Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
6-(S)-lactoyl-7,8-dihydropterin + NADPH = 6-(L-erythro-1',2'-dihydroxypropyl)-7,8-dihydropterin + NADP+
286014, 286017, 286029, 286031, 286018, 286016, 286022, 286025, 286010, 286011, 286012, 286019, 286020, 286021, 286023, 286024, 286028, 286027, 286033, 286030, 286026, 286032, 286013, 286015
-
sepiapterin + NADPH + H+ = 7,8-dihydrobiopterin + NADP+
-
sepiapterin + NADPH + H+ = dihydrobiopterin + NADP+
-
sepiapterin + NADPH + H+ = L-erythro-7,8-dihydrobiopterin + NADP+
-
(S)-carboxymethyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = (S)-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
(S)-carboxymethyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = (S)-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
(S)-carboxymethyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = (S)-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
(S)-carboxymethyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = (S)-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
(S)-carboxymethyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = (S)-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
(S)-ethyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = (S)-ethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
(S)-ethyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = (S)-ethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
(S)-ethyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = (S)-ethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
(S)-ethyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = (S)-ethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
(S)-ethyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = (S)-ethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
(S)-methyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = (S)-methyl-L-cysteine S-oxide + dihydrobiopterin + H2O
(S)-methyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = (S)-methyl-L-cysteine S-oxide + dihydrobiopterin + H2O
(S)-methyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = (S)-methyl-L-cysteine S-oxide + dihydrobiopterin + H2O
(S)-methyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = (S)-methyl-L-cysteine S-oxide + dihydrobiopterin + H2O
(S)-methyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = (S)-methyl-L-cysteine S-oxide + dihydrobiopterin + H2O
3-(2-thienyl)-L-alanine + tetrahydrobiopterin + O2 = ? + dihydrobiopterin + H2O
3-(2-thienyl)-L-alanine + tetrahydrobiopterin + O2 = ? + dihydrobiopterin + H2O
3-(2-thienyl)-L-alanine + tetrahydrobiopterin + O2 = ? + dihydrobiopterin + H2O
3-(2-thienyl)-L-alanine + tetrahydrobiopterin + O2 = ? + dihydrobiopterin + H2O
3-(2-thienyl)-L-alanine + tetrahydrobiopterin + O2 = ? + dihydrobiopterin + H2O
L-norleucine + tetrahydrobiopterin + O2 = ? + dihydrobiopterin + H2O
L-norleucine + tetrahydrobiopterin + O2 = ? + dihydrobiopterin + H2O
L-norleucine + tetrahydrobiopterin + O2 = ? + dihydrobiopterin + H2O
L-norleucine + tetrahydrobiopterin + O2 = ? + dihydrobiopterin + H2O
L-norleucine + tetrahydrobiopterin + O2 = ? + dihydrobiopterin + H2O
L-Phe + tetrahydrobiopterin + O2 = L-tyrosine + dihydrobiopterin + H2O
L-Phe + tetrahydrobiopterin + O2 = L-tyrosine + dihydrobiopterin + H2O
L-Phe + tetrahydrobiopterin + O2 = L-tyrosine + dihydrobiopterin + H2O
L-Phe + tetrahydrobiopterin + O2 = L-tyrosine + dihydrobiopterin + H2O
L-Phe + tetrahydrobiopterin + O2 = L-tyrosine + dihydrobiopterin + H2O
L-phenylalanine + tetrahydrobiopterin + O2 = L-tyrosine + dihydrobiopterin + H2O
438724, 438727, 438734, 0, 438655, 438721, 438722, 438725, 438726, 438729, 438720, 438733, 438730, 438728, 438654, 438716, 438731, 438715, 438717, 438719, 438732, 438714, 438718
L-phenylalanine + tetrahydrobiopterin + O2 = L-tyrosine + dihydrobiopterin + H2O
438724, 438727, 438734, 0, 438655, 438721, 438722, 438725, 438726, 438729, 438720, 438733, 438730, 438728, 438654, 438716, 438731, 438715, 438717, 438719, 438732, 438714, 438718
L-phenylalanine + tetrahydrobiopterin + O2 = L-tyrosine + dihydrobiopterin + H2O
438724, 438727, 438734, 0, 438655, 438721, 438722, 438725, 438726, 438729, 438720, 438733, 438730, 438728, 438654, 438716, 438731, 438715, 438717, 438719, 438732, 438714, 438718
L-phenylalanine + tetrahydrobiopterin + O2 = L-tyrosine + dihydrobiopterin + H2O
438724, 438727, 438734, 0, 438655, 438721, 438722, 438725, 438726, 438729, 438720, 438733, 438730, 438728, 438654, 438716, 438731, 438715, 438717, 438719, 438732, 438714, 438718
L-phenylalanine + tetrahydrobiopterin + O2 = L-tyrosine + dihydrobiopterin + H2O
438724, 438727, 438734, 0, 438655, 438721, 438722, 438725, 438726, 438729, 438720, 438733, 438730, 438728, 438654, 438716, 438731, 438715, 438717, 438719, 438732, 438714, 438718
S-carboxy-methyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxy-methyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxy-methyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxy-methyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxy-methyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxymethyl-L-cysteine + 5,6,7,8-tetrahydro-L-biopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxymethyl-L-cysteine + 5,6,7,8-tetrahydro-L-biopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxymethyl-L-cysteine + 5,6,7,8-tetrahydro-L-biopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxymethyl-L-cysteine + 5,6,7,8-tetrahydro-L-biopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxymethyl-L-cysteine + 5,6,7,8-tetrahydro-L-biopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxymethyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxymethyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxymethyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxymethyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxymethyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxymethyl-L-cysteine + tetrahydrobiopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxymethyl-L-cysteine + tetrahydrobiopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxymethyl-L-cysteine + tetrahydrobiopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxymethyl-L-cysteine + tetrahydrobiopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-carboxymethyl-L-cysteine + tetrahydrobiopterin + O2 = S-carboxymethyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-methyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = S-methyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-methyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = S-methyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-methyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = S-methyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-methyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = S-methyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-methyl-L-cysteine + 5,6,7,8-tetrahydrobiopterin + O2 = S-methyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-methyl-L-cysteine + tetrahydrobiopterin + O2 = S-methyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-methyl-L-cysteine + tetrahydrobiopterin + O2 = S-methyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-methyl-L-cysteine + tetrahydrobiopterin + O2 = S-methyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-methyl-L-cysteine + tetrahydrobiopterin + O2 = S-methyl-L-cysteine S-oxide + dihydrobiopterin + H2O
S-methyl-L-cysteine + tetrahydrobiopterin + O2 = S-methyl-L-cysteine S-oxide + dihydrobiopterin + H2O
L-tyrosine + tetrahydrobiopterin + O2 = 3,4-dihydroxy-L-phenylalanine + dihydrobiopterin + H2O
0, 438686, 438691, 438703, 438705, 438706, 438708, 438654, 438655, 438683, 438688, 438689, 438690, 438692, 438696, 438698, 438700, 438701, 438702, 438704, 438684, 438693, 438694, 438695, 438697, 438685, 438699, 438712, 438709, 438707, 438710, 438687, 438711
1-O-alkyl-sn-glycerol 3-phosphate + tetrahydrobiopterin + O2 = 1-O-(1-hydroxyalkyl)-sn-glycerol 3-phosphate + 6,7-[8]-dihydrobiopterin + H2O
-
lyso-alkyl-glycerol phospholipid + tetrahydrobiopterin + O2 = 1-O-(1-hydroxyalkyl)-sn-glycerol + 6,7-[8]-dihydrobiopterin + H2O
-
1-alkyl-sn-glycerol + tetrahydrobiopterin + O2 = 1-hydroxyalkyl-sn-glycerol + dihydrobiopterin + H2O
-
1-alkyl-sn-glycerol + tetrahydrobiopterin + O2 = 1-O-alkyl-sn-glycerol + dihydrobiopterin + H2O
-
1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine + tetrahydrobiopterin + O2 = glycerophosphocholine + alkylaldehyde + dihydrobiopterin + H2O
-
1-O-alkyl-sn-glycerol + tetrahydrobiopterin + O2 = 1-O-(1-hydroxyalkyl)-sn-glycerol + dihydrobiopterin + H2O
-
1-O-hexadecylglycerol + tetrahydrobiopterin + O2 = 1-O-(1-hydroxy-hexadecyl)-sn-glycerol + dihydrobiopterin + H2O
-
1-O-pyrenedecyl-sn-glycerol + tetrahydrobiopterin + O2 = 1-hydroxypyrenedecyl-sn-glycerol + dihydrobiopterin + H2O
-
1-O-pyrenedecyl-sn-glycerol + tetrahydrobiopterin + O2 = ? + dihydrobiopterin + H2O
-
hexadecylglycerol + tetrahydrobiopterin + O2 = hexadecanal + glycerol + dihydrobiopterin + H2O
-
prodigiosin + tetrahydrobiopterin + O2 = cycloprodigiosin + dihydrobiopterin + H2O
-
biopterin + NADPH + H+ = 7,8-dihydrobiopterin + NADP+
biopterin + NADPH + H+ = 7,8-dihydrobiopterin + NADP+
biopterin + NADPH + H+ = 7,8-dihydrobiopterin + NADP+
biopterin + NADPH + H+ = 7,8-dihydrobiopterin + NADP+
biopterin + NADPH + H+ = 7,8-dihydrobiopterin + NADP+
2 biopterin + 3 NADPH + 3 H+ = dihydrobiopterin + tetrahydrobiopterin + 3 NADP+
biopterin + NADPH + H+ = dihydrobiopterin + NADP+
4a-hydroxy-tetrahydrobiopterin = 7,8-dihydrobiopterin + H2O
pterin-4alpha-carbinolamine = quininoid dihydropterin + H2O
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
-
Human liver pterin 4alpha-carbinolamine dehydratase. Purification and characterization
1992
Rebrin, I.; Petruschka, L.; Curtius, H.Ch.; Adler, C.; Herrmann, F.H.
Pteridines
3
55-57
-
The bacterial catabolism of pteridines
1978
Tsusue, M.; Takikawa, S.; Yokokawa, C.K.
Dev. Biochem.
4
153-158
Pterin deaminase from Bacillus megaterium
1979
Takikawa, S.; Kitayama-Yokokawa, C.; Tsusue, M.
J. Biochem.
85
785-790
The application of 8-aminoguanosine triphosphate, a new inhibitor of GTP cyclohydrolase I, to the purification of the enzyme from human liver
1986
Blau, N.; Niederwieser, A.
Biochim. Biophys. Acta
880
26-31
Isolation and expression of rat liver sepiapterin reductase cDNA
1990
Citron, B.A.; Milstien, S.; Gutierrez, J.C.; Levine, R.A.; Yanak, B.L.; Kaufman, S.
Proc. Natl. Acad. Sci. USA
87
6436-6440
Studies on sepiapterin reductase: further characterization of the reaction product
1968
Nagai, M.
Arch. Biochem. Biophys.
126
426-435
Sepiapterin reductase
1966
Matsubara, M.; Katoh, S.; Akino, M.; Kaufman, S.
Biochim. Biophys. Acta
122
202-212
Sepiapterin reductase from horse liver: purification and properties of the enzyme
1971
Katoh, S.
Arch. Biochem. Biophys.
146
202-214
Sepiapterin reductase in blood of various animals and of leukemic rats
1974
Katoh, S.; Arai, Y.; Taketani, T.; Yamada, S.
Biochim. Biophys. Acta
370
378-388
Purification and characterization of sepiapterin reductase from rat erythrocytes
1982
Sueoka, T.; Katoh, S.
Biochim. Biophys. Acta
717
265-271
Sepiapterin reductase in cultured human cells
1987
Fere, J.; Naylor, E.W.
Biochem. Biophys. Res. Commun.
148
1475-1481
Tetrahydrobiopterin biosynthetic activities in human macrophages, fibroblasts, THP-1, and T 24 cells. GTP-cyclohydrolase I is stimulated by interferon-gamma, and 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase are constitutively present
1990
Werner, E.R.; Werner-Felmayer, G.; Fuchs, D.; Hausen, A.; Reibnegger, G.; Yim, J.J.; Pfleiderer, W.; Wachter, H.
J. Biol. Chem.
265
3189-3192
Analysis of the tetrahydrobiopterin synthesizing system during maturation of murine reticulocytes
1990
Kerler, F.; Hultner, L.; Ziegler, I.; Katzenmaier, G.; Bacher, A.
J. Cell. Physiol.
142
268-271
Isomerization of 6-lactoyl tetrahydropterin by sepiapterin reductase
1987
Katoh, S.; Sueoka, T.
J. Biochem.
101
275-278
Sepiapterin reductase exhibits a NADPH-dependent dicarbonyl reductase activity
1984
Katoh, S.; Sueoka, T.
Biochem. Biophys. Res. Commun.
118
859-866
Carbonyl reductase activity of sepiapterin reductase from rat erythrocytes
1985
Sueoka, T.; Katoh, S.
Biochim. Biophys. Acta
843
193-198
Tetrahydrobiopterin biosynthesis. Studies with specifically labeled (2H)NAD(P)H and 2H2O and of the enzymes involved
1985
Curtius, H.C.; Heintel, D.; Ghisla, S.; Kuster, T.; Leimbacher, W.; Niederwieser, A.
Eur. J. Biochem.
148
413-419
Direct inhibition of brain sepiapterin reductase by a catecholamine and an indoleamine
1982
Katoh, S.; Sueoka, T.; Yamada, S.
Biochem. Biophys. Res. Commun.
105
75-81
On the role of sepiapterin reductase in the biosynthesis of tetrahydrobiopterin
1987
Smith, G.K.
Arch. Biochem. Biophys.
255
254-266
Purification and properties of human sepiapterin reductase from placenta
1993
Maier, J.; Ziegler, I.
Adv. Exp. Med. Biol.
338
199-202
-
Sepiapterin reductase producing L-threo-dihydrobiopterin from Chlorobium tepidum
1999
Cho, S.H.; Na, J.U.; Youn, H.; Hwang, C.S.; Lee, C.H.; Kang, S.O.
Biochem. J.
340
497-503
New inhibitors of sepiapterin reductase
1992
Smith, G.K.; Duch, D.S.; Edelstein, M.P.; Bigham, E.C.
J. Biol. Chem.
267
5599-5607
Role of the conserved Ser-Tyr-Lys triad of the SDR family in sepiapterin reductase
2001
Fujimoto, K.; Hara, M.; Yamada, H.; Sakurai, M.; Inaba, A.; Tomomura, A.; Katoh, S.
Chem. Biol. Interact.
130-132
825-832
Characterization of sepiapterin reductase activity from Drosophila melanogaster
1996
Ruiz-Vazquez, P.; Silva, F.J.; Ferre, J.
Comp. Biochem. Physiol. B
113
131-136
Characterization of recombinant Dictyostelium discoideum sepiapterin reductase expressed in E. coli
2000
Kim, Y.A.; Chung, H.J.; Kim, Y.J.; Choi, Y.K.; Hwang, Y.K.; Lee, S.W.; Park, Y.S.
Mol. Cells
10
405-410
-
Isolation and characterization of sepiapterin reductase from Drosophila melanogaster
1993
Yoon, K.H.; Cha, K.W.; Park, S.I.; Yim, J.J.
Pteridines
4
43-50
The 1.25 A crystal structure of sepiapterin reductase reveals its binding mode to pterins and brain neurotransmitters
1997
Auerbach, G.; Herrmann, A.; Gutlich, M.; Fischer, M.; Jacob, U.; Bacher, A.; Huber, R.
EMBO J.
16
7219-7230
Sepiapterin reductase and ALR2 ("aldose reductase") from bovine brain
1993
Dowling, T.G.; O'Rourke, J.F.; Tipton, K.F.
Adv. Exp. Med. Biol.
328
313-324
The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major
1997
Nare, B.; Hardy, L.W.; Beverley, S.M.
J. Biol. Chem.
272
13883-13891
Partial characterization of the alkylglycerol cleavage enzyme system of rat liver
1972
Soodsma, J.F.; Piantadosi, C.; Snyder, F.
J. Biol. Chem.
247
3923-3929
Solubilization and partial characterization of alkylglycerol monooxygenase from rat liver microsomes
1983
Ishibashi, T.; Imai, Y.
Eur. J. Biochem.
132
23-27
-
Aromatic amino acid hydroxylases
1987
Kaufman, S.
The Enzymes, 3rd Ed. (Boyer, P. D. , ed. )
18
217-282
3,4-Dihydroxystyrene, a novel microbial inhibitor for phenylalanine hydroxylase and other pteridine-dependent monooxygenases
1984
Koizumi, S.; Matsushima, Y.; Nagatsu, T.; Linuma, H.; Takeuchi, T.; Umezawa, H.
Biochim. Biophys. Acta
789
111-118
Conformation of the substrate and pterin cofactor bound to human tryptophan hydroxylase. Important role of Phe313 in substrate specificity
2001
McKinney, J.; Teigen, K.; Froystein, N.A.; Salauen, C.; Knappskog, P.M.; Haavik, J.; Martinez, A.
Biochemistry
40
15591-15601
Interaction of tyrosine hydroxylase with ribonucleic acid and purification with DNA-cellulose or poly(A)-sepharose affinity chromatography
1987
Nelson, T.J.; Kaufman, S.
Arch. Biochem. Biophys.
257
69-84
Soluble tyrosine hydroxylase (tyrosine 3-monooxygenase) from bovine adrenal medulla: large-scale purification and physicochemical properties
1988
Haavik, J.; Andersson, K.K.; Petersson, L.; Flatmark, T.
Biochim. Biophys. Acta
953
142-156
Purification of tyrosine hydroxylase by high-pressure liquid chromatography
1981
Lloyd, T.; Walega, M.A.
Anal. Biochem.
116
559-563
Phenylalanine as substrate and inhibitor of tyrosine hydroxylase
1967
Ikeda, M.; Levitt, M.; Udenfriend, S.
Arch. Biochem. Biophys.
120
420-427
Tyrosine 3-monooxygenase from bovine adrenal medulla
1987
Nagatsu, T.; Oka, K.
Methods Enzymol.
142
56-62
Tyrosine 3-monooxygenase from rat adrenals
1987
Fujisawa, H.; Okuno, S.
Methods Enzymol.
142
63-71
Complete coding sequence of rat tyrosine hydroxylase mRNA
1985
Grima, A.; Lamouroux, F.; Blanot, F.; Biguet, N.F.; Mallet, J.
Proc. Natl. Acad. Sci. USA
82
617-621
Tyrosine 3-monooxygenase from rat pheochromocytoma
1987
Tank, A.W.; Weiner, N.
Methods Enzymol.
142
71-82
Tyrosine hydroxylase.The initial step in norepinephrine biosynthesis
1964
Nagatsu, T.; Levitt, M.; Udenfriend, S.
J. Biol. Chem.
239
2910-2917
Expression of rat tyrosine hydroxylase in insect tissue culture cells and purification and characterization of the cloned enzyme
1990
Fitzpatrick, P.F.; Chlumsky, L.J.; Dauber, S.C.; O' Malley, K.L.
J. Biol. Chem.
265
2042-2047
The pH dependence of binding of inhibitors to bovine adrenal tyrosine hydroxylase [published erratum appears in J Biol Chem 1989 Mar 25;264(9):5313]
1988
Fitzpatrick, P.F.
J. Biol. Chem.
263
16058-16062
Kinetic properties of tyrosine hydroxylase with natural tetrahydrobiopterin as cofactor
1981
Oka, K.; Kato, T.; Sugimoto, T.; Matsuura, S.; Nagatsu, T.
Biochim. Biophys. Acta
661
45-53
Kinetic properties of tyrosine hydroxylase purified from bovine adrenal medulla and bovine caudate nucleus
1982
Oka, K.; Ashiba, G.; Sugimoto, T.; Matsuura, S.; Nagatsu, T.
Biochim. Biophys. Acta
706
188-196
Purification and characterization of rat striatal tyrosine hydroxylase. Comparison of the activation by cyclic AMP-dependent phosphorylation and by other effectors
1985
Richtand, N.M.; Inagami, T.; Misono, K.; Kuczenski, R.
J. Biol. Chem.
260
8465-8473
Bovine adrenal tyrosine hydroxylase: purification and properties
1977
Hoeldtke, R.; Kaufman, S.
J. Biol. Chem.
252
3160-3169
Purification and some properties of tyrosine 3-monooxygenase from rat adrenal
1982
Okuno, S.; Fujisawa, H.
Eur. J. Biochem.
122
49-55
Tyrosine hydroxylase activity of immobilized tyrosinase on Enzyacryl-AA and CPG-AA supports: stabilization and properties
1984
Villanova, E.; Manjon, A.; Iborra, J.L.
Biotechnol. Bioeng.
26
1306-1312
Crystal structure of tyrosine hydroxylase with bound cofactor analog and iron at 2.3.ANG. resolution: self-hydroxylation of Phe300 and the pterin-binding site
1998
Goodwill, K.E.; Sabatier, C.; Stevens, R.C.
Biochemistry
37
13437-13445
A mechanism for hydroxylation by tyrosine hydroxylase based on partitioning of substituted phenylalanines
1996
Hillas, P.J.; Fitzpatrick, P.F.
Biochemistry
35
6969-6975
Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase
1998
Xu, Y.; Stokes, A.H.; Roskoski, R.Jr.; Vrana, K.E.
J. Neurosci. Res.
54
691-697
Interaction of substrate and pterin cofactor with the metal of human tyrosine hydroxylase as determined by 1H-NMR
1993
Martinez, A.; Abeygunawardana, C.; Haavik, J.; Flatmark, T.; Mildvan, A.S.
Adv. Exp. Med. Biol.
338
77-80
Further characterization of the long-term effect of RU24722 on tyrosine hydroxylase in the rat locus coeruleus
1993
Schmitt, P.; Reny-Palasse, V.; Bourde, O.; Garcia, C.; Pujol, J.F.
J. Neurochem.
61
1423-1429
Recombinant human tyrosine hydroxylase types 1-4 show regulatory kinetic properties for the natural (6R)-tetrahydrobiopterin cofactor
1994
Nasrin, S.; Ichinose, H.; Hidaka, H.; Nagatsu, T.
J. Biochem.
116
393-398
L-DOPA is a substrate for tyrosine hydroxylase
1997
Haavik, J.
J. Neurochem.
69
1720-1728
Cloning and characterization of a novel form of tyrosine hydroxylase from the human parasite, Schistosoma mansoni
1998
Hamdan, F.F.; Ribeiro, P.
J. Neurochem.
71
1369-1380
Conformational properties and stability of tyrosine hydroxylase studied by infrared spectroscopy. Effect of iron/catecholamine binding and phosphorylation
1996
Martinez, A.; Haavik, J.; Flatmark, T.; Arrondo, J.L.; Muga, A.
J. Biol. Chem.
271
19737-19742
Reversing the substrate specificities of phenylalanine and tyrosine hydroxylase: aspartate 425 of tyrosine hydroxylase is essential for L-DOPA formation
2000
Daubner, S.C.; Melendez, J.; Fitzpatrick, P.F.
Biochemistry
39
9652-9661
A kinetic and conformational study on the interaction of tetrahydropteridines with tyrosine hydroxylase
2000
Almas, B.; Toska, K.; Teigen, K.; Groehn, V.; Pfleiderer, W.; Martinez, A.; Flatmark, T.; Haavik, J.
Biochemistry
39
13676-13686
Mutation to phenylalanine of tyrosine 371 in tyrosine hydroxylase increases the affinity for phenylalanine
1998
Daubner, S.C.; Fitzpatrick, P.F.
Biochemistry
37
16440-16444
Isolation and purification of tyrosine hydroxylase from callus cultures of Portulaca grandiflora
2001
Yamamoto, K.; Kobayashi, N.; Yoshitama, K.; Teramoto, S.; Komamine, A.
Plant Cell Physiol.
42
969-975
Phenylalanine 4-monooxygenase from rat liver
1987
Kaufman, S.
Methods Enzymol.
142
3-17
Purification and assay of rat liver phenylalanine 4-monooxygenase
1987
Shiman, R.
Methods Enzymol.
142
17-27
Phenylalanine 4-monooxygenase from human liver
1987
Abita, J.P.; Blandin-Savoja, F.; Rey, F.
Methods Enzymol.
142
27-35
Phenylalanine 4-monooxygenase from bovine liver
1987
Doskeland, A.P.; Doskeland, S.O.; Flatmark, T.
Methods Enzymol.
142
35-44
Phenylalanine 4-monooxygenase from Chromobacterium violaceum
1987
Fujisawa, H.; Nakata, H.
Methods Enzymol.
142
44-49
Chromobacterium violaceum phenylalanine 4-monooxygenase
1987
Pember, S.O.; Villafranca, J.J.; Benkovic, S.J.
Methods Enzymol.
142
50-56
Phenylalanine hydroxylation by Pseudomonas species (ATCC 11299a). Nature of the cofactor
1969
Guroff, G.; Rhoads, C.A.
J. Biol. Chem.
244
142-146
Purification and characterization of phenylalanine 4-monooxygenase from rat liver
1980
Nakata, H.; Fujisawa, H.
Biochim. Biophys. Acta
614
313-327
Purification of rat liver phenylalanine hydroxylase by affinity chromatography
1980
Al-Janabi, J.M.
Arch. Biochem. Biophys.
200
603-608
Purification of phenylalanine hydroxylase from human adult and foetal livers with a monoclonal antibody
1985
Yamashita, M.; Minato, S.; Arai, M.; Kishida, Y.; Nagatsu, T.; Umezawa, H.
Biochem. Biophys. Res. Commun.
133
202-207
EPR and 1H-NMR spectroscopic studies on the paramagnetic iron at the active site of phenylalanine hydroxylase and its interaction with substrates and inhibitors
1991
Martinez, A.; Andersson, K.K.; Haavik, J.; Flatmark, T.
Eur. J. Biochem.
198
675-682
Inactivation of purified phenylalanine hydroxylase by dithiothreitol
1992
Martinez, A.; Olafsdottir, S.; Haavik, J.; Flatmark, T.
Biochem. Biophys. Res. Commun.
182
92-98
Biochemical characterization of recombinant human phenylalanine hydroxylase produced in Escherichia coli
1987
Ledley, F.D.; Grenett, H.E.; Woo, S.L.C.
J. Biol. Chem.
262
2228-2233
Phenylalanine hydroxylase of Macaca irus A simple purification by affinity chromatography
1975
Cotton, R.G.H.; Grattan, P.J.
Eur. J. Biochem.
60
427-430
Characterization of phenylalanine hydroxylase
1986
Bloom, L.M.; Benkovic, S.J.; Gaffney, B.J.
Biochemistry
25
4204-4210
Phenylalanine hydroxylase from Chromobacterium violaceum is a copper-containing monooxygenase. Kinetics of the reductive activation of the enzyme
1986
Pember, S.O.; Villafranca, J.J.; Benkovic, S.J.
Biochemistry
25
6611-6619
The activation of rat liver phenylalanine hydroxylase by limited proteolysis, lysolecithin, and tocopherol phosphate. Changes in conformation and catalytic properties
1984
Abita, J.P.; Parniak, M.; Kaufman, S.
J. Biol. Chem.
259
14560-14566
Phenylalanine hydroxylase from Chromobacterium violaceum. Purification and characterization
1979
Nakata, H.; Yamauchi, T.; Fujisawa, H.
J. Biol. Chem.
254
1829-1833
Phenylalanine hydroxylase from Pseudomonas sp. (ATCC 11299a). Purification, molecular weight, and influence of tyrosine metabolites on activation and hydroxylation
1975
Letendre, C.H.; Dickens, G.; Guroff, G.
J. Biol. Chem.
250
6672-6678
The isolation and properties of phenylalanine hydroxylase from human liver
1974
Woo, S.L.C.; Gillam, S.S.; Woolf, L.I.
Biochem. J.
139
741-749
A pteridine reductase gene ptr1 contiguous to a P-glycoprotein confers resistance to antifolates in Trypanosoma cruzi
1997
Robello, C.; Navarro, P.; Castanys, S.; Gamarro, F.
Mol. Biochem. Parasitol.
90
525-535
-
New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity
1997
Nare, B.; Luba, J.; Hardy, L.W.; Beverley, S.
Parasitology
114
101-110
Biochemical and genetic tests for inhibitors of Leishmania pteridine pathways
1997
Hardy, L.W.; Matthews, W.; Nare, B.; Beverley, S.M.
Exp. Parasitol.
87
157-169
Residues involved in co-factor and substrate binding of the short-chain dehydrogenase/reductase PTR1 producing methotrexate resistance in Leishmania
1998
Leblanc, E.; Papadopoulou, B.; Bernatchez, C.; Ouellette, M.
Eur. J. Biochem.
251
768-774
PTR1: a reductase mediating salvage of oxidized pteridines and methotrexate resistance in the protozoan parasite Leishmania major
1994
Bello, A.R.; Nare, B.; Freedman, D.; Hardy, L.; Beverly, S.M.
Proc. Natl. Acad. Sci. USA
91
11442-11446
Pterin and folate reduction by the Leishmania tarentolae H locus short-chain dehydrogenase/reductase PTR1
1997
Wang, J.; Leblanc, E.; Chang, C.F.; Papadopoulou, B.; Bray, T.; Witheley, J.M.; Lin, S.X.; Quellette, M.
Arch. Biochem. Biophys.
342
197-202
6,6-Dimethylpterins: stable quinoid dihydropterin substrate for dihydropteridine reductase and tetrahydropterin cofactor for phenylalanine hydroxylase
1983
Bailey, S.W.; Ayling, J.E.
Biochemistry
22
1790-1798
A vibrational structure of 7,8-dihydrobiopterin bound to dihydroneopterin aldolase
2000
Deng, H.; Callender, R.; Dale, G.E.
J. Biol. Chem.
275
30139-30143
FolM, a new chromosomally encoded dihydrofolate reductase in Escherichia coli
2003
Giladi, M.; Altman-Price, N.; Levin, I.; Levy, L.; Mevarech, M.
J. Bacteriol.
185
7015-7018
Structural basis of biopterin-induced inhibition of GTP cyclohydrolase I by GFRP, its feedback regulatory proteins
2004
Maita, N.; Hatakeyama, K.; Okada, K.; Hakoshima, T.
J. Biol. Chem.
279
51534-51540
Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate
2006
Dawson, A.; Gibellini, F.; Sienkiewicz, N.; Tulloch, L.B.; Fyfe, P.K.; McLuskey, K.; Fairlamb, A.H.; Hunter, W.N.
Mol. Microbiol.
61
1457-1468
Development and validation of a cytochrome c-coupled assay for pteridine reductase 1 and dihydrofolate reductase
2010
Shanks, E.J.; Ong, H.B.; Robinson, D.A.; Thompson, S.; Sienkiewicz, N.; Fairlamb, A.H.; Frearson, J.A.
Anal. Biochem.
396
194-203
One scaffold, three binding modes: novel and selective pteridine reductase 1 inhibitors derived from fragment hits discovered by virtual screening
2009
Mpamhanga, C.P.; Spinks, D.; Tulloch, L.B.; Shanks, E.J.; Robinson, D.A.; Collie, I.T.; Fairlamb, A.H.; Wyatt, P.G.; Frearson, J.A.; Hunter, W.N.; Gilbert, I.H.; Brenk, R.
J. Med. Chem.
52
4454-4465
Diminished expression of dihydropteridine reductase is a potent biomarker for hypertensive vessels
2009
Lee, C.K.; Han, J.S.; Won, K.J.; Jung, S.H.; Park, H.J.; Lee, H.M.; Kim, J.; Park, Y.S.; Kim, H.J.; Park, P.J.; Park, T.K.; Kim, B.
Proteomics
9
4851-4858
Purification, crystallization and crystallographic analysis of Dictyostelium discoideum phenylalanine hydroxylase in complex with dihydrobiopterin and FeIII
2010
Zhuang, N.; Seo, K.H.; Chen, C.; Kim, H.L.; Park, Y.S.; Lee, K.H.
Acta Crystallogr. Sect. F
66
463-466
Dissecting the metabolic roles of pteridine reductase 1 in Trypanosoma brucei and Leishmania major
2011
Ong, H.B.; Sienkiewicz, N.; Wyllie, S.; Fairlamb, A.H.
J. Biol. Chem.
286
10429-10438
Characterization of the dihydropterin reductase activity of pig liver methylenetetrahydrofolate reductase
1980
Matthews, R.G.; Kaufman, S.
J. Biol. Chem.
255
6014-6017
High-resolution crystal structure of Trypanosoma brucei pteridine reductase 1 in complex with an innovative tricyclic-based inhibitor
2020
Landi, G.; Linciano, P.; Tassone, G.; Costi, M.P.; Mangani, S.; Pozzi, C.
Acta Crystallogr. Sect. D
76
558-564
Identification of a 2,4-diaminopyrimidine scaffold targeting Trypanosoma brucei pteridine reductase 1 from the LIBRA compound library screening campaign
2020
Linciano, P.; Cullia, G.; Borsari, C.; Santucci, M.; Ferrari, S.; Witt, G.; Gul, S.; Kuzikov, M.; Ellinger, B.; Santarem, N.; Cordeiro da Silva, A.; Conti, P.; Bolognesi, M.L.; Roberti, M.; Prati, F.; Bartoccini, F.; Retini, M.; Piersanti, G.; Cavalli, A.; Goldoni, L.; Bertozzi, S.M.; Bertozzi, F.; , B.
Eur. J. Med. Chem.
189
112047
Enzymatic and mutational analysis of the PruA pteridine reductase required for pterin-dependent control of biofilm formation in Agrobacterium tumefaciens
2020
Labine, M.; DePledge, L.; Feirer, N.; Greenwich, J.; Fuqua, C.; Allen, K.
J. Bacteriol.
202
e00098-20
In silico identification and in vitro evaluation of natural inhibitors of Leishmania major pteridine reductase I
2017
Herrmann, F.C.; Sivakumar, N.; Jose, J.; Costi, M.P.; Pozzi, C.; Schmidt, T.J.
Molecules
22
2166
Identification of novel potential inhibitors of pteridine reductase 1 in Trypanosoma brucei via computational structure-based approaches and in vitro inhibition assays
2019
Kimuda, M.P.; Laming, D.; Hoppe, H.C.; Tastan Bishop, Oe.
Molecules
24
142
Identification of kaurane-type diterpenes as inhibitors of Leishmania pteridine reductase I
2021
Herrera-Acevedo, C.; Flores-Gaspar, A.; Scotti, L.; Mendonca-Junior, F.J.B.; Scotti, M.T.; Coy-Barrera, E.
Molecules
26
0000
Evidence of pyrimethamine and cycloguanil analogues as dual inhibitors of Trypanosoma brucei pteridine reductase and dihydrofolate reductase
2021
Tassone, G.; Landi, G.; Linciano, P.; Francesconi, V.; Tonelli, M.; Tagliazucchi, L.; Costi, M.P.; Mangani, S.; Pozzi, C.
Pharmaceuticals
14
636
Combined gene deletion of dihydrofolate reductase-thymidylate synthase and pteridine reductase in Leishmania infantum
2021
Bhattacharya, A.; Leprohon, P.; Ouellette, M.
PLoS Negl. Trop. Dis.
15
e0009377