Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
donor + H2O2 = oxidized donor + 2 H2O
-
donor + H2O2 = oxidized donor + H2O
-
donor + HOCl = oxidized donor + Cl-
-
fumitremorgin B + 2-oxoglutarate + 2 O2 + AH2 = verruculogen + succinate + CO2 + H2O + A
-
styrene + O2 + reduced putidaredoxin = (S)-styrene oxide + 2-phenylethanol + oxidized putidaredoxin + H2O
-
17alpha-hydroxyprogesterone + AH2 + O2 = 11-deoxycortisol + A + H2O
-
progesterone + AH2 + O2 = deoxycorticosterone + A + H2O
-
(3S)-squalene-2,3-epoxide + AH2 + O2 = (3S,22S)-2,3-22,23-dioxidosqualene + A + H2O
-
squalene + AH2 + O2 = (3S)-squalene-2,3-epoxide + A + H2O
-
squalene + AH2 + O2 = (S)-squalene-2,3-epoxide + A + H2O
-
squalene + O2 + AH2 = 2,3 oxidosqualene + A + H2O
-
heme + 3 AH2 + 3 O2 = biliverdin + Fe2+ + CO + 3 A + 3 H2O
-
heme + 3 AH2 + 3 O2 = biliverdin IXalpha + Fe2+ + CO + 3 A + 3 H2O
-
heme + AH2 + O2 = biliverdin + Fe2+ + CO + A + H2O
-
heme + ferredoxin + O2 = biliverdin IXalpha + Fe2+ + CO + A + H2O
-
2 progesterone + 2 AH2 + 2 O2 = 17alpha-hydroxyprogesterone + 16alpha-hydroxyprogesterone + 2 A + 2 H2O
-
progesterone + 2 AH2 + 2 O2 = androstenedione + acetate + 2 A + 2 H2O
-
pregnenolone + AH2 + O2 = 17alpha-hydroxypregnenolone + A + H2O
0, 390119, 390122, 390121, 390132, 390133, 390136, 5129, 390126, 390140, 390127, 390120
-
progesterone + AH2 + O2 = 17alpha-hydroxyprogesterone + A + H2O
-
17alpha-hydroxypregnenolone + AH2 + O2 = dehydroepiandrosterone + acetate + A + H2O
-
17alpha-hydroxyprogesterone + AH2 + O2 = dehydroepiandrosterone + androstenedione + A + H2O
-
7-dehydro-17alpha-hydroxypregnenolone + AH2 + O2 = 7-dehydro-dehydroepiandrosterone + acetate + A + H2O
-
7-dehydro-pregnenolone + AH2 + O2 = 7-dehydro-17alpha-hydroxy-pregnenolone + A + H2O
-
7-dehydro-pregnenolone + AH2 + O2 = 7-dehydro-17alpha-hydroxypregnenolone + A + H2O
-
aflatoxin B1 + AH2 + O2 = aflatoxin B1epoxide + A + H2O
-
pregnenolone + AH2 + O2 = 17alpha-hydroxypregnenolone + A + H2O
-
progesterone + AH2 + O2 = 17alpha-hydroxyprogesterone + A + H2O
-
(+)-alpha-pinene + putidaredoxin + O2 = (+)-cis-verbenol + (+)-myrtenol + (+)-verbenone + oxidized putidaredoxin + H2O
-
(+)-alpha-pinene + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
(+)-camphor + O2 + reduced putidaredoxin = (+)-exo-5-hydroxycamphor + oxidized putidaredoxin + H2O
-
(+)-camphor + O2 + reduced putidaredoxin = exo-5-hydroxycamphor + oxidized putidaredoxin + H2O
-
(+)-camphor + putidaredoxin + O2 = (R)-exo-5-hydroxycamphor + oxidized putidaredoxin + H2O
0, 347690, 347691, 347692, 347693, 347694, 347695, 347697, 347701, 347702, 347704, 347705, 347706, 347707, 347708, 347710, 347713
-
(+)-camphor + reduced putidaredoxin + NADH + H+ + O2 = (+)-exo-5-hydroxycamphor + oxidized putidaredoxin + NAD+ + H2O
-
(+)-camphor + reduced putidaredoxin + O2 = (+)-exo-5-hydroxycamphor + oxidized putidaredoxin + H2O
-
(+)-camphor + reduced putidaredoxin + O2 = (R)-exo-5-hydroxycamphor + oxidized putidaredoxin + H2O
-
(+)-camphor + reduced putidaredoxin + O2 = borneol + oxidized putidaredoxin + H2O
-
(+)-exo-5-hydroxycamphor + reduced putidaredoxin + O2 = 5-oxocamphor + oxidized putidaredoxin + H2O
-
(1R)-(+)-camphor + O2 + reduced putidaredoxin = (+)-exo-5-hydroxycamphor + oxidized putidaredoxin + H2O
-
(1R)-(+)-camphor + reduced putidaredoxin + O2 = (+)-exo-5-hydroxycamphor + oxidized putidaredoxin + H2O
-
(1R)-5,5-difluorocamphor + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
(1R)-5-exo-methoxycamphor + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
(1R)-5-methylenylcamphor + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
(1R)-camphor + putidaredoxin + O2 = 5-exo-(1R)-hydroxycamphor + oxidized putidaredoxin + H2O
-
(1R)-camphor + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
(1R)-camphor enol ether + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
(1R)-camphor N-methyl imine + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
(1R)-camphor oxime + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
(1R)-endo-borneol allyl ether + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
(1R)-endo-borneol methyl ether + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
(1R)-endo-borneol propyl ether + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
(1R)-iso-borneol methyl ether + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
(1R)-norcamphor + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
(1S)-camphor + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
(R)-2-ethylhexanol + reduced putidaredoxin + O2 = (R)-2-ethylhexanoic acid + oxidized putidaredoxin + H2O
-
(R)-3-ethylhexanol + putidaredoxin + O2 = 2-ethylhexanoic acid + 2-ethyl-1,2-hexanediol + 2-ethyl-1,3-hexanediol + 2-ethyl-1,4-hexanediol + oxidized putidaredoxin + H2O
-
(R)-exo-5-hydroxycamphor + O2 + reduced putidaredoxin = 2,5-diketocamphane + oxidized putidaredoxin + H2O
-
(S)-2-ethylhexanol + reduced putidaredoxin + O2 = (S)-2-ethylhexanoic acid + oxidized putidaredoxin + H2O
-
(S)-3-ethylhexanol + putidaredoxin + O2 = 2-ethylhexanoic aicd + 2-ethyl-1,2-hexanediol + 2-ethyl-1,3-hexanediol + 2-ethyl-1,4-hexanediol + oxidized putidaredoxin + H2O
-
1,2,4,5-tetrachlorobenzene + putidaredoxin + O2 = 2,3,5,6-tetrachlorophenol + oxidized putidaredoxin + H2O
-
1,2-campholide + putidaredoxin + O2 = 5-exo-hydroxy-1,2-campholide + oxidized putidaredoxin + H2O
-
1,2-dichlorobenzene + putidaredoxin + O2 = 2,3-dichlorophenol + 3,4-dichlorophenol + oxidized putidaredoxin + H2O
-
1,3,5-trichlorobenzene + putidaredoxin + O2 = 2,4,6-trichlorophenol + oxidized putidaredoxin + H2O
-
1,3,5-trichlorobenzene + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
1,3-dichlorobenzene + putidaredoxin + O2 = 2,6-dichlorophenol + 2,4-dichlorophenol + 2,5-dichlorophenol + 2,3-dichlorophenol + oxidized putidaredoxin + H2O
-
1,4-dichlorobenzene + putidaredoxin + O2 = 2,5-dichlorophenol + oxidized putidaredoxin + H2O
-
1-dehydrocamphor + putidaredoxin + O2 = exo-5,6-epoxycamphor + oxidized putidaredoxin + H2O
-
1-ethyl-2-methylbenzene + reduced putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
1-ethyl-3-methylbenzene + reduced putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
1-ethyl-4-methylbenzene + reduced putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
2-adamantanone + O2 + reduced putidaredoxin = 5-hydroxy-2-adamantanone + oxidized putidaredoxin + H2O
-
3-chloroindole + O2 + reduced putidaredoxin = isatin + H2O + Cl- + oxidized putidaredoxin + ?
-
5,5-difluorocamphor + putidaredoxin + O2 = 5,5-difluoro-9-hydroxycamphor + oxidized putidaredoxin + H2O
-
5-exo-bromocamphor + putidaredoxin + O2 = 5-ketocamphor + oxidized putidaredoxin + Br- + H2O
-
adamantanone + putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
benzo[a]pyrene + putidaredoxin + O2 = 3-hydroxybenzo[a]pyrene + oxidized putidaredoxin + H2O
-
beta-ionone + O2 + reduced putidaredoxin = 4-hydroxy-beta-ionone + oxidized putidaredoxin + H2O
-
camphane + reduced putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
DL-camphor + reduced putidaredoxin + NADH + H+ + O2 = exo-5-hydroxycamphor + oxidized putidaredoxin + NAD+ + H2O
-
ethylbenzene + putidaredoxin + O2 = 1-phenylethanol + oxidized putidaredoxin + H2O
-
fluoranthene + putidaredoxin + O2 = 3-fluoranthol + oxidized putidaredoxin + H2O
-
indole + O2 + reduced putidaredoxin = 3-hydroxyindole + oxidized putidaredoxin + H2O
-
isoborneol + reduced putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
linalool + O2 + reduced putidaredoxin = 8-hydroxy-linalool + oxidized putidaredoxin + H2O
-
norcamphor + reduced putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
phenanthrene + putidaredoxin + O2 = 1-phenanthrol + 2-phenanthrol + 3-phenanthrol + 4-phenanthrol + oxidized putidaredoxin + H2O
-
pyrene + putidaredoxin + O2 = 1-pyrenol + 2-pyrenol + 1,6-pyrenequinone + 1,8-pyrenequinone + oxidized putidaredoxin + H2O
-
thiocamphor + reduced putidaredoxin + O2 = ? + oxidized putidaredoxin + H2O
-
(+)-camphor + reduced putidaredoxin + O2 = (+)-6-endo-hydroxycamphor + oxidized putidaredoxin + H2O
-
compactin + reduced putidaredoxin + O2 = pravastatin + oxidized putidaredoxin + H2O
-
diclofenac + reduced putidaredoxin + O2 = 4'-hydroxydiclofenac + oxidized putidaredoxin + H2O
-
4-hydroxybenzoic acid + O2 + AH2 = 3,4-dihydroxybenzoic acid + H2O + A
-
4-hydroxybenzyl alcohol + O2 + AH2 = 3,4-dihydroxybenzyl alcohol + H2O + A
-
4-t-butylphenol + O2 + AH2 = 4-t-butyl 1,2-benzoquinone + H2O + A
-
4-[(4-methylphenyl)azo]-phenol + O2 + AH2 = 4-[(4-methylbenzo)azo]-1,2-benzendiol + H2O + A
-
alpha-methyl-DL-tyrosine + O2 + AH2 = N-methyl-DL-dopa + H2O + A
-
alpha-methyl-L-tyrosine + O2 + AH2 = N-methyl-L-dopa + H2O + A
-
D-tyrosine + O2 + AH2 = D-dopa + H2O + A
-
D-tyrosine + O2 + AH2 = L-3,4-dihydroxyphenylalanine + H2O + A
-
DL-tyrosine + O2 + AH2 = DL-dopa + H2O + A
-
ferulic acid + O2 + AH2 = (2E)-3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoic acid + H2O + A
-
gamma-L-glutaminyl-4-hydroxybenzene + O2 + AH2 = gamma-L-glutaminyl-3,4-dihydroxybenzene + H2O + A
-
L-Tyr + O2 + AH2 = L-dopa + H2O + A
-
L-tyrosine + O2 + AH2 = L-3,4-dihydroxyphenylalanine + H2O + A
-
L-tyrosine + O2 + AH2 = L-dopa + H2O + A
-
L-tyrosine methyl ester + O2 + AH2 = L-dopa methyl ester + H2O + A
-
o-methoxyphenol + O2 + AH2 = 1,2-dihydroxy-3-methoxybenzene + H2O + A
-
p-coumaric acid + O2 + AH2 = caffeic acid + H2O + A
-
p-cresol + O2 + AH2 = 4-methyl-o-quinone + H2O + A
-
p-cresol + O2 + AH2 = 4-methylcatechol + H2O + A
-
p-cresol + O2 + AH2 = 4-methylpyrocatechol + H2O + A
-
p-tyrosol + O2 + AH2 = 2-(3,4-dihydroxyphenyl)ethanol + H2O + A
-
phenol + O2 + AH2 = catechol + H2O + A
-
phenol + O2 + AH2 = o-dihydroxybenzene + H2O + A
-
tyrosine + O2 + AH2 = dopa + H2O + A
-
tyrosine + O2 + AH2 = L-dopa + H2O + A
-
vanillin + O2 + AH2 = 3,4-dihydroxy-5-methoxybenzaldehyde + H2O + A
-
palmitic acid + AH2 + O2 = palmitoleic acid + A + H2O
-
palmitoyl-CoA + AH2 + O2 = palmitoleoyl-CoA + A
-
palmitoyl-CoA + AH2 + O2 = palmitoleoyl-CoA + A + H2O
-
stearate + AH2 + O2 = oleate + A + 2 H2O
-
stearic acid + AH2 + O2 = oleic acid + A + H2O
-
stearoyl-acyl-carrier protein + AH2 + O2 = oleoyl-acyl-carrier protein + A + H2O
-
stearoyl-CoA + AH2 + H+ + O2 = oleoyl-CoA + A + H2O
-
stearoyl-CoA + AH2 + O2 = oleoyl-CoA + A + H2O
437646, 437653, 437671, 0, 437644, 437645, 437648, 437654, 437652, 437643, 437672, 437662, 437647, 437651
-
palmitoyl-[acyl-carrier protein] + AH2 + O2 = palmitoleoyl-[acyl-carrier protein] + A + H2O
-
(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoic acid + AH2 + O2 = (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoic acid + A + H2O
-
24-carbon fatty acid + AH2 + O2 = ? + A + H2O
-
alpha-linolenic acid + AH2 + O2 = (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoic acid + A + 2 H2O
-
alpha-linolenic acid + AH2 + O2 = octadec-6,9,12,15-tetraenoic acid + A + 2 H2O
-
alpha-linolenic acid + AH2 + O2 = octadeca-6,9,12,15-tetraenoic acid + A + 2 H2O
-
alpha-linolenic acid + AH2 + O2 = octadecatetraenoic acid + A + 2 H2O
-
alpha-linolenic acid + AH2 + O2 = stearidonic acid + A + 2 H2O
-
alpha-linoleoyl-CoA + AH2 + O2 = stearidonoyl-CoA + A + 2 H2O
-
gamma-linoleic acid + AH2 + O2 = gamma-linolenic acid + A + H2O
-
gamma-linolenic acid + AH2 + O2 = cis-6,9,12,15-octadecatetraenoic acid + A + H2O
-
heptadec-9-enoic acid + AH2 + O2 = heptadec-6,9-dienoic acid + A + H2O
-
linoleic acid + AH2 + O2 = gamma-linolenic acid + A + H2O
-
linolenic acid + AH2 + O2 = arachidonic acid + A + H2O
-
linoleoyl phosphatidylcholine + AH2 + O2 = gamma-linolenoylphosphatidylcholine + A + H2O
-
linoleoyl-CoA + AH2 + O2 = gamma-linolenoyl-CoA + A + 2 H2O
-
monogalactosydiacylglycerol + AH2 + O2 = ? + A + H2O
-
octadec-9,12-dienoic acid + AH2 + O2 = octadec-6,9,12-trienoic acid + A + H2O
-
octadec-9-enoic acid + AH2 + O2 = octadec-6,9-dienoic acid + A + H2O
-
octadeca-9,12-dienoic acid + AH2 + O2 = gamma-linolenic acid + A + H2O
438418, 438419, 438421, 438422, 438423, 438411, 438413, 438414, 438415, 438412, 438417, 438420, 438416
-
octadecanoate + AH2 + O2 = ? + A + H2O
-
palmitate + AH2 + O2 = sapienate + A + H2O
-
palmitic acid + AH2 + O2 = hexadec-6-enoic acid + A + H2O
-
linoleate + AH2 + O2 = crepenynate + A + 2 H2O
-
oleate + AH2 + O2 = linoleate + A + 2 H2O
-
oleate + AH2 + O2 = linoleic acid + linolenic acid + A + 2 H2O
-
palmitoleic acid + O2 = hexadecadienoic acid + hexadecatrienoic acid + A + 2 H2O
-
palmitoleoate + AH2 + O2 = 9,12,15-hexadecatrienoate + A + H2O
-
tetradecanoic acid + O2 + AH2 = (11E)-tetradec-11-enoic acid + A + H2O
-
O-1-alkyl-2-acyl-sn-glycero-3-phosphoethanolamine + AH2 + O2 = O-1-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine + A + 2 H2O
-
(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoic acid + AH2 + O2 = ? + A + H2O
-
(5Z,8Z,11Z,14Z,17Z)-eicosapentaenoic acid + AH2 + O2 = ? + A + H2O
-
arachidonate + AH2 + 2 O2 = prostaglandin G2 + A + ?
-
arachidonate + AH2 + 2 O2 = prostaglandin H2 + A + H2O
-
arachidonate + AH2 + O2 = prostaglandin H2 + A + H2O
-
arachidonic acid + AH2 + 2 O2 = 15(R)-hydroxy-eicosatetraenoic acid + A + H2O
-
arachidonic acid + AH2 + 2 O2 = 15-hydroperoxy-9alpha,11alpha-peroxidoprosta-5,13-dienoic acid + A + H2O
-
arachidonic acid + AH2 + 2 O2 = 6-keto-prostaglandin F1alpha + A + H2O
-
arachidonic acid + AH2 + 2 O2 = prostaglandin E2 + A + H2O
-
prostaglandin G2 + AH2 = prostaglandin H2 + A + H2O
-
androst-4-ene-3,17-dione + AH2 + O2 = 14alpha-hydroxyandrost-4-ene-3,17-dione + 14alpha,17beta-dihydroxyandrost-4-en-3-one + 7alpha,17beta-dihydroxyandrost-4-en-3-one + A + H2O
-
androst-4-ene-3,17-dione + AH2 + O2 = 14alpha-hydroxyandrost-4-ene-3,17-dione + 6beta-hydroxyandrost-4-ene-3,17-dione + A + H2O
-
androst-4-ene-3,17-dione + AH2 + O2 = 17beta-hydroxyandrost-4-en-3-one + 11beta-hydroxyandrost-4-ene-3,17-dione + 17alpha-oxa-D-homo-androst-4-ene-3,17-dione + A + H2O
-
androst-4-ene-3,17-dione + AH2 + O2 = 17beta-hydroxyandrost-4-en-3-one + 14alpha-hydroxyandrost-4-ene-3,17-dione + 11alpha-hydroxyandrost-4-ene-3,17-dione + 15beta,17beta-dihydroxyandrost-4-en-3-one + 11alpha,17beta-dihydroxyandrost-4-en-3-one + 15alpha,17beta-dihydroxyandrost-4-en-3-one + A + H2O
-
androst-4-ene-3,17-dione + AH2 + O2 = 3-oxo-13,17-secoandrost-4-ene-17,13alpha-lactone + A + H2O
-
11-deoxycorticosterone + AH2 + O2 = ? + A + H2O
-
11-deoxycortisol + AH2 + O2 = ? + A + H2O
-
16,17alpha-epoxyprogesterone + AH2 + O2 = 11alpha-hydroxy-16,17alpha-epoxyprogesterone + A + H2O
-
16alpha,17-epoxyprogesterone + AH2 + O2 = 11alpha-hydroxy-16alpha,17-epoxyprogesterone + A + H2O
-
17alpha-hydroxyprogesterone + AH2 + O2 = 11alpha,17alpha-dihydroxyprogesterone + A + H2O
-
progesterone + AH2 + O2 = 11alpha-hydroxyprogesterone + A + H2O
-
testosterone + AH2 + O2 = 11alpha-hydroxytestosterone + A + H2O
-
2-naphthoic acid + AH2 + O2 = 5-hydroxy-2-naphthoic acid + A + H2O
-
2-naphthoic acid + AH2 + O2 = 7-hydroxy-2-naphthoic acid + A + H2O
-
2-naphthoic acid + AH2 + O2 = 8-hydroxy-2-naphthoic acid + A + H2O
-
4-coumaric acid + AH2 + O2 = caffeic acid + A + H2O
-
4-ethylbenzoate + AH2 + O2 = 4-(1-hydroxyethyl)-benzoate + 4-vinylbenzoate + A + H2O
-
4-methoxyacetophenone + AH2 + O2 = 4-hydroxyacetophenone + formaldehyde + A + H2O
-
4-methoxybenzaldehyde + AH2 + O2 = 4-hydroxybenzaldehyde + formaldehyde + A + H2O
-
4-methoxybenzamide + AH2 + O2 = 4-hydroxybenzamide + formaldehyde + A + H2O
-
4-methoxybenzoate + AH2 + O2 = 4-hydroxybenzoate + formaldehyde + A + H2O
-
4-methoxyphenylacetate + AH2 + O2 = 4-hydroxyphenylacetate + formaldehyde + A + H2O
-
4-methoxyphenylboronic acid + AH2 + O2 = 4-hydroxyphenylboronic acid + formaldehyde + A + H2O
-
cinnamic acid + AH2 + O2 = ? + A + H2O
-
4-methoxybenzoate + reduced putidaredoxin + O2 = 4-hydroxybenzoate + formaldehyde + oxidized putidaredoxin + H2O
-
Latia luciferin + AH2 + O2 = oxidized Latia luciferin + CO2 + formate + A + H2O + hnu
-
ecdysone + AH2 + O2 = 20-hydroxyecdysone + A + H2O
-
progesterone + AH2 + O2 = 9alpha-hydroxyprogesterone + A + H2O
-
eIF5A-N6-(4-aminobutyl)-L-lysine + AH2 + O2 = eIF5A-N6-(4-amino-2-hydroxybutyl)-L-lysine + A + H2O
-
eIF5A-Nepsilon-(4-aminobutyl)lysine + AH2 + O2 = eIF5A-Nepsilon-(4-amino-2-hydroxybutyl)lysine + A + H2O
-
eukaryotic translation initiation factor eIF-5A deoxyhypusine + O2 + AH2 = eukaryotic translation initiation factor eIF-5A hypusine + H2O + A
-
[eIF5A]-deoxyhypusine + AH2 + O2 = [eIF5A]-hypusine + A + H2O
-
thiophene-2-carbonyl-CoA + AH2 + O2 = 5-hydroxythiophene-2-carbonyl-CoA + A + H2O
-
cholesterol + AH2 + O2 = 25-hydroxycholesterol + A + H2O
-
ammonia + AH2 + O2 = NH2OH + A + H2O
-
2,4,2',4'-tetradehydrolycopene + AH2 + O2 = 2,4,2',4'-tetradehydrolycopendial + A + H2O
-
2,4,2',4'-tetradehydrolycopene + AH2 + O2 = 2,4,2',4'-tetradehydrolycopene dialdehyde + 2,4,2',4'-tetradehydrolycopene monoaldehyde + A + H2O
-
4,4'-diapolycopene + AH2 + O2 = 4,4'-diapolycopen-4,4'-dial + A + H2O
-
4,4'-diapolycopene + AH2 + O2 = 4,4'-diapolycopene-4,4'-dial + A + H2O
-
4,4'-diapolycopene + AH2 + O2 = 4,4'-diapolycopene-4,4'-dialdehyde + A + H2O
-
4,4'-diaponeurosporene + AH2 + O2 = 4,4'-diaponeurosporen-4-al + A + H2O
-
4,4'-diaponeurosporene + AH2 + O2 = 4,4'-diaponeurosporen-4-monoaldehyde + A + H2O
-
(+)-larreatricin + O2 + AH2 = (+)-3-hydroxylarreatricin + A + H2O
-
protoheme + 4 AH2 + 4 O2 = 15-oxo-beta-bilirubin + Fe2+ + CO + 4 A + 4 H2O
-
protoheme + 4 AH2 + 4 O2 = 5-oxo-delta-bilirubin + Fe2+ + CO + 4 A + 4 H2O
-
amorphous cellulose + 2 AH2 + 2 O2 = cellooligosaccharide-C6-aldehyde-C1-lactone + 2 A + 2 H2O
-
amorphous cellulose + AH2 + O2 = cellooligosaccharide-C1-lactone + A + H2O
-
[(1->4)-beta-D-glucosyl]n+m + AH2 + O2 = [(1->4)-beta-D-glucosyl]m-1-(1->4)-D-glucono-1,5-lactone + [(1->4)-beta-D-glucosyl]n + A + H2O
-
starch + AH2 + O2 = aldonic acid-terminated malto-oligosaccharides + A + H2O
-
heme + 3 AH2 + 3 O2 = biliverdin + Fe2+ + CO + 3 A + 3 H2O
-
2,3-epoxyphylloquinone + AH2 = phylloquinone + A + ?
-
reduced putidaredoxin + ferricytochrome c = oxidized putidaredoxin + ferrocytochrome c
-
reduced putidaredoxin + NAD+ = oxidized putidaredoxin + NADH + H+
-
3,3',5'-triido-L-thyronine + AH = 3,3'-diiodothyronine + iodide + A + H+
-
3,3',5'-triiodo-L-thyronine + AH2 = 3,3'-diiodo-L-thyronine + iodide + A + H+
-
3,3',5-triiodo-L-thyronine + AH2 = 3,3'-diiodo-L-thyronine + iodide + A + H+
639397, 0, 644796, 644793, 644795, 644798, 644802, 644800, 644807, 644801, 644808, 644809, 644804
-
3,3',5-triiodo-L-thyronine + AH2 = 3,3'-diiodothyronine + iodide + A + H+
-
3,3',5-triiodo-L-thyronine sulfate + AH2 = 3,3'-diiodo-L-thyronine sulfate + iodide + A + H+
-
3,5,3'-triiodo-L-thyronine + AH2 = 3,3'-diiodothyronine + iodide + A + H+
-
3,5,3'-triiodothyronine + AH2 = 3,3'-diiodothyronine + iodide + A + H+
-
L-3',5'-diiodothyronine + AH2 = L-5'-iodothyronine + iodide + A + H+
-
L-3,5,3',5'-tetraiodothyronine + AH2 = L-3,5',3'-triiodothyronine + iodide + A + H+
-
L-3,5,3'-triiodothyronine + AH2 = L-3,3'-diiodothyronine + iodide + A + H+
-
L-3-iodothyronine + AH2 = L-thyronine + iodide + A + H+
-
L-thyroxine + AH2 = 3,3',5'-triido-L-thyronine + iodide + A + H+
-
L-thyroxine + AH2 = 3,3',5'-triiodo-L-thyronine + iodide + A + H+
0, 644802, 644796, 644795, 644801, 644800, 639397, 644808, 644804, 644797, 644789, 644790, 644793, 644809
-
L-thyroxine + AH2 = 3,3',5-triiodo-L-thyronine + iodide + A + H+
-
L-thyroxine + AH2 = 3,5,3'-triiodo-L-thyronine + iodide + A + H+
-
3,3',5'-triiodo-L-thyronine + AH2 = 3,3'-diiodo-L-thyronine + iodide + A + H+
-
3,3',5'-triiodo-L-thyronine + AH2 = 3,3'-diiodothyronine + iodide + A + H+
-
3,3',5'-triiodothyronine + AH2 = 3,3'-diiodothyronine + iodide + A + H+
-
3,3',5-triiodothyronine + AH2 = 3,3'-diiodothyronine + iodide + A + H+
-
3,3',5-triiodothyronine + AH2 = 3,5-diiodothyronine + iodide + A + H+
-
3,3',5-triiodothyronine + AH2 = diiodothyronine + iodide + A + H+
-
3,5'-diiodo-L-thyronine + AH2 = 3-iodothyronine + iodide + A + H+
-
L-3,5',3'-triiodothyronine + AH2 = L-3,3'-diiodothyronine + iodide + A + H+
-
L-3,5'-diiodothyonine + AH2 = L-3-iodothyronine + iodide + A + H+
-
L-3,5'-diiodothyronine + AH2 = L-3-iodothyronine + iodide + A + H+
-
L-3,5,3',5'-tetraiodothyronine + AH2 = L-3,5,3'-triiodothyronine + iodide + A + H+
-
L-thyroxine + AH2 = 3,3',5'-triiodo-L-thyronine + iodide + A + H+
-
L-thyroxine + AH2 = 3,3',5'-triiodothyronine + iodide + A + H+
-
L-thyroxine + AH2 = 3,3',5-triiodo-L-thyronine + iodide + A + H+
-
L-thyroxine + AH2 = 3,3',5-triiodothyronine + iodide + A + H+
-
L-thyroxine + AH2 = 3,5,3'-triiodo-L-thyronine + iodide + A + H+
-
reverse triiodothyronine + AH2 = diiodothyronine + iodide + A + H+
-
sulfated reverse triiodothyronine + AH2 = diiodothyronine + iodide + A + H+ + ?
-
fumarate + electron donor = succinate + oxidized donor
-
zeta-carotene + 2 AH2 + 2 O2 = lycopene + 2 A + 4 H2O
-
zeta-carotene + AH2 + O2 = neurosporene + A + H2O
-
chlorophyllide a + AH2 + ATP + H2O = 3-deacetyl-3-vinylbacteriochlorophyllide a + A + ADP + phosphate
-
AH2 + chlorate = A + H2O + chlorite
-
selenate + electron donor = selenite + H2O + oxidized donor
-
FVNQHLCGSHLVEALYLVCGERGFFYTPKA + H2O = FVNQHLCGSHLVE + A + LYLVCGERGF + FY + TPKA
-
C-terminal [mycofactocin precursor peptide]-glycyl-L-valyl-4-[2-aminoethenyl]phenol + S-adenosyl-L-methionine + AH2 = C-terminal [mycofactocin precursor peptide]-glycyl-3-amino-5-[(4-hydroxyphenyl)methyl]-4,4-dimethylpyrrolidin-2-one + 5'-deoxyadenosine + L-methionine + A
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Kinetic analysis of duodenal and testicular cytochrome P450c17 in the rat
1996
Dalla Valle, L.; Ramina, A.; Vianello, S.; Belvedere, P.; Colombo, L.
J. Steroid Biochem. Mol. Biol.
58
577-584
-
Bacterial organomercurial lyase: Mechanistic studies on a protonolytic organomercurial cleaving enzyme in mercurial detoxification
1986
Walsh, C.; Begley, T.; Walts, A.
Stereochem. Org. Bioorg. Transform. (Proc. Workshop, Conf. Hoechst,17th Meeting, Bartmann, W. , Sharpless, K. , eds. )
17
73-83
-
Bacterial organomercurial lyase: Novel enzymatic protonolysis of organostannanes
1988
Walts, A.; Walsh, C.T.
J. Am. Chem. Soc.
110
1950-1953
Mechanistic studies of a protonolytic organomercurial cleaving enzyme: bacterial organomercurial lyase
1986
Begley, T.P.; Walts, A.E.; Walsh, C.T.
Biochemistry
25
7192-7200
Bacterial organomercurial lyase: overproduction, isolation, and characterization
1986
Begley, T.P.; Walts, A.E.; Walsh, C.T.
Biochemistry
25
7186-7192
Purification and properties of an enzyme catalyzing the splitting of carbon-mercury linkages from mercury-resistant Pseudomonas K-62 strain. I. Splitting enzyme 1
1976
Tezuka, T.; Tonomura, K.
J. Biochem.
80
79-87
Cloning and DNA sequence of the mercuric- and organomercurial-resistance determinants of plasmid pDU1358
1987
Griffin, H.G.; Foster, T.J.; Silver, S.; Misra, T.K.
Proc. Natl. Acad. Sci. USA
84
3112-3116
-
Biodegradation of phenylmercuric acetate by organomercury-resistant Penicillum sp. MR-2
1988
Tezuka, T.; Takasaki, Y.
Agric. Biol. Chem.
52
3183-3185
-
Degradation of organomercurials in Becillus cereus
1985
Izaki, K.; Aoki, T.; Takahashi, H.
Agric. Biol. Chem.
49
2413
Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258
1987
Laddaga, R.A.; Chu, L.; Misra, T.K.; Silver, S.
Proc. Natl. Acad. Sci. USA
84
5106-5110
Mixed function oxidation. IV. An induced methylene hydroxylase in camphor oxidation
1965
Hedegaard, J.; Gunsalus, I.C.
J. Biol. Chem.
240
4038-4043
The role of putidaredoxin and P450 cam in methylene hydroxylation
1972
Tyson, C.T.; Lipscomb, J.D.; Gunsalus, I.C.
J. Biol. Chem.
247
5777-5784
Bacterial P-450cam methylene monooxygenase components: cytochrome m, putidaredoxin, and putidaredoxin reductase
1978
Gunsalus, I.C.; Wagner, G.C.
Methods Enzymol.
52
166-188
Interaction of 5-bromocamphor with cytochrome P-450 cam. Production of 5-ketocamphor from a mixed spin state hemoprotein
1981
Gould, P.V.; Gelb, M.H.; Sligar, S.G.
J. Biol. Chem.
256
6686-6691
Cytochrome P450cam catalyzed epoxidation of dehydrocamphor
1982
Gelb, M.H.; Mälkönen, P.; Sligar, S.G.
Biochem. Biophys. Res. Commun.
104
853-858
Novel reactivity of cytochrome P-450-CAM. Methyl hydroxylation of 5,5-difluorocamphor
1984
Smith Eble, K.; Dawson, J.H.
J. Biol. Chem.
259
14389-14393
Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P450cam monoxygenase system
1982
Gelb, M.H.; Heimbrook, D.C.; Mälkönen, P.; Sligar, S.G.
Biochemistry
21
370-377
Roles of the axial push effect in cytochrome P450cam studied with the site-directed mutagenesis at the heme proximal site
2000
Yoshioka, S.; Takahashi, S.; Ishimori, K.; Morishima, I.
J. Inorg. Biochem.
81
141-151
Engineering cytochrome P-450cam to increase the stereospecificity and coupling of aliphatic hydroxylation
1993
Loida, P.J.; Sligar, S.G.
Protein Eng.
6
207-212
The catalytic pathway of cytochrome P450cam at atomic resolution
2000
Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A.M.; Maves, S.A.; Benson, D.E.; Sweet, R.M.; Ringe, D.; Petsko, G.A.; Sligar, S.G.
Science
287
1615-1622
Complex formation of cytochrome P450cam with putidaredoxin: evidence for protein-specific interactions involving the proximal thiolate ligand
2002
Unno, M.; Christian, J.F.; Sjodin, T.; Benson, D.E.; Macdonald, I.D.G.; Sligar, S.G.; Champion, P.M.
J. Biol. Chem.
277
2547-2553
The dimerization of Pseudomonas putida cytochrome P450cam: practical consequences and engineering of a monomeric enzyme
1997
Nickerson, D.P.; Wong, L.L.
Protein Eng.
10
1357-1361
Benign synthesis of 2-ethylhexanoic acid by cytochrome P450cam: enzymatic, crystallographic, and theoretical studies
2001
French, K.J.; Strickler, M.D.; Rock, D.A.; Rock, D.A.; Bennett, G.A.; Wahlstrom, J.L.; Goldstein, B.M.; Jones, J.P.
Biochemistry
40
9532-9538
Oxidation of polychlorinated benzenes by genetically engineered CYP101 (cytochrome P450(cam))
2001
Jones, J.P.; O'Hare, E.J.; Wong, L.L.
Eur. J. Biochem.
268
1460-1467
Proximal cysteine residue is essential for the enzymatic activities of cytochrome P450cam
2001
Yoshioka, S.; Takahashi, S.; Hori, H.; Ishimori, K.; Morishima, I.
Eur. J. Biochem.
268
252-259
Surface-modified mutants of cytochrome p450cam enzymatic properties and electrochemistry
1999
Lo, K.K.; Wong, L.L.; Hill, A.O.
FEBS Lett.
451
342-346
Inhibitors of 17alpha-hydroxylase/17,20-lyase (CYP17): potential agents for the treatment of prostate cancer
1999
Njar, V.C.; Brodie, A.M.
Curr. Pharm. Des.
5
163-180
Molecular modeling of human P450c17 (17alpha-hydroxylase/17,20-lyase): insights into reaction mechanisms and effects of mutations
1999
Auchus, R.J.; Miller, W.L.
Mol. Endocrinol.
13
1169-1182
The use of random chimeragenesis to study structure/function properties of rat and human P450c17
2000
Brock, B.J.; Waterman, M.R.
Arch. Biochem. Biophys.
373
401-408
Novel 17-azolyl steroids, potent inhibitors of human cytochrome 17alpha-hydroxylase-C17,20-lyase (P450(17)alpha): potential agents for the treatment of prostate cancer
1998
Njar, V.C.; Kato, K.; Nnane, I.P.; Grigoryev, D.N.; Long, B.J.; Brodie, A.M.
J. Med. Chem.
41
902-912
Synthesis of novel 21-trifluoropregnane steroids: inhibitors of 17alpha-hydroxylase/17,20-lyase (17alpha-lyase)
1997
Njar, V.C.; Klus, G.T.; Johnson, H.H.; Brodie, A.M.
Steroids
62
468-473
Characterization of the adrenal cytochrome P450C17 in the hamster, a small animal model for the study of adrenal dehydroepiandrosterone biosynthesis
1997
Cloutier, M.; Fleury, A.; Courtemanche, J.; Ducharme, L.; Mason, J.I.; Lehoux, J.G.
DNA Cell Biol.
16
357-368
Expression and purification of functional human 17alpha-hydroxylase/17,20-lyase (P450c17) in Escherichia coli. Use of this system for study of a novel form of combined 17alpha-hydroxylase/17,20-lyase deficiency
1993
Imai, T.; Globerman, H.; Gertner, J.M.; Kagawa, N.; Waterman, M.R.
J. Biol. Chem.
268
19681-19689
Inhibition of steroid 17alpha-hydroxylase and C17,20-lyase in the human testis by epitestosterone
1993
Bicikova, M.; Hampl, R.; Hill, M.; Starka, L.
J. Steroid Biochem. Mol. Biol.
46
515-518
17beta-(Cyclopropylamino)-androst-5-en-3 beta-ol, a selective mechanism-based inhibitor of cytochrome P450(17alpha) (steroid 17alpha-hydroxylase/C17-20 lyase)
1989
Angelastro, M.R.; Laughlin, M.E.; Schatzman, G.L.; Bey, P.; Blohm, T.R.
Biochem. Biophys. Res. Commun.
162
1571-1577
C21 steroid side chain cleavage enzyme from porcine adrenal microsomes. Purification and characterization of the 17alpha-hydroxylase/C17,20-lyase cytochrome P-450
1984
Nakajin, S.; Shinoda, M.; Haniu, M.; Shively, J.E.; Hall, P.F.
J. Biol. Chem.
259
3971-3976
Studies on the composition of the mitochondrial sulfite oxidase system
1980
Shibuya, A.; Horie, S.
J. Biochem.
87
1773-1784
The properties of sulfite oxidation in perfused rat liver; interaction of sulfite oxidase with the mitochondrial respiratory chain
1975
Oshino, N.; Chance, B.
Arch. Biochem. Biophys.
170
514-528
-
Molybdenum iron-sulfur flavin hydroxylases and related enzymes
1975
Bray, R.C.
The Enzymes, 3rd Ed. (Boyer, P. D. , ed. )
12
299-419
Hepatic sulfite oxidase. Congruency in mitochondria of prosthetic groups and activity
1972
Cohen, H.J.
J. Biol. Chem.
247
7759-7766
Purification and properties of sulfite oxidase from chicken liver. Presence of molybdenum in sulfite oxidase from diverse sources
1972
Kessler, D.L.; Rajagopalan, K.V.
J. Biol. Chem.
247
6566-6573
Hepatic sulfite oxidase. Purification and properties
1971
Cohen, H.J.; Fridovich, I.
J. Biol. Chem.
246
359-366
Purification and properties of hepatic sulfite oxidase
1961
MacLeod, R.M.; Farkas, W.; Fridovich, I.; Handler, P.
J. Biol. Chem.
236
1841-1846
-
Isolation, purification and partial characterization of sulfite oxidase from Malva sylvestris
1997
Ganai, B.A.; Masood, A.; Baig, M.A.
Phytochemistry
45
879-880
-
Evidence for sulfite oxidase activity in spinach leaves
1995
Jolivet, P.; Bergeron, E.; Meunier, J.C.
Phytochemistry
40
667-672
-
Electrochemical study of the rate of activation of the molybdoheme protein sulfite oxidase by organic electron acceptors
1993
Coury, L.A., Jr.; Yang, L.; Murray, R.W.
Anal. Chem.
65
242-246
Cofactor requirements for the formation of DELTA9-unsaturated fatty acids in Mycobacterium phlei
1964
Fulco, A.J.; Bloch, K.
J. Biol. Chem.
239
993-997
A function of cytochrome b5 in fatty acid desaturation by rat liver microsomes
1971
Oshino, N.; Imai, Y.; Sato, R.
J. Biochem.
69
155-167
Purification and properties of rat liver microsomal stearyl coenzyme A desaturase
1974
Strittmatter, P.; Spatz, L.; Corcoran, D.; Rogers, M.J.; Setlow, B.; Redline, R.
Proc. Natl. Acad. Sci. USA
71
4565-4569
Terminal enzyme of stearoyl-CoA desaturation from chicken liver
1981
Joshi, V.C.; Prasad, M.R.; Sreekrishna, K.
Methods Enzymol.
71
252-258
A non-substrate-binding protein that stimulates microsomal stearyl-CoA desaturase
1981
Jones, D.P.; Gaylor, J.L.
Methods Enzymol.
71
258-263
Purification of stearyl-CoA desaturase from liver
1978
Strittmatter, P.; Enoch, H.G.
Methods Enzymol.
52
188-193
Some properties, including the substrate in vivo, of the DELTA9-desaturase in Micrococcus cryophilus
1983
Foot, M.; Jeffcoat, R.; Russell, N.
Biochem. J.
209
345-353
Growth temperature-dependent stearoyl coenzyme A desaturase activity of Fusarium oxysporum microsomes
1978
Wilson, A.C.; Miller, R.W.
Can. J. Biochem.
56
1109-1114
Factors involved in fatty acyl CoA desaturation by fungal microsomes. The relative roles of acyl CoA and phospholipids as substrates
1971
Baker, N.; Lynen, F.
Eur. J. Biochem.
19
200-210
Inhibition of the microsomal stearoyl coenyme A desaturation by divalent copper and its chelates
1980
Sreekrishna, K.; Joshi, V.C.
Biochim. Biophys. Acta
619
267-273
The inhibition of stearoyl-coenzyme A desaturase by phenyllactate and phenylpyruvate
1979
Scott, W.; Foote, J.L.
Biochim. Biophys. Acta
573
197-200
The positional specificity of a desaturase in the psychrophilic bacterium Micrococcus cryophilus (ATCC 15174)
1978
Russell, N.J.
Biochim. Biophys. Acta
531
179-186
The physiological role and control of mammalian fatty acyl-coenzyme A desaturases
1977
Jeffcoat, R.
Biochem. Soc. Trans.
5
811-818
Thermal thresholds of lipid restructuring and DELTA9-desaturase expression in the liver of carp (Cyprinus carpio L.)
2000
Trueman, R.J.; Tiku, P.E.; Caddick, M.X.; Cossins, A.R.
J. Exp. Biol.
203
641-650
A third fatty acid DELTA9-desaturase from Mortierella alpina with a different substrate specificity to ole1p and ole2p
2002
MacKenzie, D.A.; Carter, A.T.; Wongwathanarat, P.; Eagles, J.; Salt, J.; Archer, D.B.
Microbiology
148
1725-1735
A desaturase-like protein from white spruce is a DELTA9 desaturase
2002
Marillia, E.F.; Giblin, E.M.; Covello, P.S.; Taylor, D.C.
FEBS Lett.
526
49-52
An isothermal induction of DELTA9-desaturase in cultured carp hepatocytes
1996
Macartney, A.I.; Tiku, P.E.; Cossins, A.R.
Biochim. Biophys. Acta
1302
207-216
-
Circular dichroism and magnetic circular dichroism studies of the reduced binuclear non-heme iron site of stearoyl-ACP DELTA9-desaturase: substrate binding and comparison to ribonucleotide reductase
1999
Yang, Y.S.; Broadwater, J.A.; Pulver, S.C.; Fox, B.G.; Solomon, E.I.
J. Am. Chem. Soc.
121
2770-2783
Oleoyl-CoA is the major de novo product of stearoyl-CoA desaturase 1 gene isoform and substrate for the biosynthesis of the Harderian gland 1-alkyl-2,3-diacylglycerol
2001
Miyazaki, M.; Kim, H.J.; Man, W.C.; Ntambi, J.M.
J. Biol. Chem.
276
39455-39461
A fatty acid desaturase modulates the activation of defense signaling pathways in plants
2001
Kachroo, P.; Shanklin, J.; Shah, J.; Whittle, E.J.; Klessig, D.F.
Proc. Natl. Acad. Sci. USA
98
9448-9453
Purification of the cyclooxygenase that forms prostaglandins. Demonstration of two forms of iron in the holoenzyme
1976
Hemler, M.; Lands, W.E.M.
J. Biol. Chem.
251
5575-5579
Further characterization of bovine thyroid prostaglandin synthase
1975
Friedman, Y.; Lang, M.; Burke, G.
Biochim. Biophys. Acta
397
331-341
Altered sensitivity of aspirin-acetylated prostaglandin G/H synthase-2 to inhibition by nonsteroidal anti-inflammatory drugs
1997
Mancini, J.A.; Vickers, P.J.; O'Neill, G.P.; Boily, C.; Falgueyret, J.P.; Riendeau, D.
Mol. Pharmacol.
51
52-60
Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs
1993
Meade, E.A.; Smith, W.L.; DeWitt, D.L.
J. Biol. Chem.
268
6610-6614
Evidence for the different responses of delta9-, delta6- and delta5-fatty acyl-CoA desaturases to cytoplasmic proteins
1978
Jeffcoat, R.; Dunton, A.P.; James, A.T.
Biochim. Biophys. Acta
528
28-35
-
Catalase stimulates linoleate desaturase activity in microsomes from developing linseed cotyledons
1981
Browse, J.A.; Slack, C.R.
FEBS Lett.
131
111-114
Inhibition of desaturation of palmitic, linoleic and eicosa-8,11,14-trienoic acids in vitro by isomeric cis-octadecenoic acids
1981
Mahfouz, M.; Johnson, S.; Holman, R.T.
Biochim. Biophys. Acta
663
58-68
Purification and partial characterization of linoleoyl-CoA desaturase from rat liver microsomes
1981
Okayasu, T.; Nagao, M.; Ishibashi, T.; Imai, Y.
Arch. Biochem. Biophys.
206
21-28
Short chain aliphatic alcohols increase rat-liver microsomal membrane fluidity and affect the activities of some microsomal membrane-bound enzymes
1984
Garda, H.A.; Brenner, R.R.
Biochim. Biophys. Acta
769
160-170
DELTA 6- and DELTA 12-desaturase activities and phosphatidic acid formation in microsomal preparations from the developing cotyledons of common borage (Borago officinalis)
1988
Griffiths, G.; Stobart, A.K.; Stymne, S.
Biochem. J.
252
641-647
-
In vitro desaturation of monogalactosyldiacylglycerol and phosphatidylcholine molecular species by chloroplast homogenates
1991
Norman, H.A.; Pillai, P.; St.John, J.B.
Phytochemistry
30
2217-2222
Differential effect of N-ethyl maleimide on delta6-desaturase activity in human fetal liver toward fatty acids of the n-6 and n-3 series
1999
Rodriguez, A.; Sarda, P.; Boulot, P.; Leger, C.L.; Descomps, B.
Lipids
34
23-30
Linoleic acid metabolism in the spontaneously diabetic rat: delta6-desaturase activity vs. product/precursor ratios
2000
Brown, J.E.; Lindsay, R.M.; Riemersma, R.A.
Lipids
35
1319-1323
Effect of conjugated linoleic acid on fungal DELTA6-desaturase activity in a transformed yeast system
2001
Chuang, L.T.; Thurmond, J.M.; Liu, J.W.; Kirchner, S.J.; Mukerji, P.; Bray, T.M.; Huang, Y.S.
Lipids
36
139-143
Identification of a fatty acid DELTA6-desaturase deficiency in human skin fibroblasts
2001
Williard, D.E.; Nwankwo, J.O.; Kaduce, T.L.; Harmon, S.D.; Irons, M.; Moser, H.W.; Raymond, G.V.; Spector, A.A.
J. Lipid Res.
42
501-508
The same rat DELTA6-desaturase not only acts on 18- but also on 24-carbon fatty acids in very-long-chain polyunsaturated fatty acid biosynthesis
2002
D'Andrea, S.; Guillou, H.; Jan, S.; Catheline, D.; Thibault, J.N.; Bouriel, M.; Rioux, V.; Legrand, P.
Biochem. J.
364
49-55
DELTA6-, stearoyl CoA-, and DELTA5-desaturase enzymes are expressed in beta-cells and are altered by increases in exogenous PUFA concentrations
2002
Ramanadham, S.; Zhang, S.; Ma, Z.; Wohltmann, M.; Bohrer, A.; Hsu, F.F.; Turk, J.
Biochim. Biophys. Acta
1580
40-56
N-acetyl-6-hydroxytryptophan oxidase, a developmentally controlled phenol oxidase from Aspergillus nidulans
1990
Birse, C.E.; Clutterbuck, A.J.
J. Gen. Microbiol.
136
1725-1730
-
Comparison of phenoloxidase activities during the cultivation of several basidomycetes
1989
Tanabe, N.; Sagawa, I.; Ohtsubo, K.i.; Iijima, Y.; Yanagi, S.O.
Agric. Biol. Chem.
53
3061-3063
Extracellular tyrosinase from Streptomyces sp. KY-453: purification and some enzymatic properties
1985
Yoshimoto, T.; Yamamoto, K.; Tsuru, D.
J. Biochem.
97
1747-1754
Purification and properties of a phenol oxidase derived from suspension cultures of Mucuna pruriens
1984
Wichers, H.J.; Peetsma, G.J.; Malingre, T.M.; Huizing, H.J.
Planta
162
334-341
-
Isolation and characterization of the polyphenoloxidase from senescent leaves of black poplar
1984
Tremolieres, M.; Bieth, J.G.
Phytochemistry
23
501-505
-
Mono- and diphenolase activity from fruit of Malus pumila
1983
Goodenough, P.W.; Kessell, S.; Lea, A.G.H.; Loeffler, T.
Phytochemistry
22
359-363
Kinetic studies on the hydroxylation of p-coumaric acid to caffeic acid by spinach-beet phenolase
1975
McIntyre, R.J.; Vaughan, P.F.T.
Biochem. J.
149
447-461
Purification and characterization of the tyrosinase isozymes of pine needles
1998
Kong, K.H.; Lee, J.L.; Park, H.J.; Cho, S.H.
Biochem. Mol. Biol. Int.
45
717-724
Kinetic Study of the Oxidation of g-L-Glutaminyl-4-hydroxybenzene Catalyzed by Mushroom (Agaricus bisporus) Tyrosinase
1999
Espin, J.C.; Jolivet, S.; Wichers, H.J.
J. Agric. Food Chem.
47
3495-3502
-
Purification and characterization of a highly stable tyrosinase from Thermomicrobium roseum
2000
Kong, K.H.; Hong, M.P.; Choi, S.S.; Kim, Y.T.; Cho, S.H.
Biotechnol. Appl. Biochem.
31
113-118
Properties of diphenolase from Vanilla planifolia (Andr.) shoot primordia cultured in vitro
2001
Debowska, R.; Podstolski, A.
J. Agric. Food Chem.
49
3432-3437
Inhibition of rat liver iodothyronine deiodinase. Interaction of aurones with the iodothyronine ligand-binding site
1986
Auf'mkolk, M.; Koehrle, J.; Hesch, R.D.; Cody, V.
J. Biol. Chem.
261
11623-11630
Subcellular localization of thyroxine-5-deiodinase in rat liver
1980
Auf dem Brinke, D.; Kohrle, J.; Kodding, R.; Hesch, R.D.
J. Endocrinol. Invest.
3
73-76
Properties of detergent-dispersed iodothyronine 5- and 5'-deiodinase activities from rat liver
1983
Fekkes, D.; Hennemann, G.; Visser, T.J.
Biochim. Biophys. Acta
742
324-333
Hepatic iodothyronine 5-deiodinase activity in Rana catesbeiana tadpoles at different stages of the life cycle
1987
Galton, V.A.; Hiebert, A.
Endocrinology
121
42-47
Iodothyronine 5-deiodinase in rat posterior pituitary
1992
Tanaka, K.; Shimatsu, A.; Imura, H.
Biochem. Biophys. Res. Commun.
188
272-277
Characteristics of type III iodothyronine deiodinase
1992
Visser, T.J.; Schoenmakers, C.H.
Acta Med. Austriaca
19 Suppl 1
18-21
Thyroxine 5-deiodinase in human brain tumors
1993
Mori, K.; Yoshida, K.; Kayama, T.; Kaise, N.; Fukazawa, H.; Kiso, Y.; Kikuchi, K.; Aizawa, Y.; Abe, K.
J. Clin. Endocrinol. Metab.
77
1198-1202
Thyroid hormone regulates rat placental type III iodothyronine deiodinase activity by inducing kinetic changes different from those in the same isozyme in rat brain
1995
Mori, K.; Yoshida, K.; Fukazawa, H.; Kiso, Y.; Sayama, N.; Kikuchi, K.; Aizawa, Y.; Abe, K.
Endocr. J.
42
753-760
Cloning and expression of a cDNA for a mammalian type III iodothyronine deiodinase
1995
Croteau, W.; Whittemore, S.L.; Schneider, M.J.; St Germain, D.L.
J. Biol. Chem.
270
16569-16575
Evidence that type III iodothyronine deiodinase in rat astrocyte is a selenoprotein
1996
Ramauge, M.; Pallud, S.; Esfandiari, A.; Gavaret, J.; Lennon, A.; Pierre, M.; Courtin, F.
Endocrinology
137
3021-3025
Cloning and characterization of type III iodothyronine deiodinase from the fish Oreochromis niloticus
1999
Sanders, J.P.; Van der Geyten, S.; Kaptein, E.; Darras, V.M.; Kuhn, E.R.; Leonard, J.L.; Visser, T.J.
Endocrinology
140
3666-3673
Evidence for a role of the type III-iodothyronine deiodinase in the regulation of 3,5,3'-triiodothyronine content in the human central nervous system
2001
Santini, F.; Pinchera, A.; Ceccarini, G.; Castagna, M.; Rosellini, V.; Mammoli, C.; Montanelli, L.; Zucchi, V.; Chopra, I.J.; Chiovato, L.
Eur. J. Endocrinol.
144
577-583
Specific detection of type III iodothyronine deiodinase protein in chicken cerebellar purkinje cells
2002
Verhoelst, C.H.; Vandenborne, K.; Severi, T.; Bakker, O.; Zandieh Doulabi, B.; Leonard, J.L.; Kuhn, E.R.; van der Geyten, S.; Darras, V.M.
Endocrinology
143
2700-2707
Substitution of cysteine for selenocysteine in the catalytic center of type III iodothyronine deiodinase reduces catalytic efficiency and alters substrate preference
2003
Kuiper, G.G.; Klootwijk, W.; Visser, T.J.
Endocrinology
144
2505-2513
Reaction of the type III iodothyronine deiodinase with the affinity label N-bromoacetyl-triiodothyronine
1993
Schoenmakers, C.H.; Pigmans, I.G.; Kaptein, E.; Darras, V.M.; Visser, T.J.
FEBS Lett.
335
104-108
Structures of the Mo(V) forms of sulfite oxidase from Arabidopsis thaliana by pulsed EPR spectroscopy
2005
Astashkin, A.V.; Hood, B.L.; Feng, C.; Hille, R.; Mendel, R.R.; Raitsimring, A.M.; Enemark, J.H.
Biochemistry
44
13274-13281
The pathogenic human sulfite oxidase mutants G473D and A208D are defective in intramolecular electron transfer
2005
Feng, C.; Wilson, H.L.; Tollin, G.; Astashkin, A.V.; Hazzard, J.T.; Rajagopalan, K.V.; Enemark, J.H.
Biochemistry
44
13734-13743
Growth inhibition by tungsten in the sulfur-oxidizing bacterium Acidithiobacillus thiooxidans
2005
Negishi, A.; Muraoka, T.; Maeda, T.; Takeuchi, F.; Kanao, T.; Kamimura, K.; Sugio, T.
Biosci. Biotechnol. Biochem.
69
2073-2080
A novel thermostable sulfite oxidase from Thermus thermophilus: characterization of the enzyme, gene cloning and expression in Escherichia coli
2006
Di Salle, A.; DErrico, G.; La Cara, F.; Cannio, R.; Rossi, M.
Extremophiles
10
587-598
Identification and characterization of a novel bacterial sulfite oxidase with no heme binding domain from Deinococcus radiodurans
2006
D'Errico, G.; Di Salle, A.; La Cara, F.; Rossi, M.; Cannio, R.
J. Bacteriol.
188
694-701
-
Kinetics of sulfite oxidase purified from Malva sylvestris
2006
Ganai, B.A.; Masood, A.; Zargar, M.A.; Syed, M.B.
J. Ind. Pollut. Contr.
22
77-82
Vanadium-dependent iodoperoxidases in Laminaria digitata, a novel biochemical function diverging from brown algal bromoperoxidases
2005
Colin, C.; Leblanc, C.; Michel, G.; Wagner, E.; Leize-Wagner, E.; van Dorsselaer, A.; Potin, P.
J. Biol. Inorg. Chem.
10
156-166
Structure of the Michaelis complex and function of the catalytic center in the reductive half-reaction of computational and synthetic models of sulfite oxidase
2007
Pal, K.; Chaudhury, P.K.; Sarkar, S.
Chemistry
2
956-964
[Mo(Tm(Me))(O)2Cl]: an alternative functional model of sulfite oxidase
2007
Wallace, D.; Gibson, L.T.; Reglinski, J.; Spicer, M.D.
Inorg. Chem.
46
3804-3806
MoV electron paramagnetic resonance of sulfite oxidase revisited: the low-pH chloride signal
2008
Doonan, C.J.; Wilson, H.L.; Bennett, B.; Prince, R.C.; Rajagopalan, K.V.; George, G.N.
Inorg. Chem.
47
2033-2038
Studies of the Mo(V) center of the Y343F mutant of human sulfite oxidase by variable frequency pulsed EPR spectroscopy
2008
Raitsimring, A.M.; Astashkin, A.V.; Feng, C.; Wilson, H.L.; Rajagopalan, K.V.; Enemark, J.H.
Inorg. Chim. Acta
361
941-946
Effect of ingested sulfite on hippocampus antioxidant enzyme activities in sulfite oxidase competent and deficient rats
2007
Kucukatay, V.; Bor-Kucukatay, M.; Atsak, P.; Agar, A.
Int. J. Neurosci.
117
971-983
Modified active site coordination in a clinical mutant of sulfite oxidase
2007
Doonan, C.J.; Wilson, H.L.; Rajagopalan, K.V.; Garrett, R.M.; Bennett, B.; Prince, R.C.; George, G.N.
J. Am. Chem. Soc.
129
9421-9428
Structural studies of the molybdenum center of the pathogenic R160Q mutant of human sulfite oxidase by pulsed EPR spectroscopy and 17O and 33S labeling
2008
Astashkin, A.V.; Johnson-Winters, K.; Klein, E.L.; Feng, C.; Wilson, H.L.; Rajagopalan, K.V.; Raitsimring, A.M.; Enemark, J.H.
J. Am. Chem. Soc.
130
8471-8480
Impaired bacterial clearance in type 3 deiodinase-deficient mice infected with Streptococcus pneumoniae
2009
Boelen, A.; Kwakkel, J.; Wieland, C.W.; St Germain, D.L.; Fliers, E.; Hernandez, A.
Endocrinology
150
1984-1990
Old mice present increased levels of succinate dehydrogenase activity and lower vulnerability to dyskinetic effects of 3-nitropropionic acid
2009
Rosenstock, T.R.; Abilio, V.C.; Frussa-Filho, R.; Kiyomoto, B.H.; Smaili, S.S.
Pharmacol. Biochem. Behav.
91
327-332
Chloroperoxidase-catalyzed epoxidation of cis-beta-methylstyrene: distal pocket flexibility tunes catalytic reactivity
2012
Morozov, A.N.; Chatfield, D.C.
J. Phys. Chem. B
116
12905-12914
The involvement of cytochrome P450 monooxygenases in methanol elimination in Drosophila melanogaster larvae
2012
Wang, S.P.; He, G.L.; Chen, R.R.; Li, F.; Li, G.Q.
Arch. Insect Biochem. Physiol.
79
264-275
Characterization of cytochrome P450 monooxygenases isolated from trichome enriched fraction of Artemisia annua L. leaf
2012
Misra, A.; Chanotiya, C.S.; Gupta, M.M.; Dwivedi, U.N.; Shasany, A.K.
Gene
510
193-201
The versatility of the fungal cytochrome P450 monooxygenase system is instrumental in xenobiotic detoxification
2011
Lah, L.; Podobnik, B.; Novak, M.; Korosec, B.; Berne, S.; Vogelsang, M.; Krasevec, N.; Zupanec, N.; Stojan, J.; Bohlmann, J.; Komel, R.
Mol. Microbiol.
81
1374-1389
Characteristics and applicability of phytase of the yeast Pichia anomala in synthesizing haloperoxidase
2015
Joshi, S.; Satyanarayana, T.
Appl. Biochem. Biotechnol.
176
1351-1369
Spectroscopic and electrochemical characterization of the mycofactocin biosynthetic protein, MftC, provides insight into its redox flipping mechanism
2019
Ayikpoe, R.; Ngendahimana, T.; Langton, M.; Bonitatibus, S.; Walker, L.; Eaton, S.; Eaton, G.; Pandelia, M.; Elliott, S.; Latham, J.
Biochemistry
58
940-950
-
How do vanadium chloroperoxidases generate hypochlorite from hydrogen peroxide and chloride? A computational study
2020
Mubarak, M.; Gerard, E.; Blanford, C.; Hay, S.; De Visser, S.
ACS Catal.
10
14067-14079
X-ray diffraction and density functional theory provide insight into vanadate binding to homohexameric bromoperoxidase II and the mechanism of bromide oxidation
2018
Radlow, M.; Czjzek, M.; Jeudy, A.; Dabin, J.; Delage, L.; Leblanc, C.; Hartung, J.
ACS Chem. Biol.
13
1243-1259
-
Magnetic separation and high reusability of chloroperoxidase entrapped in multi polysaccharide micro-supports
2018
Garcia-Embid, S.; Di Renzo, F.; De Matteis, L.; Spreti, N.; M. de la Fuente, J.
Appl. Catal. B
560
94-102
A useful propionate cofactor enhancing activity for organic solvent-tolerant recombinant metal-free bromoperoxidase (perhydrolase) from Streptomyces aureofaciens
2019
China, H.; Ogino, H.
Biochem. Biophys. Res. Commun.
516
327-332
-
Enhancing the catalytic performance of chloroperoxidase by co-immobilization with glucose oxidase on magnetic graphene oxide
2019
Gao, F.; Guo, Y.; Fan, X.; Hu, M.; Li, S.; Zhai, Q.; Jiang, Y.; Wang, X.
Biochem. Eng. J.
143
101-109
Mono- and dinuclear oxidovanadium(V) complexes of an amine-bis(phenolate) ligand with bromoperoxidase activities synthesis, characterization, catalytic, kinetic and computational studies
2018
Debnath, M.; Dolai, M.; Pal, K.; Bhunya, S.; Paul, A.; Lee, H.M.; Ali, M.
Dalton Trans.
47
2799
Formation of environmentally relevant polyhalogenated carbazoles from chloroperoxidase-catalyzed halogenation of carbazole
2018
Chen, Y.; Lin, K.; Chen, D.; Wang, K.; Zhou, W.; Wu, Y.; Huang, X.
Environ. Pollut.
232
264-273
-
Chloroperoxidase-Catalyzed Achmatowicz Rearrangements
2018
Thiel, D.; Blume, F.; Jaeger, C.; Deska, J.
Eur. J. Org. Chem.
2018
2717-2725
-
Fluorescent detection of bromoperoxidase activity in microalgae and planktonic microbial communities using aminophenyl fluorescein
2019
Archer, S.; Posman, K.; DeStefano, J.; Harrison, A.; Ladina, A.; Cheff, E.; Witt, D.
Front. Mar. Sci.
6
68
Coordination environment changes of the vanadium in vanadium-dependent haloperoxidase enzymes
2018
McLauchlan, C.C.; Murakami, H.A.; Wallace, C.A.; Crans, D.C.
J. Inorg. Biochem.
186
267-279
Effects of the deglycosylation on the structure and activity of chloroperoxidase molecular dynamics simulation approach
2020
Ghorbani Sangoli, M.; Housaindokht, M.R.; Bozorgmehr, M.R.
J. Mol. Graph. Model.
97
107570
Proximal pocket controls alkene oxidation selectivity of cytochrome P450 and chloroperoxidase toward small, nonpolar substrates
2018
Chatfield, D.C.; Morozov, A.N.
J. Phys. Chem. B
122
7828-7838
Characterization and biochemical assays of Streptomyces vanadium-dependent chloroperoxidases
2018
McKinnie, S.M.K.; Miles, Z.D.; Moore, B.S.
Methods Enzymol.
604
405-424
Halogenation of estrogens catalysed by a fungal chloroperoxidase
2021
Undiano, E.; Roman, R.; Miranda-Molina, A.; Ayala, M.
Nat. Prod. Res.
FEHLT
0000
-
Synthesis, crystal structure, DFT calculations, protein interaction, anticancer potential and bromoperoxidase mimicking activity of oxidoalkoxidovanadium(V) complexes
2019
Biswal, D.; Pramanik, N.; Drew, M.; Jangra, N.; Maurya, M.; Kundu, M.; Sil, P.; Chakrabarti, S.
New J. Chem.
43
17783-17800