Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
O2 + plastoquinol = H2O + plastoquinone + hv
-
6h-coelenterazine + O2 = ? + CO2 + hv
-
6h-f-coelenterazine + O2 = ? + CO2 + hv
-
bis-coelenterazine + O2 = ? + CO2 + hv
-
coelenterazine + O2 = coelenteramide + CO2 + hv
-
f-coelenterazine + O2 = ? + CO2 + hv
-
furimazine + O2 = ? + CO2 + hv
-
h-coelenterazine + O2 = ? + CO2 + hv
-
Oplophorus luciferin + O2 = oxidized Oplophorus luciferin + CO2 + hv
-
dinoflagellate luciferin + O2 = oxidized dinoflagellate luciferin + H2O + hv
-
2-benzyl-8-benzyl-6-(2-fluorophenylethynyl)imidazo[1,2-a]pyrazin-3(7H)-one + O2 = ? + CO2 + hv
-
2-benzyl-8-benzyl-6-(3-fluorophenylethynyl)imidazo[1,2-a]pyrazin-3(7H)-one + O2 = ? + CO2 + hv
-
2-benzyl-8-benzyl-6-(3-hydroxyphenylethynyl)imidazo[1,2-a]pyrazin-3(7H)-one + O2 = ? + CO2 + hv
-
2-benzyl-8-benzyl-6-(3-methylphenylethynyl)imidazo[1,2-a]pyrazin-3(7H)-one + O2 = ? + CO2 + hv
-
2-benzyl-8-benzyl-6-(4-fluorophenylethynyl)imidazo[1,2-a]pyrazin-3(7H)-one + O2 = ? + CO2 + hv
-
2-benzyl-8-benzyl-6-(phenylethynyl)imidazo[1,2-a]pyrazin-3(7H)-one + O2 = ? + CO2 + hv
-
2-benzyl-8-benzyl-6-[(1-fluoroethyl)-1,2,3-triazol-4]imidazo[1,2-a]pyrazin-3(7H)-one + O2 = ? + CO2 + hv
-
2-benzyl-8-benzyl-6-[(1-hydroxyethyl)-1,2,3-triazol-4]imidazo[1,2-a]pyrazin-3(7H)-one + O2 = ? + CO2 + hv
-
2-benzyl-8-benzyl-6-[(1-hydroxypropyl)-1,2,3-triazol-4]imidazo[1,2-a]pyrazin-3(7H)-one + O2 = ? + CO2 + hv
-
benzylluciferin + O2 = oxidized benzylluciferin + CO2 + hv
-
benzylluciferin methyl ether + O2 = oxidized benzylluciferin methyl ether + CO2 + hv
-
coelenterate-type luciferin + O2 = oxidized coelenterate-type luciferin + CO2 + hv
-
coelenterazine + O2 = ? + CO2 + hv
-
coelenterazine + O2 = coelenteramide + CO2 + hv
-
coelenterazine h + O2 = coelenteramide h + CO2 + hv
-
coelenterazine-h + O2 = coelenteramide h + CO2 + hv
-
D-luciferin + O2 + ATP = oxidized D-luciferin + CO2 + H2O + AMP + diphosphate + hv
-
Renilla luciferin + O2 = oxidized Renilla luciferin + CO2 + hv
-
(S)-Cypridina luciferin I + O2 = oxidized S-Cypridina luciferin I + CO2 + hv
-
Cypridina luciferin + O2 = oxidized Cypridina luciferin + CO2 + hv
-
DL-Cypridina luciferin + O2 = oxidized DL-Cypridina luciferin + CO2 + hv
-
Vargula hilgendorfii luciferin + O2 = oxidized Vargula hilgendorfii luciferin + CO2 + hv
-
5,5-dimethyl-luciferyl-O-adenosine monophosphate + ? = 5,5-dimethyloxyluciferin + hv
-
5,5-dimethyl-luciferyl-O-adenosine monophosphate + ? = 5,5-dimethyloxyluciferin + hv + ?
-
5,5-dimethylluciferin + ATP = 5,5-dimethyloxyluciferin + CO2 + H2O + AMP + diphosphate + hv
-
5-methylluciferin + ATP = 5-methyloxyluciferin + CO2 + H2O + AMP + diphosphate + hv
-
5-monomethyl-luciferyl-O-adenosine monophosphate + ? = 5-monomethyloxyluciferin + hv + ?
-
6'-amino-D-luciferin + ATP = ? + hv
-
adenosine 5'-tetraphosphate + Photinus luciferin = oxidized Photinus luciferin + CO2 + H2O + AMP + diphosphate + hv
-
D-firefly luciferin + O2 + ATP = firefly oxyluciferin + CO2 + AMP + diphosphate + hv
-
D-luciferin + ATP + O2 = luciferyl-adenylate + diphosphate + H2O + hv
-
D-luciferin + ATP + O2 = oxidized D-luciferin + CO2 + H2O + AMP + diphosphate + hv
-
D-luciferin + ATP + O2 = oxidized luciferin + AMP + CO2 + diphosphate + hv
-
D-luciferin + ATP + O2 = oxyluciferin + CO2 + AMP + hv + diphosphate
-
D-luciferin + O2 + ATP = oxidized D-luciferin + CO2 + H2O + AMP + diphosphate + hv
-
D-luciferin + O2 + ATP = oxidized luciferin + CO2 + H2O + AMP + diphosphate + hv
-
D-luciferin + O2 + ATP = oxyluciferin + CO2 + H2O + AMP + diphosphate + hv
-
D-luciferyl-adenylate + O2 = oxyluciferin + CO2 + AMP + hv
-
deoxyATP + Photinus luciferin = oxidized Photinus luciferin + CO2 + H2O + AMP + diphosphate + hv
-
luciferin + ATP + O2 = oxidized luciferin + CO2 + H2O + AMP + diphosphate + hv
-
luciferin + O2 + ATP = oxidized luciferin + CO2 + H2O + AMP + diphosphate + hv
-
luciferyl-adenylate + O2 = oxyluciferin + AMP + CO2 + hv
-
luciferyl-AMP + O2 = oxyluciferin + hv + CO2 + AMP + diphosphate
-
P1,P5-di(adenosine-5'-)pentaphosphate + Photinus luciferin = oxidized Photinus luciferin + CO2 + H2O + AMP + diphosphate + hv
-
Photinus luciferin + O2 + ATP = oxidized Photinus luciferin + CO2 + H2O + AMP + diphosphate + hv
484826, 484827, 484828, 484829, 484830, 484832, 484833, 484834, 484835, 484836, 484837, 484838, 484839, 484840, 484841, 484842, 484844, 484845, 484846, 484847, 484848, 484849, 484850, 484851, 484852, 484854, 484855, 484856, 484857, 484858, 484859, 484860, 484862, 484863, 484864, 484865, 484866, 484867, 484868, 0, 484861, 484831, 484825, 484843, 484853
-
polyethylene glycol-6-amino-D-luciferin = ? + hv
-
coelenterazine disulfate + O2 + ATP = ? + CO2 + hv + AMP
-
coelenterazine disulfate + O2 + ATP-gamma-S = ? + CO2 + hv
-
long-chain aldehyde + FMNH2 + O2 = long-chain fatty acid + FMN + H2O + hv
-
luciferin + O2 = oxidized luciferin + CO2 + hv
-
Watasenia luciferin + O2 = oxidized Watasenia luciferin + CO2 + hv
-
Arachnocampa luciferin + O2 + ATP = Arachnocampa oxyluciferin + CO2 + AMP + diphosphate + hv
-
a long-chain aldehyde + FMNH2 + O2 = a long-chain fatty acid + FMN + H2O + hv
-
decanal + FMNH- + O2 = decanoic acid + FMN + H2O + hv
-
decanal + FMNH2 + O2 = decanoate + FMN + H2O + hv
-
decanal + FMNH2 + O2 = decanoic acid + FMN + H2O + hv
-
dodecanal + FMNH2 + O2 = dodecanoic acid + FMN + H2O + hv
-
n-caprinaldehyde + FMNH2 + O2 = n-caprinoate + FMN + H2O + hv
-
RCHO + FMNH2 + O2 = RCOOH + FMN + H2O + hv
-
(1E)-2-methyl-4-(2,4,5-trimethylphenyl)but-1-en-1-yl formate + reduced electron acceptor + O2 = 4-(2,4,5-trimethylphenyl)butane-2-one + CO2 + formate + electron acceptor + H2O + hv
-
(1E)-4-(2,6-dimethylphenyl)-2-methylbut-1-en-1-yl formate + reduced electron acceptor + O2 = 4-(2,6-dimethylphenyl)butane-2-one + CO2 + formate + electron acceptor + H2O + hv
-
(1E)-4-mesityl-2-methylbut-1-en-1-yl formate + reduced electron acceptor + O2 = 4-mesitylbutane-2-one + CO2 + formate + electron acceptor + H2O + hv
-
Latia luciferin + reduced electron acceptor + O2 = oxidized Latia luciferin + CO2 + formate + electron acceptor + H2O + hv
-
luciferin + O2 + ATP = oxidized luciferin + CO2 + H2O + AMP + diphosphate + hv
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Bioluminescence reaction catalyzed by membrane-bound luciferase in the "firefly squid" Watasenia scintillans
2002
Tsuji, F.I.
Biochim. Biophys. Acta
1564
189-197
-
Cypridina luciferin and luciferase
1978
Tsuji, F.I.
Methods Enzymol.
57
364-372
Some properties of luciferase from the bioluminescent crustacean, Cypridina hilgendorfii
1974
Tsuji, F.I.; Lynch, R.V.; Stevens, C.L.
Biochemistry
13
5204-5209
Evidence for the identity of the luminescent systems of Porichthys porosissimus (fish) and Cypridina hilgendorfii (crustacean)
1967
Cormier, M.J.; Crane, J.M.; Nakano, Y.
Biochem. Biophys. Res. Commun.
29
747-752
The enzyme catalyzed oxidation of Cypridina luciferin
1968
Stone, H.
Biochem. Biophys. Res. Commun.
31
386-391
Mechanism of the enzyme-catalyzed oxidation of Cypridina and firefly luciferins studied by means of 17O2 and H218O1
1977
Tsuji, F.I.; DeLuca, M.; Boyer, P.D.; Endo, S.; Akutagawa, M.
Biochem. Biophys. Res. Commun.
74
606-613
-
Structure of cypridina biluceferyl, a dimer of cypriidna luciferyl radical having bioluminescent activity
1985
Toya, Y.; Nakatsuka, S.; Goto, T.
Tetrahedron Lett.
26
239-242
-
Cypridina bioluminescence: light-emitting oxyluciferin-luciferase complex
1969
Shimomura, O.; Johnson, F.H.; Masugi, T.
Science
13
1299-1300
Engineering of functional chimeric protein G-Vargula luciferase
1997
Maeda, Y.; Ueda, H.; Kazami, J.; Kawano, G.; Suzuki, E.; Nagamune, T.
Anal. Biochem.
249
147-152
Fusions to imidazopyrazinone-type luciferases and aequorin as reporters
2000
Inouye, S.
Methods Enzymol.
326
165-174
Expression of the gene encoding firefly luciferase in insect cells using a baculovirus vector
1990
Hasmain, S.E.; Nakhai, B.H.
Gene
91
135-138
-
Firefly luciferase enzyme for measuring gene expression in vegetative and symbiotic Rhizobium meliloti and other gram-negative bacteria
1989
Palomares J.P.; DeLuca M.A.Helinski D.R.
Gene
81
155-64
Firefly luciferase gene: structure and expression in mammalian cells
1987
De Wet, J.R.; Wood, K.V.; DeLuca, M.; Helinski, D.R.; Subramani, S.
Mol. Cell. Biol.
7
725-737
Cloning firefly luciferase
1986
De Wet, J.R.; Wood, K.V.; Helinski, D.R.; DeLuca, M.
Methods Enzymol.
133
3-14
Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli
1985
De Wet, J.R.; Wood, K.V.; Helinski, D.R.; DeLuca, M.
Proc. Natl. Acad. Sci. USA
82
7870-7873
-
Purification and properties of firefly luciferase
1978
DeLuca M.; McElroy, W.D.
Methods Enzymol.
57
3-15
Firefly luciferase
1976
DeLuca, M.
Adv. Enzymol. Relat. Areas Mol. Biol.
44
37-68
-
Firefly luciferase: purification and immobilization
1984
Rajgopal S; Vijayalakshmi M.A.
Enzyme Microb. Technol.
6
482-490
-
ATP determination with firefly luciferase
1981
Leach F.R.
J. Appl. Biochem.
3
473-517
Firefly luciferase synthesizes P1,P4-bis(5-adenosyl)tetraphosphate (Ap4A) and other dinucleoside polyphosphates
1990
Guranowski, A.; Sillero, M.A.G.; Sillero, A.
FEBS Lett.
271
215-218
Protein denaturation during heat shock and related stress
1989
Nguyen V.T; Morange M.; Bensaude O.
J. Biol. Chem.
264
10487-10492
Commercially available firefly luciferase reagents
1986
Leach, F.R.; Webster, J.J.
Methods Enzymol.
133
51-70
Efficient singlet oxygen inactivation of firefly luciferase
1986
Thompson, A.; Nigro, J.; Seliger, H.H.
Biochem. Biophys. Res. Commun.
140
888-894
-
Studies on the interaction of firefly luciferase with triazine dyes
1986
Rajgopal S.; Vijayalakshmi M.A.
J. Chromatogr.
18
201-210
Two kinetically distinguishable ATP sites in firefly luciferase
1984
DeLuca M.; McElroy, W.D.
Biochem. Biophys. Res. Commun.
123
764-770
Nucleoside triphosphate specificity of firefly luciferase
1983
Moye,r J.D.; Henderson, J.F.
Anal. Biochem.
131
187-189
Effect of solvents on the catalytic activity of firefly luciferase
1982
Kricka, L.J.; DeLuca, M.
Arch. Biochem. Biophys.
217
674-681
Choice of buffer anion for the assay of adenosine 5'-triphosphate using firefly luciferase
1981
Nichols, W.W.; Curtis, G. D.W.; Johnston, H.H.
Anal. Biochem.
114
396-397
-
Optimization of the firefly luciferase assay for ATP
1980
Webster, J.J.; Leach, F.R.
J. Appl. Biochem.
2
469-479
Buffer effects on ATP analysis by firefly luciferase
1980
Webster, J.J.; Chang, J.C.; Manley, E.R.; Spivey, H.O.; Leach ,F.R.
Anal. Biochem.
106
7-11
Factors affecting the kinetics of light emission from crude and purified firefly luciferase
1979
DeLuca, M.; Wannlund, J.; McElroy, W.D.
Anal. Biochem.
95
194-198
Firefly luciferase reacts with p1,p5-di(adenosine-5'-)pentaphosphate and adenosine-5'-tetraphosphate
1978
Momsen, G.
Biochem. Biophys. Res. Commun.
84
816-822
Immobilization of firefly luciferase on glass rods: properties of the immobilized enzyme
1977
Lee, Y.; Jablonski, I.; DeLuca, M.
Anal. Biochem.
80
496-501
Kinetics of product inhibition during firefly luciferase luminiscense
1977
Lemaster,s J.J.; Jackenbroc, C.R.
Biochemistry
16
445-447
Role and reactivity of sulfhydryl groups in firefly luciferase
1969
Lee, R.; McElroy, W.D.
Biochemistry
8
130-135
Effects of 5'-adenylic acid on firefly luciferase
1971
Lee, R.; McElroy, W.D.
Arch. Biochem. Biophys.
145
78-84
Catalytic subunit of firefly luciferase
1970
Denburg, J.L.; McElroy, W.D.
Biochemistry
9
4619-4625
Anion inhibition of firefly luciferase
1970
Denburg, J.L.; McElroy, W.D.
Arch. Biochem. Biophys.
141
668-675
Substrate-binding properties of firefly luciferase. II. ATP-binding site
1970
Lee, R.T.; Denburg, J.L.; McElroy, W.D.
Arch. Biochem. Biophys.
141
38-52
Substrate-binding properties of firefly luciferase. I. Luciferin-binding site
1969
Lee, R.T.; Denbur,g J.L.; McElroy, W.D.
Arch. Biochem. Biophys.
134
381-394
-
Role of metal ions in triazine dye affinity chromatography: the metal mediated interaction of triazine dyes with firefly luciferase
1984
Rajgopal S.; Vijayalakshmi M.A.
Enzyme Microb. Technol.
6
555-559
Clinical and biochemical applications of luciferases and luciferines
1988
Kricka L.
Anal. Biochem.
175
14-21
Firefly luciferase as a tool in molecular and cell biology
1988
Gould, S.J.; Subraman,i S.
Anal. Biochem.
175
5-13
-
Interaction of firefly luciferase with triazine dyes
1983
Rajgopal S.; Vijayalakshmi M.A.
J. Chromatogr.
280
77-84
-
Regulatory effects of ATP and luciferin on firefly luciferase activity
1995
Lembert, N.; Idahl, L.A.
Biochem. J.
305
929-933
Site-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminiscence color
1999
Branchini, B.; Magyar, R.; Murtiashaw, M.; Anderson, S.; Helgerson, L.; Zimmer, M.
Biochemistry
38
13223-13230
Mutation of protease-sensitive region in firefly luciferase alters light emission properties
1997
Thompson, J.F.; Geoghegan, K.F.; Lloyd, D.B.; Lanzetti, A.J.; Magyar, R.A.; Anderson, S.M.; Branchini, B.R.
J. Biol. Chem.
272
18766-18771
Engineering in vivo instability of firefly luciferase and Escherichia coli beta-glucuronidase in higher plants using recognition elements from the ubiquitin pathway
1998
Worley, C.K.; Ling, R.; Callis, J.
Plant Mol. Biol.
37
337-347
Expression and purification of polyhistidine-tagged firefly luciferase in insect cells--a potential alternative for process scale-up
2001
Michel, P.; Torkkeli, T.; Karp, M.; Oker-Blom, C.
J. Biotechnol.
85
49-56
Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes
1996
Conti, E.; Franks, N.P.; Brick, P.
Structure
4
287-298
Engineering the C-terminus of firefly luciferase as an indicator of covalent modification of proteins
1996
Waud, J.P.; Sala-Newby, G.B.; Matthews, S.B.; Campbell, A.K.
Biochim. Biophys. Acta
1292
89-98
Stepwise removal of the C-terminal 12 amino acids of firefly luciferase results in graded loss of activity
1994
Sala-Newby, G.B.; Campbell, A.K.
Biochim. Biophys. Acta
1206
155-160
Effects of removal of the N-terminal amino acid residues on the activity and conformation of firefly luciferase
2002
Wang, Xi.; Yang, J.; Huang, W.; He, L.; Yu, J.; Lin, Q.; Li, W.; Zhou, H.
Int. J. Biochem. Cell Biol.
34
983-991
-
Recombinant firefly luciferase in Escherichia coli
2000
Lundovskikh, I.; Dementieva, E.; Ugarova, N.
Appl. Biochem. Biotechnol.
88
127-135
Photosystem I: function and physiology
2001
Chitnis, P.R.
Annu. Rev. Plant Physiol. Plant Mol. Biol.
52
593-626
Kinetic evidence for the PsaE-dependent transient ternary complex photosystem I/ferredoxin/ferredoxin:NADP+ reductase in a cyanobacterium
1999
van Thor, J.J.; Geerlings, T.H.; Matthijs, H.C.; Hellingwerf, K.J.
Biochemistry
38
12735-12746
Location of the iron-sulfur clusters FA and FB in photosystem I: an electron paramagnetic resonance study of spin relaxation enhancement of P700+
1999
Lakshmi, K.V.; Jung, Y.S.; Golbeck, J.H.; Brudvig, G.W.
Biochemistry
38
13210-13215
The stable assembly of newly synthesized PsaE into the photosystem I complex occurring via the exchange mechanism is facilitated by electrostatic interactions
2002
Lushy, A.; Verchovsky, L.; Nechushtai, R.
Biochemistry
41
11192-11199
Competitive inhibition of electron donation to photosystem 1 by metal-substituted plastocyanin
2008
Jansson, H.; Hansson, O.
Biochim. Biophys. Acta
1777
1116-1121
Subunit composition of photosystem I complex that catalyzes light-dependent transfer of electrons from plastocyanin to ferredoxin
1991
Takabe, T.; Iwasaki, Y.; Hibino, T.; Ando, T.
J. Biochem.
110
622-627
The location of plastocyanin in vascular plant photosystem I
2002
Ruffle, S.V.; Mustafa, A.O.; Kitmitto, A.; Holzenburg, A.; Ford, R.C.
J. Biol. Chem.
277
25692-25696
Cloning, expression and purification of the luminal domain of spinach photosystem 1 subunit PsaF functional in binding to plastocyanin and with a disulfide bridge required for folding
2011
Farkas, D.; Franzen, L.G.; Hansson, Ö.
Protein Expr. Purif.
78
156-166
Fourier transform infrared difference study of tyrosineD oxidation and plastoquinone QA reduction in photosystem II
1996
Hienerwadel, R.; Boussac, A.; Breton, J.; Berthomieu, C.
Biochemistry
35
15447-15460
Light-adaptation of photosystem II is mediated by the plastoquinone pool
2003
Ahrling, K.A.; Peterson, S.
Biochemistry
42
7655-7662
Photosystem II proteins PsbL and PsbJ regulate electron flow to the plastoquinone pool
2004
Ohad, I.; Dal Bosco, C.; Herrmann, R.G.; Meurer, J.
Biochemistry
43
2297-2308
Effects of formate binding on the quinone-iron electron acceptor complex of photosystem II
2011
Sedoud, A.; Kastner, L.; Cox, N.; El-Alaoui, S.; Kirilovsky, D.; Rutherford, A.W.
Biochim. Biophys. Acta
1807
216-226
Light-induced quinone reduction in photosystem II
2011
Mueh, F.; Gloeckner, C.; Hellmich, J.; Zouni, A.
Biochim. Biophys. Acta
1817
44-65
The role of plastoquinone and beta-carotene in the primary reaction of plant photosystem II
1977
Knaff, D.; Malkin, R.; Myron, J.; Stoller, M.
Biochim. Biophys. Acta
459
402-411
Biochemical and structural analyses of a higher plant photosystem II supercomplex of a photosystem I-less mutant of barley. Consequences of a chronic over-reduction of the plastoquinone pool
2006
Morosinotto, T.; Bassi, R.; Frigerio, S.; Finazzi, G.; Morris, E.; Barber, J.
FEBS J.
273
4616-4630
Fluorescence induction of Photosystem II membranes shows the steps till reduction and protonation of the quinone pool
2003
Heredia, P.; De Las Rivas, J.
J. Plant Physiol.
160
1499-1506
Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride
2009
Guskov, A.; Kern, J.; Gabdulkhakov, A.; Broser, M.; Zouni, A.; Saenger, W.
Nat. Struct. Mol. Biol.
16
334-342
Period-four modulation of photosystem II primary quinone acceptor (QA) reduction/oxidation kinetics in thylakoid membranes
2010
Gauthier, A.; Joly, D.; Boisvert, S.; Carpentier, R.
Photochem. Photobiol.
86
1064-1070
Photosystem II: structure and mechanism of the water:plastoquinone oxidoreductase
2007
Kern, J.; Renger, G.
Photosynth. Res.
94
183-202
Photosystem II activity, plastoquinone A levels, and fluorescence characterization of a virescens mutant of barley
1982
Kyle, D.J.; Zalik, S.
Plant Physiol.
70
1026-1031
An NMR study elucidating the binding of Mg(II) and Mn(II) to spinach plastocyanin. Regulation of the binding of plastocyanin to subunit PsaF of photosystem I
2011
Farkas, D.; Hansson, O.
Biochim. Biophys. Acta
1807
1539-1548
Ring-substituted 8-hydroxyquinoline-2-carboxanilides as photosystem II inhibitors
2016
Jampilek, J.; Kralova, K.; Pesko, M.; Kos, J.
Bioorg. Med. Chem. Lett.
26
3862-3865
Interaction of photosystem I from Phaeodactylum tricornutum with plastocyanins as compared with its native cytochrome c6 reunion with a lost donor
2015
Bernal-Bayard, P.; Pallara, C.; Carmen Castell, M.; Molina-Heredia, F.; Fernandez-Recio, J.; Hervas, M.; Navarro, J.
Biochim. Biophys. Acta
1847
1549-1559
-
Redox regulation of the antimycin A sensitive pathway of cyclic electron flow around photosystem I in higher plant thylakoids
2016
Strand, D.; Fisher, N.; Davis, G.; Kramer, D.
Biochim. Biophys. Acta
1857
1-6
Mutations in algal and cyanobacterial photosystem I that independently affect the yield of initial charge separation in the two electron transfer cofactor branches
2018
Badshah, S.; Sun, J.; Mula, S.; Gorka, M.; Baker, P.; Luthra, R.; Lin, S.; van der Est, A.; Golbeck, J.; Redding, K.
Biochim. Biophys. Acta
1859
42-55
Controlling electron transfer between the two cofactor chains of photosystem I by the redox state of one of their components
2015
Santabarbara, S.; Bullock, B.; Rappaport, F.; Redding, K.
Biophys. J.
108
1537-1547
Dual-located WHIRLY1 interacting with LHCA1 alters photochemical activities of photosystem I and is involved in light adaptation in Arabidopsis
2017
Huang, D.; Lin, W.; Deng, B.; Ren, Y.; Miao, Y.
Int. J. Mol. Sci.
18
E2352
Superoxide generated in the chloroplast stroma causes photoinhibition of photosystem I in the shade-establishing tree species Psychotria henryi
2017
Huang, W.; Yang, Y.; Zhang, J.; Hu, H.; Zhang, S.
Photosynth. Res.
132
293-303
-
Interaction of various types of photosystem I complexes with exogenous electron acceptors
2017
Petrova, A.; Boskhomdzhieva, B.; Milanovsky, G.; Koksharova, O.; Mamedov, M.; Cherepanov, D.; Semenov, A.
Photosynth. Res.
133
175-184
Kinetic modeling of electron transfer reactions in photosystem I complexes of various structures with substituted quinone acceptors
2017
Milanovsky, G.; Petrova, A.; Cherepanov, D.; Semenov, A.
Photosynth. Res.
133
185-199
Gallium ferredoxin as a tool to study the effects of ferredoxin binding to photosystem I without ferredoxin reduction
2017
Mignee, C.; Mutoh, R.; Krieger-Liszkay, A.; Kurisu, G.; Setif, P.
Photosynth. Res.
134
251-263
NDH-mediated cyclic electron flow around photosystem I is crucial for C4 photosynthesis
2016
Ishikawa, N.; Takabayashi, A.; Noguchi, K.; Tazoe, Y.; Yamamoto, H.; Von Caemmerer, S.; Sato, F.; Endo, T.
Plant Cell Physiol.
57
2020-2028
Cyclic electron flow around photosystem I is enhanced at low pH
2014
Tongra, T.; Bharti, S.; Jajoo, A.
Plant Physiol. Biochem.
83
194-199
An algal photoenzyme converts fatty acids to hydrocarbons
2017
Sorigue, D.; Legeret, B.; Cuine, S.; Blangy, S.; Moulin, S.; Billon, E.; Richaud, P.; Brugiere, S.; Coute, Y.; Nurizzo, D.; Mueller, P.; Brettel, K.; Pignol, D.; Arnoux, P.; Li-Beisson, Y.; Peltier, G.; Beisson, F.
Science
357
903-907