Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
menadione + NADPH = menadiol + NADP+
-
menadione + NADPH + H+ = menadiol + NADP+
-
sn-glycerol 3-phosphate + menadione = glycerone phosphate + reduced menadione
-
D-glucose + menadione = D-glucono-1,5-lactone + menadiol
-
2-methyl-1,4-naphthoquinone + reduced coenzyme F420 = 2-methyl-1,4-naphthoquinol + oxidized coenzyme F420
-
1-(beta-D-ribofuranosyl)-1,4-dihydronicotinamide + menadione = 1-(beta-D-ribofuranosyl)nicotinamide + menadiol
-
1-carbamoylmethyl-3-carbamoyl-1,4-dihydropyrimidine + menadione = 1-carbamoylmethyl-3-carbamoylpyrimidine + menadiol
-
dihydronicotinamide riboside + menadione = ribosyl nicotinamide + menadiol
-
menadione + dihydronicotinamide riboside = menadiol + nicotinamide riboside
-
N-benzyldihydronicotinamide + menadione = N-benzylnicotamide + menadiol
-
N-benzyldihydronicotinamide + menadione = N-benzylnicotinamide + menadiol
-
N-methyldihydronicotinamide + menadione = N-methylnicotinamide + menadiol
-
reduced N-methyldihydronicotinamide + menadione = ? + menadiol
-
reduced N1-(benzyl)-nicotinamide + menadione = N1-(benzyl)-nicotinamide + menadiol
-
reduced N1-(n-propyl)-nicotinamide + menadione = N1-(n-propyl)-nicotinamide + menadiol
-
phenylacetyl-CoA + H2O + menadione = phenylglyoxylyl-CoA + menadiol
-
NADH + 2-methyl-1,4-naphthoquinone = NAD+ + 2-methyl-1,4-naphthoquinol
-
succinate + menadione = fumarate + menadiol
-
(S)-dihydroorotate + menadione = orotate + menadiol
-
dihydroorotate + menadione = orotate + reduced menadione
-
protoporphyrinogen IX + 3 menadione = protoporphyrin IX + 3 menadiol
-
S-dihydroorotate + menadione = orotate + menadiol
-
3,12-dioxo-5beta-cholan-24-oic acid + menaphthone = 3,12-dioxo-4-cholen-24-oic acid + reduced menaphthone
-
3,12-dioxo-5beta-cholan-24-oic acid methyl ester + menaphthone = 3,12-dioxo-4-cholen-24 oic acid methyl ester + reduced menaphthone
-
3-oxo-5beta-cholan-24-oic acid + menaphthone = 3-oxo-4-cholen-24-oic acid + reduced menaphthone
-
5beta-pregnan-3,20-dione + menaphthone = 4-pregnen-3,20-dione + reduced menaphthone
-
menadione + NADPH + H+ = menadiol + NADP+
-
NADPH + H+ + menadione = NADP+ + menadiol
-
5-methyltetrahydrofolate + oxidized menadione = 5,10-methylenetetrahydrofolate + reduced menadione
-
NADH + menadione = NAD+ + reduced menadione
-
menadione + NADH + H+ = menadiol + NAD+
-
5-methyltetrahydrofolate + oxidized menadione = 5,10-methylenetetrahydrofolate + reduced menadione
-
NADPH + H+ + oxidized menadione = NADP+ + reduced menadione
-
5-methyltetrahydrofolate + menadione = 5,10-methylenetetrahydrofolate + menadiol
-
NADH + H+ + menadione = NAD+ + menadiol
-
reduced electron-transferring-flavoprotein + menadione = electron-transferring-flavoprotein + menadiol
-
trans-4-hydroxy-L-proline + menadione = (3R,5S)-3-hydroxy-1-pyrroline-5-carboxylate + menadiol
-
(S)-nicotine + menadione + H2O = (S)-6-hydroxynicotine + menadiol
-
L-proline + menadione = (S)-1-pyrroline-5-carboxylate + menadiol
-
NADPH + H+ + menadione = NADP+ + menadiol
-
NADPH + H+ + oxidized menadione = NADP+ + reduced menadione
-
2-methyl-1,4-naphthoquinone + NADPH + H+ = 2-methyl-1,4-naphthoquinol + NADP+
-
menadione + NADPH + H+ = menadiol + NADP+
-
NADPH + H+ + menadione = NADP+ + menadiol
-
menadione + NADPH + H+ = menadiol + NADP+
-
2-methyl-1,4-naphthoquinone + NAD(P)H = 2-methyl-1,4-naphthoquinol + NAD(P)+
0, 394375, 394383, 394378, 394382, 394364, 394352, 394356, 394363, 394366, 394349, 394350
-
2-methyl-1,4-naphthoquinone + NADH = 2-methyl-1,4-naphthoquinol + NAD+
-
2-methyl-1,4-naphthoquinone + NADPH = 2-methyl-1,4-naphthoquinol + NADp+
-
NADH + H+ + 2-methyl-1,4-naphthoquinone = NAD+ + 2-methyl-1,4-naphthoquinol
-
NADPH + H+ + 2-methyl-1,4-naphthoquinone = NADP+ + 2-methyl-1,4-naphthoquinol
-
menadione + NADH + H+ = menadiol + NAD+
-
cytochrome C + menadione + NADH = ? + reduced menadione + NAD+
-
menadione + NAD(P)H = reduced menadione + NAD(P)+
-
menadione + NAD(P)H = reduced menadione + NADP+
-
menadione + NADH + H+ = reduced menadione + NAD+
-
menadione + NADH = reduced menadione + NAD+
-
menadione + NADPH + H+ = reduced menadione + NADP+
-
menadione + NADPH = reduced menadione + NADP+
-
menadione + reduced nicotinamide 2-azidoadenine dinucleotide = reduced menadione + oxidized nicotinamide 2-azidoadenine dinucleotide
-
menadione + reduced nicotinamide 8-azidoadenine dinucleotide = reduced menadione + oxidized nicotinamide 8-azidoadenine dinucleotide
-
2-methyl-1,4-naphthoquinone + NADPH + H+ = 2-methyl-1,4-naphthoquinol + NADP+
-
menadione + NADPH + H+ = menadiol + NADP+
-
NADH + H+ + menadione = NAD+ + menadiol
-
menadione + NADH = reduced menadione + NAD+
-
nitrobenzene + menadione = N-hydroxyaniline + menadiol + H2O
-
nitrite + menadione + H2O = nitrate + menadiol
-
sulfide + menadione = polysulfide + menadiol
-
sulfide + menadione = sulfur + menadiol
-
glutathione + 2-(glutathione-S-yl)-menadiol = glutathione disulfide + menadiol
-
2-methyl-1,4-naphthoquinone + NADH + H+ = 2-methyl-1,4-naphthoquinol + NAD+
-
NADH + 2-methyl-1,4-naphthoquinone = NAD+ + 2-methyl-1,4-naphthoquinol
-
NADH + H+ + 2-methyl-1,4-naphthoquinone = NAD+ + 2-methyl-1,4-naphthoquinol
-
NADH + H+ + menadione = NAD+ + menadiol
-
NADH + menadione = NAD+ + menadiol
-
NADH + menadione = NAD+ + reduced menadione
-
reduced nicotinamide hypoxanthine dinucleotide + menadione = oxidized nicotinamide hypoxanthine dinucleotide + menadiol
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition by S-adenosylmethionine
1971
Kutzbach, C.; Stokstad, E.L.R.
Biochim. Biophys. Acta
250
459-477
Purification and characterization of methylenetetrahydrofolate reductase from human cadaver liver [published erratum appears in Biochem Med Metab Biol 1990 Oct;44(2):200]
1990
Zhou, J.; Kang, S.S.; Wong, P.W.K.; Fournier, B.; Rozen, R.
Biochem. Med. Metab. Biol.
43
234-242
Purification and properties of three separate menadione reductases from hog liver
1969
Koli, A.K.; Yearby, C.; Scott, W.; Donaldson, K.O.
J. Biol. Chem.
244
621-629
Purification of NADH-ferricyanide dehydrogenase and NADH-quinone reductase from Escherichia coli membranes and their roles in the respiratory chain
1989
Hayashi, M.; Miyoshi, T.; Takashina, S.; Unemoto, T.
Biochim. Biophys. Acta
977
62-69
Purification and some properties of a brain diaphorase
1961
Giuditta, A.; Strecker, H.J.
Biochim. Biophys. Acta
48
10-19
The reduction of vitamin K1 by an enzyme from dog liver
1960
Wosilait, W.D.
J. Biol. Chem.
235
1196-1201
-
Vitamin K-Reduktase, Darstellung und eigenschaften
1960
Märki, F.; Martius, C.
Biochem. Z.
333
111-135
Separation and characterization of isoforms of DT-diaphorase from rat liver cytosol
1992
Segura-Aguilar, J.; Kaiser, R.; Lind, C.
Biochim. Biophys. Acta
1120
33-42
Photodependent inhibition of rat liver NAD(P)H:quinone acceptor oxidoreductase by (A)-2-azido-NAD+ and (A)-8-azido-NAD
1991
Deng, P.S.K.; Zhao, S.H.; Iyanagi, T.; Chen, S.
Biochemistry
30
6942-6948
Vitamin K1 hydroquinone formation catalyzed by DT-diaphorase
1982
Fasco, M.J.; Principe, L.M.
Biochem. Biophys. Res. Commun.
104
187-192
Purification and characterization of two isofunctional forms of NAD(P)H: quinone reductase from mouse liver
1986
Prochaska, H.J.; Talalay, P.
J. Biol. Chem.
261
1372-1378
DT-diaphorase: purification, properties, and function
1990
Lind, C.; Cadenas, E.; Hochstein, P.; Ernster, L.
Methods Enzymol.
186
287-301
Catalytic properties of NAD(P)H:quinone acceptor oxidoreductase: study involving mouse, rat, human, and mouse-rat chimeric enzymes
1995
Chen, S.; Knox, R.; Lewis, A.D.; Friedlos, F.; Workman, P.; Deng, P.S.K.; Fung, M.; Ebenstein, D.; Wu, K.; Tsai, T.M.
Mol. Pharmacol.
47
934-939
-
Heterologous expression and biochemical characterization of an NAD(P)H:quinone oxidoreductase from the hemiparasitic plant Triphysaria versicolor
2002
Wrobel, R.L.; Matvienko, M.; Yoder, J.I.
Plant Physiol. Biochem.
40
265-272
Characterization and partial purification of microsomal NAD(P)H:quinone oxidoreductases
2000
Jaiswal, A.K.
Arch. Biochem. Biophys.
375
62-68
NAD(P)H:menadione oxidoreductase of the amitochondriate eukaryote Giardia lamblia: a simpler homologue of the vertebrate enzyme
2001
Sanchez, L.B.; Elmendorf, H.; Nash, T.E.; Muller, M.
Microbiology
147
561-570
Phenylacetyl-CoA:acceptor oxidoreductase, a membrane-bound molybdenum-iron-sulfur enzyme involved in anaerobic metabolism of phenylalanine in the denitrifying bacterium Thauera aromatica
1999
Rhee, S.K.; Fuchs, G.
Eur. J. Biochem.
262
507-515
Quinone reductase 2 substrate specificity and inhibitgion pharmacology
2005
Boutin, J.A.; Chatelein-Egger, F.; Vella, F.; Delagrange, P.; Ferry, G.
Chem. Biol. Interact.
151
213-228
Crystal structure of quinone reductase 2 in complex with cancer prodrug CB1954
2005
Fu, Y.; Buryanovskyy, L.; Zhang, Z.
Biochem. Biophys. Res. Commun.
336
332-338
Effects of site-directed mutations on heme reduction in Escherichia coli nitrate reductase A by menaquinol: a stopped-flow study
2003
Zhao, Z.; Rothery, R.A.; Weiner, J.H.
Biochemistry
42
14225-14233
Transient kinetic studies of heme reduction in Escherichia coli nitrate reductase A (NarGHI) by menaquinol
2003
Zhao, Z.; Rothery, R.A.; Weiner, J.H.
Biochemistry
42
5403-5413
High-stability semiquinone intermediate in nitrate reductase A (NarGHI) from Escherichia coli is located in a quinol oxidation site close to heme bD
2007
Lanciano, P.; Magalon, A.; Bertrand, P.; Guigliarelli, B.; Grimaldi, S.
Biochemistry
46
5323-5329
The coordination and function of the redox centres of the membrane-bound nitrate reductases
2001
Blasco, F.; Guigliarelli, B.; Magalon, A.; Asso, M.; Giordano, G.; Rothery, RA.
Cell. Mol. Life Sci.
58
179-193
Evidence for two different electron transfer pathways in the same enzyme, nitrate reductase A from Escherichia coli
2004
Giordani, R.; Buc, J.
Eur. J. Biochem.
271
2400-2407
Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A
2003
Bertero, M.G.; Rothery, R.A.; Palak, M.; Hou, C.; Lim, D.; Blasco, F.; Weiner, J.H.; Strynadka, N.C.
Nat. Struct. Biol.
10
681-687
UDP-glucuronosyltransferases 1A6 and 1A10 catalyze reduced menadione glucuronidation
2008
Nishiyama, T.; Ohnuma, T.; Inoue, Y.; Kishi, T.; Ogura, K.; Hiratsuka, A.
Biochem. Biophys. Res. Commun.
371
247-250
Old and new inhibitors of quinone reductase 2
2010
Ferry, G.; Hecht, S.; Berger, S.; Moulharat, N.; Coge, F.; Guillaumet, G.; Leclerc, V.; Yous, S.; Delagrange, P.; Boutin, J.A.
Chem. Biol. Interact.
186
103-109
The menaquinol oxidase of Bacillus subtilis W23
1993
Lemma, E.; Schagger, H.; Kroger, A.
Arch. Microbiol.
159
574-578
Properties of the menaquinol oxidase (Qox) and of qox deletion mutants of Bacillus subtilis
1995
Lemma, E.; Simon, J.; Schagger, H.; Kroger, A.
Arch. Microbiol.
163
432-438
The purified SoxABCD quinol oxidase complex of Sulfolobus acidocaldarius contains a novel haem
1994
Luebben, M.; Warne, A.; Albracht, S.P.; Saraste, M.
Mol. Microbiol.
13
327-335
Purification of a cytochrome bd terminal oxidase encoded by the Escherichia coli app locus from a delta cyo delta cyd strain complemented by genes from Bacillus firmus OF4
1996
Sturr, M.G.; Krulwich, T.A.; Hicks, D.B.
J. Bacteriol.
178
1742-1749
The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress
2015
Lu, P.; Heineke, M.H.; Koul, A.; Andries, K.; Cook, G.M.; Lill, H.; van Spanning, R.; Bald, D.
Sci. Rep.
5
10333
Combining mutagenesis on Glu281 of prenyltransferase NovQ and metabolic engineering strategies for the increased prenylated activity towards menadione
2020
Ni, W.; Zheng, Z.; Liu, H.; Wang, P.; Wang, H.; Sun, X.; Yang, Q.; Fang, Z.; Tang, H.; Zhao, G.
Appl. Microbiol. Biotechnol.
104
4371-4382
Methylenetetrahydrofolate reductase from Escherichia coli elucidation of the kinetic mechanism by steady-state and rapid-reaction studies
2001
Trimmer, E.E.; Ballou, D.P.; Matthews, R.G.
Biochemistry
40
6205-6215
Purification and properties of NADH-dependent 5, 10-methylenetetrahydrofolate reductase (MetF) from Escherichia coli
1999
Sheppard, C.A.; Trimmer, E.E.; Matthews, R.G.
J. Bacteriol.
181
718-725
Isolation, characterization, and functional expression of cDNAs encoding NADH-dependent methylenetetrahydrofolate reductase from higher plants
1999
Roje, S.; Wang, H.; McNeil, S.D.; Raymond, R.K.; Appling, D.R.; Shachar-Hill, Y.; Bohnert, H.J.; Hanson, A.D.
J. Biol. Chem.
274
36089-36096