Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
cholesterol + reduced adrenodoxin + O2 = 24-hydroxycholesterol + oxidized adrenodoxin + H2O
-
(24S)-3beta-hydroxy-24-methyl-5alpha-cholesta-8(14),22-dien-15-one + reduced adrenodoxin + H+ + O2 = ?
-
(25R)-5beta-cholestane-3alpha,7alpha,12alpha,27-tetraol + reduced adrenodoxin + O2 = 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid + oxidized adrenodoxin + H2O
-
1alpha-hydroxyvitamin D3 + reduced adrenodoxin + O2 = 1alpha,25-dihydroxyvitamin D3 + oxidized adrenodoxin + H2O
-
3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-27-al + reduced adrenodoxin + O2 = 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid + oxidized adrenodoxin + H2O
-
3beta-hydroxy-5alpha-cholest-8(14)-en-15-one + reduced adrenodoxin + H+ + O2 = ?
-
5-cholestene-3beta,7alpha-diol + reduced adrenodoxin + O2 = 5-cholestene-3alpha,7alpha,26-triol + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha,12alpha,26-tetraol + reduced adrenodoxin + O2 = 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-26-al + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha,12alpha,27-tetraol + reduced adrenodoxin + O2 = 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestane-27-oic acid + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha,12alpha-triol + reduced adrenodoxin + H+ + O2 = (25R)-5beta-cholestane-3alpha,7alpha,12alpha,26-tetraol + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha,12alpha-triol + reduced adrenodoxin + O2 = (25R)-5beta-cholestane-3alpha,7alpha,12alpha,26-tetraol + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha,12alpha-triol + reduced adrenodoxin + O2 = (25R)-5beta-cholestane-3alpha,7alpha,12alpha,27-tetraol + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha,12alpha-triol + reduced adrenodoxin + O2 = 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid + oxidzed adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha,12alpha-triol + reduced adrenodoxin + O2 = 5beta-cholestane-3alpha,7alpha,12alpha,26-tetraol + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha,12alpha-triol + reduced adrenodoxin + O2 = 5beta-cholestane-3alpha,7alpha,12alpha,27-tetrol + oxidized adrenodoxin + H2O
439023, 439026, 439028, 439029, 439030, 439031, 439034, 439035, 439036, 439024, 439025, 439032
-
5beta-cholestane-3alpha,7alpha,12alpha-triol + reduced adrenodoxin + O2 = ?
-
5beta-cholestane-3alpha,7alpha-diol + reduced adrenodoxin + O2 = 5beta-cholestane-3alpha,7alpha,26-triol + oxidized adrenodoxin + H2O
-
5beta-cholestane-3alpha,7alpha-diol + reduced adrenodoxin + O2 = ?
-
5beta-cholestane-3alpha-ol + reduced adrenodoxin + O2 = ?
-
7alpha-hydroxy-4-cholesten-3-one + reduced adrenodoxin + O2 = 7alpha,26-dihydroxy-4-cholesten-3-one + oxidized adrenodoxin + H2O
-
beta-sitosterol + reduced adrenodoxin + O2 = 26-hydroxy-beta-sitosterol + 29-hydroxy-beta-sitosterol + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + H+ + O2 = 26-hydroxycholesterol + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + O2 = 24-hydroxycholesterol + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + O2 = 25-hydroxycholesterol + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + O2 = 26-hydroxycholesterol + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + O2 = 27-hydroxycholesterol + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + O2 = ?
-
ergosterol + reduced adrenodoxin + O2 = 24-hydroxyergosterol + 26-hydroxyergosterol + 28-hydroxyergosterol + oxidized adrenodoxin + H2O
-
24,25-dihydroxycholecalciferol + reduced adrenodoxin + O2 = 1alpha,24,25-trihydroxycholecalciferol + oxidized adrenodoxin + H2O
-
11-deoxycorticosterone + reduced adrenodoxin + O2 = corticosterone + oxidized adrenodoxin + H2O
-
11-deoxycortisol + reduced adrenodoxin + O2 = cortisol + oxidized adrenodoxin + H2O
-
18-hydroxycorticosterone + reduced adrenodoxin + O2 = aldosterone + oxidized adrenodoxin + H2O
-
a steroid + reduced adrenodoxin + O2 = an 11beta-hydroxysteroid + oxidized adrenodoxin + H2O
-
androstendione + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
corticosterone + reduced adrenodoxin + O2 = 18-hydroxycorticosterone + oxidized adrenodoxin + H2O
-
progesterone + reduced adrenodoxin + O2 = 11beta-hydroxyprogesterone + oxidized adrenodoxin + H2O
-
testosterone + reduced adrenodoxin + O2 = 11-hydroxytestosterone + oxidized adrenodoxin + H2O
-
(20S)-22-thiacholesterol + reduced adrenodoxin + O2 = (20S,22R)-22-thiacholesterol S-oxide + (20S,22S)-22-thiacholesterol S-oxide
-
17,20-dihydroxyvitamin D2 + reduced adrenodoxin + O2 = 17,20,24-trihydroxyvitamin D2 + oxidized adrenodoxin + O2
-
20,23-dihydroxyvitamin D3 + reduced adrenodoxin + O2 = 17,20,23-trihydroxyvitamin D3 + oxidized adrenodoxin + H2O
-
20,23-dihydroxyvitamin D3 + reduced adrenodoxin + O2 = 17alpha,20,23-trihydroxyvitamin D3 + oxidized adrenodoxin + H2O
-
20-hydroxyvitamin D2 + reduced adrenodoxin + O2 = 17,20,24-trihydroxyvitamin D2 + oxidized adrenodoxin + O2
-
20-hydroxyvitamin D3 + reduced adrenodoxin + O2 = 20,23-dihydroxyvitamin D3 + 17alpha,20,23-trihydroxyvitamin D3 + oxidized adrenodoxin + H2O
-
20-hydroxyvitamin D3 + reduced adrenodoxin + O2 = 20,23-dihydroxyvitamin D3 + oxidized adrenodoxin + H2O
-
20alpha, 22(R)-dihydroxycholesterol + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
20alpha-hydroxycholesterol + reduced adrenodoxin + O2 = pregnenolone + 4-methylpentanal + oxidized adrenodoxin + H2O
-
22(R)-hydroxycholesterol + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
22(R)-hydroxycholesterol + reduced adrenodoxin + O2 = pregnenolone + oxidized adrenodoxin + H2O
-
25-hydroxycholesterol + reduced adrenodoxin + O2 = pregnenolone + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + O2 + H+ = pregnenolone + 4-methylpentanal + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
cholesterol + reduced adrenodoxin + O2 = pregnenolone + 4-methylpentanal + oxidized adrenodoxin + H2O
659756, 285412, 285413, 285414, 285415, 285419, 285420, 285423, 285424, 285426, 285427, 285428, 285429, 285430, 285431, 285432, 285433, 703418, 703876, 704039, 703100, 702781, 285422, 285421, 285425, 285416, 285418, 285417
-
cholesterol sulfate + reduced adrenodoxin + O2 = pregnenolone sulfate + 17-hydroxy-pregnenolone + dehydroisoandrosterone sulfate + oxidized adrenodoxin + H2O
-
vitamin D2 + reduced adrenodoxin + O2 = 17,20,24-trihydroxyvitamin D2 + oxidized adrenodoxin + H2O
-
vitamin D3 + reduced adrenodoxin + O2 = 20-hydroxyvitamin D3 + oxidized adrenodoxin + H2O
-
11-deoxycorticosterone + reduced adrenodoxin + O2 = 15beta-hydroxy-11-deoxycorticosterone + 7beta,15beta-dihydroxy-11-deoxycorticosterone + oxidized adrenodoxin + H2O
-
11-deoxycorticosterone + reduced adrenodoxin + O2 = 15beta-hydroxy-11-deoxycorticosterone + oxidized adrenodoxin + H2O
-
11-deoxycortisol + reduced adrenodoxin + O2 = 15beta-15,17,21-trihydroxypregn-4-ene-3,20-dione + oxidized adrenodoxin + H2O
-
11-deoxycortisol + reduced adrenodoxin + O2 = 15beta-hydroxy-11-deoxycortisol + oxidized adrenodoxin + H2O
-
11beta-hydroxy-4-androstene-3,17-dione + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
17alpha-methyltestosterone + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
19-nortestosterone + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
4-androstene-3,17-dione + reduced adrenodoxin + O2 = 15beta-hydroxyandrostene-3,17-dione + oxidized adrenodoxin + H2O
-
abietic acid + reduced adrenodoxin + O2 = 12-hydroxyabietic acid + oxidized adrenodoxin + H2O
-
abietic acid + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
corticosterone + reduced adrenodoxin + O2 = 15beta-hydroxycorticosterone + oxidized adrenodoxin + H2O
-
cortisone + reduced adrenodoxin + O2 = 15beta-hydroxycortisone + oxidized adrenodoxin + H2O
-
dehydroabietic acid + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
dehydroepiandrosterone + reduced adrenodoxin + O2 = 7beta-hydroxy-dehydroepiandrosterone + oxidized adrenodoxin + H2O
-
dexamethasone + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
digitoxigenin + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
imipramine + reduced adrenodoxin + O2 = desipramine + oxidized adrenodoxin + H2O
-
isopimaric acid + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
prednisolone + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
prednisone + reduced adrenodoxin + O2 = ? + oxidized adrenodoxin + H2O
-
pregnenolone + reduced adrenodoxin + O2 = 7beta-hydroxy-pregnenolone + oxidized adrenodoxin + H2O
-
progesterone + reduced adrenodoxin + O2 = 15beta-hydroxy-progesterone + 11alpha-hydroxy-progesterone + oxidized adrenodoxin + H2O
-
progesterone + reduced adrenodoxin + O2 = 15beta-hydroxy-progesterone + oxidized adrenodoxin + H2O
-
progesterone + reduced adrenodoxin + O2 = 15beta-hydroxyprogesterone + oxidized adrenodoxin + H2O
-
testosterone + reduced adrenodoxin + O2 = 15beta-hydroxytestosterone + oxidized adrenodoxin + H2O
-
reduced adrenodoxin + NADP = oxidized adrenodoxin + NADPH + H+
-
reduced adrenodoxin + NADP+ + H+ = oxidized adrenodoxin + NADPH
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Mitochondrial cytochrome P-450sec. Mechanism of electron transport by adrenodoxin
1980
Hanukoglu, I.; Jefcoate, C.R.
J. Biol. Chem.
255
3057-3061
Adrenal mitochondrial cytochrome P-450scc. Cholesterol and adrenodoxin interactions at equilibrium and during turnover
1981
Hanukoglu, I.; Spitsberg, V.; Bumpus, J.A.; Dus, K.M.; Jefcoate, C.R.
J. Biol. Chem.
256
4321-4328
Mechanisms of ionic activation of adrenal mitochondrial cytochromes P-450scc and P-45011beta
1981
Hanukoglu, I.; Privalle, C.T.; Jefcoate, C.R.
J. Biol. Chem.
256
4329-4335
Purification and characterization of adrenal cortex mitochondrial cytochrome P-450 specific for cholesterol side chain cleavage activity
1976
Wang, H.P.; Kimura, T.
J. Biol. Chem.
251
6068-6074
Binding of Triton X-100 to purified cytochrome P-450scc and enhancement of the cholesterol side chain cleavage activity
1979
Nakajin, S.; Ishii, Y.; Shinoda, M.
Biochem. Biophys. Res. Commun.
87
524-531
The catalytic cycle of cytochrome P-450scc and intermediates in the conversion of cholesterol to pregnenolone
1984
Hume, R.; Kelly, R.W.; Taylor, P.L.; Boyd, G.S.
Eur. J. Biochem.
140
583-591
Cytochrome P-450 from bovine adrenocortical mitochondria: an enzyme for the side chain cleavage of cholesterol. I. Purification and properties
1973
Shikita, M.; Hall, P.F.
J. Biol. Chem.
248
5598-5604
Purification of cytochrome P-450 from bovine adrenocortical mitochondria by an aniline-Sepharose and the properties
1975
Takemori, S.; Sukara, K.; Hashimoto, K.; Hashimoto, M.; Sato, H.; Gomi, T.; Katagiri, M.
Biochem. Biophys. Res. Commun.
63
588-593
Cholesterol metabolism by purified cytochrome P-450scc is highly stimulated by octyl glucoside and stearic acid exclusively in large unilamellar phospholipid vesicles
1989
Dhariwal, M.S.; Jefcoate, C.R.
Biochemistry
28
8397-8402
Cytochrome P-450scc-adrenodoxin interactions. Ionic effects on binding, and regulation of cytochrome reduction by bound steroid substrates
1985
Lambeth, J.D.; Kriengsiri, S.
J. Biol. Chem.
260
8810-8816
Competitive inhibition of cytochrome P-450scc by (22R)- and (22S)-22-aminocholesterol. Side-chain stereochemical requirements for C-22 amine coordination to the active-site heme
1985
Nagahisa, A.; Foo, T.; Gut, M.; Orme-Johnson, W.H.
J. Biol. Chem.
260
846-851
Purification and characterization of mitochondrial cytochrome P-450 associated with cholesterol side chain cleavage from bovine corpus luteum
1980
Kashiwagi, K.; Dafeldecker, W.P.; Salhanick, H.A.
J. Biol. Chem.
255
2606-2611
Active site-directed inhibitors of cytochrome P-450scc. Structural and mechanistic implications of a side chain-substituted series of amino-steroids
1983
Sheets, J.J.; Vickery, L.E.
J. Biol. Chem.
258
11446-11452
C-22-Substituted steroid derivatives as substrate analogues and inhibitors of cytochrome P-450scc
1983
Sheets, J.J.; Vickery, L.E.
J. Biol. Chem.
258
1720-1725
Modulation of the kinetics of cholesterol side-chain cleavage by an activator and by an inhibitor isolated from the cytosol of the cortex of bovine adrenals
1983
Warne, P.A.; Greenfield, N.J.; Lieberman, S.
Proc. Natl. Acad. Sci. USA
80
1877-1881
Cytochrome P-450 from bovine adrenocortical mitochondria: an enzyme for the side chain cleavage of cholesterol. II. Subunit structure
1973
Shikita, M.; Hall, P.F.
J. Biol. Chem.
248
5605-5609
Cytochrome P-450scc-mediated oxidation of (20S)-22-thiacholesterol: Characterization of mechanism-based inhibition
1995
Miao, E.; Joardar, S.; Zuo, C.; Cloutier, N.J.; Nagahisa, A.; Byon, C.; Wilson, S.R.; Orme-Johnson, W.H.
Biochemistry
34
8415-8421
alpha-Branched 1,2-diacyl phosphatidylcholines as effectors of activity of cytochrome P450SCC (CYP11A1). Modeling the structure of the fatty acyl chain region of cardiolipin
1996
Schwarz, D.; Kisselev, P.; Wessel, R.; Jueptner, O.; Schmid, R.D.
J. Biol. Chem.
271
12840-12846
Site-directed mutagenesis of cytochrome P450scc (CYP11A1). Effect of lysine residue substitution on its structural and functional properties
2000
Lepesheva, G.I.; Azeva, T.N.; Strushkevich, N.V.; Gilep, A.A.; Usanov, S.A.
Biochemistry (Moscow)
65
1409-1418
The use of the novel substrate-heme complex approach in the derivation of a representation of the active site of the enzyme cholesterol side chain cleavage
2000
Ahmed, S.
Biochem. Biophys. Res. Commun.
274
821-824
Substrate-binding region of cytochrome P-450scc (P-450 XIA1). Identification and primary structure of the cholesterol binding region in cytochrome P-450scc
1993
Tsujita, M.; Ichikawa, Y.
Biochim. Biophys. Acta
1161
124-130
Probing the interaction of bovine cytochrome P450scc (CYP11A1) with adrenodoxin: evaluating site-directed mutations by molecular modeling
2002
Usanov, S.A.; Graham, S.E.; Lepesheva, G.I.; Azeva, T.N.; Strushkevich, N.V.; Gilep, A.A.; Estabrook, R.W.; Peterson, J.
Biochemistry
41
8310-8320
The oxidation of 5-beta-cholestane-3-alpha, 7-alpha, 12-alpha, 26-tetraol to 5-beta-cholestane-3-alpha, 7-alpha, 12-alpha-triol-26-oic acid via 5-beta-cholestane-3-alpha, 7-alpha, 12-alpha-triol-26-al by rat liver
1966
Masui, T.; Herman, R.; Staple, E.
Biochim. Biophys. Acta
117
266-268
Separation of 5-beta-cholestane-3-alpha,7-alpha,12-alpha,26-tetrol oxidoreductase, and acetaldehyde-NAD oxidoreductase from the soluble fraction of rat liver by gel filtration
1968
Okuda, K.; Takigawa, N.
Biochem. Biophys. Res. Commun.
33
788-793
Physiological function and kinetic mechanism of human liver alcohol dehydrogenase as 5beta-cholestane-3alpha,7alpha,12alpha,26-tetrol dehydrogenase
1983
Okuda, A.; Okuda, K.
J. Biol. Chem.
258
2899-2905
Oxidation of 5-beta-cholestane-3alpha,7alpha, 12alpha-triol by rat-liver mitochondria
1968
Okuda, K.; Hoshita, N.
Biochim. Biophys. Acta
164
381-388
Enzymatic characteristics of CO-sensitive 26-hydroxylase system for 5beta-cholestane-3alpha,7alpha 12alpha-triol in rat-liver mitochondria and its intramitochondrial localization
1973
Taniguchi, S.; Hoshita, N.; Okuda, K.
Eur. J. Biochem.
40
607-617
Photochemical action spectrum of the co-inhibited 5beta-cholestane-3alpha,7alpha,12alpha-triol 26-hydroxylase system
1977
Okuda, K.; Weber, P.; Ullrich, V.
Biochem. Biophys. Res. Commun.
74
1071-1076
Spectral evidence for a liver mitochondrial cytochrome P450 involved in bile acid metabolism
1977
Okuda, K.; Ruf, H.H.; Ullrich, V.
Hoppe-Seyler's Z. Physiol. Chem.
358
689-694
Hepatic mitochondrial cytochrome P-450: isolation and functional characterization
1977
Sato, R.; Atsuta, Y.; Imai, Y.; Taniguchi, S.; Okuda, K.
Proc. Natl. Acad. Sci. USA
74
5477-5481
Partial purification and characterization of 5beta-cholestane-3alpha,7alpha,12alpha-triol and 5beta-cholestane-3alpha,7alpha-diol 27-monooxygenase
1982
Atsuta, Y.; Okuda, K.
J. Lipid Res.
23
345-351
Purification and characterization of 5beta-cholestane-3alpha,7alpha,12alpha-triol 27-hydroxylase from female rat liver mitochondria
1988
Okuda, K.; Masumoto, O.; Ohyama, Y.
J. Biol. Chem.
263
18138-18142
Evidence for peroxisomal hydroxylase activity in rat liver
1985
Thompson, S.L.; Krisans, S.K.
Biochem. Biophys. Res. Commun.
130
708-716
25-Hydroxylation vitamin D3 and side chain hydroxylations of 5beta-cholestane-3alpha,7alpha,12 alpha-triol by purified rabbit and rat liver microsomal cytochromes P-450
1981
Hansson, R.; Holmberg, I.; Wikvall, K.
J. Biol. Chem.
256
4345-4349
Multi-functional property of rat liver mitochondrial cytochrome P-450
1991
Ohyama, Y.; Masumoto, O.; Usui, E.; Okuda, K.
J. Biochem.
109
389-393
Expression of rat liver vitamin D3 25-hydroxylase cDNA in Saccharomyces cerevisiae
1991
Akiyoshi-Shibata, M.; Usui, E.; Sakaki, T.; Yabusaki, Y.; Noshiro, M.; Okuda, K.; Ohkawa, H.
FEBS Lett.
280
367-370
Unique property of liver mitochondrial P450 to catalyze the two physiologically important reactions involved in both cholesterol catabolism and vitamin D activation
1990
Usui, E.; Noshiro, M.; Ohyama, Y.; Okuda, K.
FEBS Lett.
274
175-177
Enzymic properties of mouse 25-hydroxyvitamin D3 1alpha-hydroxylase expressed in Escherichia coli
1999
Sakaki, T.; Sawada, N.; Takeyama, K.i.; Kato, S.; Inouye, K.
Eur. J. Biochem.
259
731-738
Enzymatic studies on the key enzymes of vitamin D metabolism; 1alpha-hydroxylase (CYP27B1) and 24-hydroxylase (CYP24)
2001
Inouye, K.; Sakaki, T.
Biotechnol. Annu. Rev.
7
179-194
The effect of glycerol on cytochrome P450scc (CYP11A1) spin state, activity, and hydration
2002
Headlam, M.J.; Tuckey, R.C.
Arch. Biochem. Biophys.
407
95-102
Formation and functioning of fused cholesterol side-chain cleavage enzymes
2003
Nazarov, P.A.; Drutsa, V.L.; Miller, W.L.; Shkumatov, V.M.; Luzikov, V.N.; Novikova, L.A.
DNA Cell Biol.
22
243-252
The cDNA cloning and tissue expression of the cytochrome P450scc from Syrian hamster (Mesocricetus auratus)
2002
Vilchis, F.; Chavez, B.; Larrea, F.; Timossi, C.; Montiel, F.
Gen. Comp. Endocrinol.
126
279-286
Cellular distribution and bioactivity of the key steroidogenic enzyme, cytochrome P450side chain cleavage, in sensory neural pathways
2003
Patte-Mensah, C.; Kappes, V.; Freund-Mercier, M.J.; Tsutsui, K.; Mensah-Nyagan, A.G.
J. Neurochem.
86
1233-1246
Biochemical characterization of a truncated form of CYP27A purified from rabbit liver mitochondria
1999
Furster, C.; Bergman, T.; Wikvall, K.
Biochem. Biophys. Res. Commun.
263
663-666
Putative helix F contributes to regioselectivity of hydroxylation in mitochondrial cytochrome P450 27A
2001
Pikuleva, I.A.; Puchkaev, A.; Bjoerkhem, I.
Biochemistry
40
7621-7629
Hydroxylations in biosynthesis of bile acids. Isolation of a cytochrome P-450 from rabbit liver mitochondria catalyzing 26-hydroxylation of C27-steroids
1984
Wikvall, K.
J. Biol. Chem.
259
3800-3804
Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme
1989
Andemson, S.; Davis, D.L.; Dahlback, H.; Jornvall, H.; Russell, D.W.
J. Biol. Chem.
264
8222-8229
-
Sterol 27-hydroxylase in bile acid biosynthesis. Mechanism of oxidation of 5beta-cholestane-3alpha,7alpha,12alpha,27-tetraol into 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid
1993
Holmberg-Betsholtz, I.; Lund, E.; Bjorkhem, I.; Wikvall, K.
J. Biol. Chem.
266
11079-11085
Lovastatin modulates increased cholesterol and oxysterol levels and has a neuroprotective effect on rat hippocampal neurons after kainate injury
2006
He, X.; Jenner, A.M.; Ong, W.Y.; Farooqui, A.A.; Patel, S.C.
J. Neuropathol. Exp. Neurol.
65
652-663
Brain cholesterol turnover required for geranylgeraniol production and learning in mice
2006
Kotti, T.J.; Ramirez, D.M.; Pfeiffer, B.E.; Huber, K.M.; Russell, D.W.
Proc. Natl. Acad. Sci. USA
103
3869-3874
Molecular evolution of a steroid hydroxylating cytochrome P450 using a versatile steroid detection system for screening
2008
Virus, C.; Bernhardt, R.
Lipids
43
1133-1141
Substrate binding to 15beta-hydroxylase (CYP106A2) probed by FT infrared spectroscopic studies of the iron ligand CO stretch vibration
2000
Simgen, B.; Contzen, J.; Schwarzer, R.; Bernhardt, R.; Jung, C.
Biochem. Biophys. Res. Commun.
269
737-742
Identification of monohydroxy progesterones produced by CYP106A2 using comparative HPLC and electrospray ionisation collision-induced dissociation mass spectrometry
2004
Lisurek, M.; Kang, M.J.; Hartmann, R.W.; Bernhardt, R.
Biochem. Biophys. Res. Commun.
319
677-682
Function and engineering of the 15beta-hydroxylase CYP106A2
2006
Virus, C.; Lisurek, M.; Simgen, B.; Hannemann, F.; Bernhardt, R.
Biochem. Soc. Trans.
34
1215-1218
Theoretical and experimental evaluation of a CYP106A2 low homology model and production of mutants with changed activity and selectivity of hydroxylation
2008
Lisurek, M.; Simgen, B.; Antes, I.; Bernhardt, R.
Chembiochem
16
1439-1449
Import of hybrid forms of CYP11A1 into yeast mitochondria
2008
Minenko, A.N.; Novikova, L.A.; Luzikov, V.N.; Kovaleva, I.E.
Biochim. Biophys. Acta
1780
1121-1130
Metabolism of a novel side chain modified DELTA8(14)-15-ketosterol, a potential cholesterol lowering drug: 28-hydroxylation by CYP27A1
2008
Pettersson, H.; Norlin, M.; Andersson, U.; Pikuleva, I.; Bjoerkhem, I.; Misharin, A.; Wikvall, K.
Biochim. Biophys. Acta
1781
383-390
Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors
2008
Carrara, S.; Shumyantseva, V.V.; Archakov, A.I.; Samori, B.
Biosens. Bioelectron.
24
148-150
Steroidogenic acute regulatory (StAR) protein and cholesterol side-chain cleavage (P450scc)-regulated steroidogenesis as an organ-specific molecular and cellular target for endocrine disrupting chemicals in fish
2008
Arukwe, A.
Cell Biol. Toxicol.
24
527-540
Metabolism of vitamin d2 to 17,20,24-trihydroxyvitamin d2 by cytochrome p450scc (CYP11A1)
2009
Nguyen, M.N.; Slominski, A.; Li, W.; Ng, Y.R.; Tuckey, R.C.
Drug Metab. Dispos.
37
761-767
Pathways and products for the metabolism of vitamin D3 by cytochrome P450scc
2008
Tuckey, R.C.; Li, W.; Zjawiony, J.K.; Zmijewski, M.A.; Nguyen, M.N.; Sweatman, T.; Miller, D.; Slominski, A.
FEBS J.
275
2585-2596
Construction and characteristics of transgenic tobacco Nicotiana tabacum L. plants expressing CYP11A1 cDNA encoding cytochrome P450scc
2009
Spivak, S.; Berdichevets, I.; IarmolinskiÃÂ, D.; Maneshina, T.; ShpakovskiÃÂ, G.; Kartel, N.
Genetika
45
1217-1224
Kinetics of vitamin D3 metabolism by cytochrome P450scc (CYP11A1) in phospholipid vesicles and cyclodextrin
2008
Tuckey, R.C.; Nguyen, M.N.; Slominski, A.
Int. J. Biochem. Cell Biol.
40
2619-2626
Expression of sterol 27-hydroxylase in glial cells and its regulation by liver X receptor signaling
2009
Gilardi, F.; Viviani, B.; Galmozzi, A.; Boraso, M.; Bartesaghi, S.; Torri, A.; Caruso, D.; Crestani, M.; Marinovich, M.; de Fabiani, E.
Neuroscience
164
530-540
A negative cooperativity between NADPH and adrenodoxin on binding to NADPH:adrenodoxin reductase
1990
Cenas, N.; Marcinkeviciene, J.; Kulys, J.; Usanov, S.
FEBS Lett.
259
338-340
Very-low-density lipoprotein mediates transcriptional regulation of aldosterone synthase in human adrenocortical cells through multiple signaling pathways
2012
Saha, S.; Bornstein, S.R.; Graessler, J.; Kopprasch, S.
Cell Tissue Res.
348
71-80
Autodisplay of functional CYP106A2 in Escherichia coli
2012
Schumacher, S.D.; Hannemann, F.; Teese, M.G.; Bernhardt, R.; Jose, J.
J. Biotechnol.
161
104-112
Human aldosterone synthase: recombinant expression in E. coli and purification enables a detailed biochemical analysis of the protein on the molecular level
2012
Hobler, A.; Kagawa, N.; Hutter, M.C.; Hartmann, M.F.; Wudy, S.A.; Hannemann, F.; Bernhardt, R.
J. Steroid Biochem. Mol. Biol.
132
57-65
Structural insights into aldosterone synthase substrate specificity and targeted inhibition
2013
Strushkevich, N.; Gilep, A.A.; Shen, L.; Arrowsmith, C.H.; Edwards, A.M.; Usanov, S.A.; Park, H.W.
Mol. Endocrinol.
27
315-324
Human CYP27A1 catalyzes hydroxylation of beta-sitosterol and ergosterol
2016
Ehrhardt, M.; Gerber, A.; Zapp, J.; Hannemann, F.; Bernhardt, R.
Biol. Chem.
397
513-518
Evidence for a role of sterol 27-hydroxylase in glucocorticoid metabolism in vivo
2013
Voegeli, I.; Jung, H.H.; Dick, B.; Erickson, S.K.; Escher, R.; Funder, J.W.; Frey, F.J.; Escher, G.
J. Endocrinol.
219
119-129
Identification and analysis of CYP7A1, CYP17A1, CYP20A1, CYP27A1 and CYP51A1 in cynomolgus macaques
2014
Uno, Y.; Hosaka, S.; Yamazaki, H.
J. Vet. Med. Sci.
76
1647-1650
Comparison of CYP106A1 and CYP106A2 from Bacillus megaterium - identification of a novel 11-oxidase activity
2015
Kiss, F.M.; Schmitz, D.; Zapp, J.; Dier, T.K.; Volmer, D.A.; Bernhardt, R.
Appl. Microbiol. Biotechnol.
99
8495-8514
Sensitivity to anti-Fas is independent of increased cathepsin D activity and adrenodoxin reductase expression occurring in NOS-3 overexpressing HepG2 cells
2015
Linares, C.I.; Ferrin, G.; Aguilar-Melero, P.; Gonzalez-Rubio, S.; Rodriguez-Peralvarez, M.; Sanchez-Arago, M.; Chicano-Galvez, E.; Cuezva, J.M.; Montero-Alvarez, J.L.; Muntane, J.; de la Mata, M.
Biochim. Biophys. Acta
1853
1182-1194
Crystal structure of CYP106A2 in substrate-free and substrate-bound form
2016
Janocha, S.; Carius, Y.; Hutter, M.; Lancaster, C.R.; Bernhardt, R.
ChemBioChem
17
852-860
Structural characterization of CYP260A1 from Sorangium cellulosum to investigate the 1alpha-hydroxylation of a mineralocorticoid
2016
Khatri, Y.; Carius, Y.; Ringle, M.; Lancaster, C.R.; Bernhardt, R.
FEBS Lett.
590
4638-4648
Investigating the effect of available redox protein ratios for the conversion of a steroid by a myxobacterial CYP260A1
2017
Khatri, Y.; Schifrin, A.; Bernhardt, R.
FEBS Lett.
591
1126-1140
Characterization of cytochrome P450 CYP109E1 from Bacillus megaterium as a novel vitamin D3 hydroxylase
2017
Abdulmughni, A.; Jozwik, I.K.; Putkaradze, N.; Brill, E.; Zapp, J.; Thunnissen, A.W.; Hannemann, F.; Bernhardt, R.
J. Biotechnol.
243
38-47
Conservation of the enzyme-coenzyme interfaces in FAD and NADP binding adrenodoxin reductase - a ubiquitous enzyme
2017
Hanukoglu, I.
J. Mol. Evol.
85
205-218
Steroid conversion with CYP106A2 - production of pharmaceutically interesting DHEA metabolites
2014
Schmitz, D.; Zapp, J.; Bernhardt, R.
Microb. Cell Fact.
13
81
Isatin-induced increase in the affinity of human ferrochelatase and adrenodoxin reductase interaction
2017
Ershov, P.; Mezentsev, Y.; Gilep, A.; Usanov, S.; Buneeva, O.; Medvedev, A.; Ivanov, A.
Protein Sci.
26
2458-2462
Raman and infrared spectroscopic evidence for the structural changes of the 2Fe2S cluster and its environment during the interaction of adrenodoxin and adrenodoxin reductase
2017
Khalil, M.; Bernhardt, R.; Hellwig, P.
Spectrochim. Acta A. Mol. Biomol. Spectrosc.
183
298-305
Engineering of CYP106A2 for steroid 9alpha- and 6beta-hydroxylation
2017
Nikolaus, J.; Nguyen, K.T.; Virus, C.; Riehm, J.L.; Hutter, M.; Bernhardt, R.
Steroids
120
41-48