567-571
Single amino acid substitution in Bacillus sphaericus phenylalanine dehydrogenase dramatically increases its discrimination between phenylalanine and tyrosine substrates
2002
Seah, S.Y.; Britton, K.L.; Rice, D.W.; Asano, Y.; Engel, P.C.
Biochemistry
41
11390-11397
-
Alteration of substrate specificity of leucine dehydrogenase by site-directed mutagenesis
2003
Kataoka, K.; Tanizawa, K.
J. Mol. Catal. B
23
299-309
Branched-chain amino acid aminotransferase and methionine formation in Mycobacterium tuberculosis
2004
Venos, E.S.; Knodel, M.H.; Radford, C.L.; Berger, B.J.
BMC Microbiol.
4
39
Glutamine:phenylpyruvate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus HB8
2003
Hosono, A.; Mizuguchi, H.; Hayashi, H.; Goto, M.; Miyahara, I.; Hirotsu, K.; Kagamiyama, H.
J. Biochem.
134
843-851
The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana
2005
Schuster, J.; Binder, S.
Plant Mol. Biol.
57
241-254
Identification, cloning, and characterization of a Lactococcus lactis branched-chain alpha-keto acid decarboxylase involved in flavor formation
2005
Smit, B.A.; van Hylckama Vlieg, J.E.; Engels, W.J.; Meijer, L.; Wouters, J.T.; Smit, G.
Appl. Environ. Microbiol.
71
303-311
Biochemical and molecular characterization of alpha-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis
2004
de la Plaza, M.; Fernandez de Palencia, P.; Pelaez, C.; Requena, T.
FEMS Microbiol. Lett.
238
367-374
Gene expression and characterization of two 2-oxoacid:ferredoxin oxidoreductases from Aeropyrum pernix K1
2005
Nishizawa, Y.; Yabuki, T.; Fukuda, E.; Wakagi, T.
FEBS Lett.
579
2319-2322
Branched-chain aminotransferase4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis
2006
Schuster, J.; Knill, T.; Reichelt, M.; Gershenzon, J.; Binder, S.
Plant Cell
18
2664-2679
-
Branched-chain keto acid decarboxylase from Lactococcus lactis (KdcA), a valuable thiamine diphosphate-dependent enzyme for asymmetric C-C bond formation
2007
Gocke, D.; Nguyen, C.L.; Pohl, M.; Stillger, T.; Walter, L.; Mueller, M.
Adv. Synth. Catal.
349
1425-1435
Substrate specificity of human glutamine transaminase K as an aminotransferase and as a cysteine S-conjugate beta-lyase
2008
Cooper, A.J.; Pinto, J.T.; Krasnikov, B.F.; Niatsetskaya, Z.V.; Han, Q.; Li, J.; Vauzour, D.; Spencer, J.P.
Arch. Biochem. Biophys.
474
72-81
Cloning, protein sequence clarification, and substrate specificity of a leucine dehydrogenase from Bacillus sphaericus ATCC4525
2008
Li, H.; Zhu, D.; Hyatt, B.A.; Malik, F.M.; Biehl, E.R.; Hua, L.
Appl. Biochem. Biotechnol.
158
343-351
Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II
2008
Han, Q.; Cai, T.; Tagle, D.A.; Robinson, H.; Li, J.
Biosci. Rep.
28
205-215
Biochemical and structural properties of mouse kynurenine aminotransferase III
2009
Han, Q.; Robinson, H.; Cai, T.; Tagle, D.A.; Li, J.
Mol. Cell. Biol.
29
784-793
Cloning and molecular characterization of tick kynurenine aminotransferase (HlKAT) from Haemaphysalis longicornis (Acari: Ixodidae)
2009
Battsetseg, B.; Boldbaatar, D.; Battur, B.; Xuan, X.; Fujisaki, K.
Parasitol. Res.
105
669-679
Cysteine S-conjugate beta-lyases: important roles in the metabolism of naturally occurring sulfur and selenium-containing compounds, xenobiotics and anticancer agents
2011
Cooper, A.J.; Krasnikov, B.F.; Niatsetskaya, Z.V.; Pinto, J.T.; Callery, P.S.; Villar, M.T.; Artigues, A.; Bruschi, S.A.
Amino Acids
41
7-27
The D-2-hydroxyacid dehydrogenase incorrectly annotated PanE is the sole reduction system for branched-chain 2-keto acids in Lactococcus lactis
2009
Chambellon, E.; Rijnen, L.; Lorquet, F.; Gitton, C.; Van Hylckama Vlieg, J.; Wouters, J.; Yvon, M.
J. Bacteriol.
191
873-881
Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae
2011
Kneen, M.; Stan, R.; Yep, A.; Tyler, R.; Saehuan, C.; McLeish, M.
FEBS J.
278
1842-1853
Tyrosine aminotransferase catalyzes the final step of methionine recycling in Klebsiella pneumonia
1999
Heilbronn, J.; Wilson, J.; Berger, B.J.
J. Bacteriol.
181
1739-1747
Biochemical and structural characterization of mouse mitochondrial aspartate aminotransferase, a newly identified kynurenine aminotransferase-IV
2011
Han, Q.; Robinson, H.; Cai, T.; Tagle, D.A.; Li, J.
Biosci. Rep.
31
323-332
Characteristic features of kynurenine aminotransferase allosterically regulated by (alpha)-ketoglutarate in cooperation with kynurenine
2012
Okada, K.; Angkawidjaja, C.; Koga, Y.; Takano, K.; Kanaya, S.
PLoS ONE
7
e40307
Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae
2015
Milne, N.; Van Maris, A.; Pronk, J.; Daran, J.
Biotechnol. Biofuels
8
204
A feedback-insensitive isopropylmalate synthase affects acylsugar composition in cultivated and wild tomato
2015
Ning, J.; Moghe, G.D.; Leong, B.; Kim, J.; Ofner, I.; Wang, Z.; Adams, C.; Jones, A.D.; Zamir, D.; Last, R.L.
Plant Physiol.
169
1821-1835
Characterization of tryptophan aminotransferase 1 of Malassezia furfur, the key enzyme in the production of indolic compounds by M.furfur
2013
Preuss, J.; Hort, W.; Lang, S.; Netsch, A.; Rahlfs, S.; Lochnit, G.; Jortzik, E.; Becker, K.; Mayser, P.A.
Exp. Dermatol.
22
736-741
The cytosolic branched-chain aminotransferases of Arabidopsis thaliana influence methionine supply, salvage and glucosinolate metabolism
2015
Laechler, K.; Imhof, J.; Reichelt, M.; Gershenzon, J.; Binder, S.
Plant Mol. Biol.
88
119-131
-
Methylthioalkylmalate synthases: Genetics, ecology and evolution
2009
Benderoth, M.; Pfalz, M.; Kroymann, J.
Phytochem. Rev.
8
255-268
From amino acid to glucosinolate biosynthesis: protein sequence changes in the evolution of methylthioalkylmalate synthase in Arabidopsis
2011
de Kraker, J.W.; Gershenzon, J.
Plant Cell
23
38-53
A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway
2001
Kroymann, J.; Textor, S.; Tokuhisa, J.G.; Falk, K.L.; Bartram, S.; Gershenzon, J.; Mitchell-Olds, T.
Plant Physiol.
127
1077-1088
MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis
2007
Textor, S.; de Kraker, J.W.; Hause, B.; Gershenzon, J.; Tokuhisa, J.G.
Plant Physiol.
144
60-71
Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle
2004
Textor, S.; Bartram, S.; Kroymann, J.; Falk, K.L.; Hick, A.; Pickett, J.A.; Gershenzon, J.
Planta
218
1026-1035
Positive selection driving diversification in plant secondary metabolism
2006
Benderoth, M.; Textor, S.; Windsor, A.; Mitchell-Olds, T.; Gershenzon, J.; Kroymann, J.
Proc. Natl. Acad. Sci. USA
103
9118-9123
Nucleophile promiscuity of engineered class II pyruvate aldolase YfaU from E. coli
2018
Hernandez, K.; Joglar, J.; Bujons, J.; Parella, T.; Clapes, P.
Angew. Chem. Int. Ed. Engl.
57
3583-3587
The kinetic characterization and X-ray structure of a putative benzoylformate decarboxylase from M. smegmatis highlights the difficulties in the functional annotation of ThDP-dependent enzymes
2015
Andrews, F.H.; Horton, J.D.; Shin, D.; Yoon, H.J.; Logsdon, M.G.; Malik, A.M.; Rogers, M.P.; Kneen, M.M.; Suh, S.W.; McLeish, M.J.
Biochim. Biophys. Acta
1854
1001-1009
-
Mechanistic and structural insight to an evolved benzoylformate decarboxylase with enhanced pyruvate decarboxylase activity
2016
Andrews, F.; Wechsler, C.; Rogers, M.; Meyer, D.; Tittmann, K.; McLeish, M.
Catalysts
6
190
Methionine regeneration and aminotransferases in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis
2003
Berger, B.; English, S.; Chan, G.; Knodel, M.
J. Bacteriol.
185
2418-2431
Evidence that glutamine transaminase and omega-amidase potentially act in tandem to close the methionine salvage cycle in bacteria and plants
2015
Ellens, K.; Richardson, L.; Frelin, O.; Collins, J.; Ribeiro, C.; Hsieh, Y.; Mullen, R.; Hanson, A.
Phytochemistry
113
160-169
Properties of bacterial and archaeal branched-chain amino acid aminotransferases
2017
Bezsudnova, E.Y.; Boyko, K.M.; Popov, V.O.
Biochemistry (Moscow)
82
1572-1591
Biochemical and structural characterization of tyrosine aminotransferase suggests broad substrate specificity and a two-state folding mechanism in Leishmania donovani
2019
Sasidharan, S.; Saudagar, P.
FEBS Open Bio
9
1769-1783
Biochemical properties and subcellular localization of tyrosine aminotransferases in Arabidopsis thaliana
2016
Wang, M.; Toda, K.; Maeda, H.A.
Phytochemistry
132
16-25
Characterization of an NAD(P)+-dependent meso-diaminopimelate dehydrogenase from Thermosyntropha lipolytica
2020
Akita, H.; Nakamichi, Y.; Morita, T.; Matsushika, A.
Biochim. Biophys. Acta
1868
140476
Structure-guided design of a high affinity inhibitor to human CtBP
2015
Hilbert, B.J.; Morris, B.L.; Ellis, K.C.; Paulsen, J.L.; Schiffer, C.A.; Grossman, S.R.; Royer, W.E.
ACS Chem. Biol.
10
1118-1127
2-Keto-4-methylthiobutyrate, an intermediate in the methionine salvage pathway, is a good substrate for CtBP1
2007
Achouri, Y.; Noel, G.; Van Schaftingen, E.
Biochem. Biophys. Res. Commun.
352
903-906
Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal binding protein (CtBP)
2016
Korwar, S.; Morris, B.; Parikh, H.; Coover, R.; Doughty, T.; Love, I.; Hilbert, B.; Royer, W.J.; Kellogg, G.; Grossman, S.; Ellis, K.
Bioorg. Med. Chem.
24
2707-2715
Crystal structures of human CtBP in complex with substrate MTOB reveal active site features useful for inhibitor design
2014
Hilbert, B.J.; Grossman, S.R.; Schiffer, C.A.; Royer, W.E.
FEBS Lett.
588
1743-1748