Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
9-hexadecenoyl-CoA + reduced acceptor + O2 = 9,12-hexadecadienoyl-CoA + acceptor + H2O
-
palmitoleoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = (9Z,12Z)-hexadeca-9,12-dienoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
palmitoleoyl-CoA + NADPH + H+ = palmitoleic aldehyde + CoA + NADP+
-
palmitoleoyl-CoA + NADPH + H+ = (9Z)-hexadec-9-enal + CoA + NADP+
-
palmitoleoyl-CoA + 2 NADPH + 2 H+ = palmitoleic alcohol + CoA + 2 NADP+
-
palmitoleoyl-CoA + oxidized electron transfer flavoprotein = ? + reduced electron transfer flavoprotein
-
palmitoleoyl-CoA + acceptor = (2E,9Z)-2,9-hexadecadienoyl-CoA + reduced acceptor
-
palmitoleoyl-CoA + acceptor = ?
-
palmitoleoyl-CoA + electron transfer flavoprotein = (2E,9Z)-2,9-hexadecadienoyl-CoA + reduced electron transfer flavoprotein
-
palmitoleoyl-CoA + phenazine methosulfate = (2E,9Z)-2,9-hexadecadienoyl-CoA + reduced phenazine methosulfate
-
palmitoleoyl-CoA + sn-glycerol 3-phosphate = CoA + 1-palmitoleoyl-sn-glycerol 3-phosphate
-
(9Z)-hexadec-9-enoyl-CoA + malonyl-CoA = (11Z)-3-oxooctadec-11-enoyl-CoA + CO2 + coenzyme A
-
palmitoleoyl-CoA + malonyl-CoA = ?
-
hexadec-9-enoyl-CoA + 1,2-diacyl-sn-glycerol = CoA + 1,2-diacyl-3-hexadec-9-enoylglycerol
-
palmitoleoyl-CoA + 1,2-diacyl-sn-glycerol = CoA + 1,2-diacyl-3-palmitoleoylglycerol
-
palmitoleoyl-CoA + 1,2-dipalmitoleoyl-sn-glycerol = CoA + tripalmitoleoylglycerol
-
palmitoleoyl-CoA + L-carnitine = CoA + L-palmitoleoylcarnitine
-
(9Z)-hexadec-9-enoyl-CoA + [Wg]-L-serine = CoA + [Wg]-O-(9Z)-hexadec-9-enoyl-L-serine
-
(9Z)-hexadec-9-enoyl-CoA + [Wnt1]-L-serine = CoA + [Wnt1]-O-(9Z)-hexadec-9-enoyl-L-serine
-
(9Z)-hexadec-9-enoyl-CoA + [Wnt3a]-L-serine = CoA + [Wnt3a]-O-(9Z)-hexadec-9-enoyl-L-serine
-
(9Z)-hexadec-9-enoyl-CoA + [Wnt3]-L-serine = CoA + [Wnt3]-O-(9Z)-hexadec-9-enoyl-L-serine
-
(9Z)-hexadec-9-enoyl-CoA + [Wnt5a]-L-serine = CoA + [Wnt5a]-O-(9Z)-hexadec-9-enoyl-L-serine
-
(9Z)-hexadec-9-enoyl-CoA + [Wnt5]-L-serine = CoA + [Wnt5]-O-(9Z)-hexadec-9-enoyl-L-serine
-
(9Z)-hexadec-9-enoyl-CoA + [WntWg]-L-serine = CoA + [WntWg]-O-(9Z)-hexadec-9-enoyl-L-serine
-
(9Z)-hexadec-9-enoyl-CoA + [Wnt]-L-serine = CoA + [Wnt]-O-(9Z)-hexadec-9-enoyl-L-serine
-
palmitoleoyl-CoA + cholesterol = CoA + cholesteryl palmitoleate
-
cis-9-hexadecenoyl-CoA + malonyl-[acyl-carrier protein] = 3-oxo-hexadecenoyl-[acyl-carrier protein] + CO2 + CoA
-
cis-9-hexadecenoyl-CoA + dihydroxyacetone phosphate = CoA + cis-9-hexadecenoyldihydroxyacetone phosphate
-
dihydroxyacetone phosphate + palmitoleoyl-CoA = 1-palmitoleoyl-glycerone phosphate + CoA
-
palmitoleoyl-CoA + glycerone phosphate = CoA + palmitoleoylglycerone phosphate
-
palmitoleoyl-CoA + L-serine = CoA + 2-amino-1-hydroxy-cis-11-octadecen-3-one + CO2
-
palmitoleoyl-CoA + 1-acyl-lysophosphatidic acid = CoA + 1-acyl-2-palmitoleoyl-lysophosphatidic acid
-
palmitoleoyl-CoA + 1-acyl-sn-glycerol 3-phosphate = CoA + 1-acyl-2-palmitoleoyl-sn-glycerol 3-phosphate
-
palmitoleoyl-CoA + 1-oleoyl-2-lysophosphatidic acid = CoA + 1-oleoyl-2-palmitoleoyl-sn-glycerol 3-phosphate
-
palmitoleoyl-CoA + 1-oleoyl-lysophosphatidic acid = CoA + 1-oleoyl-2-palmitoleoyl-lysophosphatidic acid
-
palmitoleoyl-CoA + 2-acyl-sn-glycerol 3-phosphate = CoA + 1-palmitoleoyl-2-acyl-sn-glycerol 3-phosphate
-
palmitoleoyl-CoA + 2-acyl-sn-glycero-3-phosphocholine = CoA + 1-palmitoleoyl-2-acyl-sn-glycero-3-phosphocholine
-
linear long-chain alcohol + palmitoleoyl-CoA = ?
-
palmitoleoyl-CoA + cetyl alcohol = CoA + cetyl palmitoleate
-
palmitoleoyl-CoA + tetradecanol = tetradecyl (9Z)-hexadec-9-enoate + CoA
-
palmitoleoyl-CoA + glycerophosphocholine = CoA + 1-palmitoleoyl-sn-glycero-3-phosphocholine
-
palmitoleoyl-CoA + H2O = ?
-
palmitoleoyl-CoA + apo-[acyl-carrier protein] = ? + holo-[acyl-carrier protein]
-
cis-palmitoleoyl-CoA + H2O = CoA + palmitoleate
-
palmitoleoyl-CoA + H2O = CoA + palmitoleate
-
palmitoleoyl-CoA + H2O = CoA + palmitoleic acid
-
palmitoleoyl-CoA + H2O = CoA + palmitoleoate
-
palmitoleoyl-CoA = CoA + CoA + palmitoleoate
-
palmitoleoyl-CoA + H2O = CoA + palmitoleate
-
palmitoleoyl-CoA + H2O = CoA + palmitoleic acid
-
palmitoleoyl-CoA + H2O = CoA + palmitoleoate
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Acetyl-CoA carboxylase from rat liver. EC 6.4.1.2 Acetyl-CoA:carbon-dioxide ligase (ADP-forming)
1981
Tanabe, T.; Nakanishi, S.; Hashimoto, T.; Ogiwara, H.; Nikawa, J.I.; Numa, S.
Methods Enzymol.
71
5-16
Studies on the metabolism of unsaturated fatty acids. XIV. Purification and properties of NADPH-dependent trans-2-enoyl-CoA reductase of Escherichia coli K-12
1984
Nishimaki, T.; Yamanaka, H.; Mizugaki, M.
J. Biochem.
95
1315-1321
Purification and characterization of short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases from rat liver mitochondria. Isolation of the holo- and apoenzymes and conversion of the apoenzyme to the holoenzyme
1985
Ikeda, Y.; Okamura-Ikeda, K.; Tanaka, K.
J. Biol. Chem.
260
1311-1325
Thermal thresholds of lipid restructuring and DELTA9-desaturase expression in the liver of carp (Cyprinus carpio L.)
2000
Trueman, R.J.; Tiku, P.E.; Caddick, M.X.; Cossins, A.R.
J. Exp. Biol.
203
641-650
Oleoyl-CoA is the major de novo product of stearoyl-CoA desaturase 1 gene isoform and substrate for the biosynthesis of the Harderian gland 1-alkyl-2,3-diacylglycerol
2001
Miyazaki, M.; Kim, H.J.; Man, W.C.; Ntambi, J.M.
J. Biol. Chem.
276
39455-39461
Positional specificity and fatty acid selectivity of purified sn-glycerol 3-phosphate acyltransferases from chloroplasts
1981
Bertrams, M.; Heinz, E.
Plant Physiol.
68
653-657
Membrane phospholipid synthesis in Escherichia coli. Purification, reconstitution, and characterization of sn-glycerol-3-phosphate acyltransferase
1981
Green, P.R.; Merrill, A.H.; Bell, R.M.
J. Biol. Chem.
256
11151-11159
Factors affecting the acyl selectivities of acyltransferases in Escherichia coli
1976
Okuyama, H.; Yamada, K.; Ikezawa, H.; Wakil, S.J.
J. Biol. Chem.
251
2487-2492
The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae
2001
Zheng, Z.; Zou, J.
J. Biol. Chem.
276
41710-41716
Glycerolipid acyltransferases from rat liver: 1-acylglycerophosphate acyltransferase, 1-acylglycerophosphorylcholine acyltransferase, and diacylglycerol acyltransferase
1981
Yamashita, S.; Hosaka, K.; Miki, Y.; Numa, S.
Methods Enzymol.
71
528-536
Separation of 1-acylglycerolphosphate acyltransferase and 1-acylglycerolphosphorylcholine acyltransferase of rat liver microsomes
1975
Yamashita, S.; Nakaya, N.; Miki, Y.; Numa, S.
Proc. Natl. Acad. Sci. USA
72
600-603
Acyl-donor specificities of partially purified 1-acylglycerophosphate acyltransferase, 2-acylglycerophosphate acyltransferase and 1-acylglycerophosphorylcholine acyltransferase from rat-liver microsomes
1973
Yamashita, S.; Hosaka, K.; Numa, S.
Eur. J. Biochem.
38
25-31
Characterization of sterol-ester synthetase in Saccharomyces cerevisiae
1979
Taketani, S.; Nishino, T.; Katsuki, H.
Biochim. Biophys. Acta
575
148-155
Multiple forms of beta-ketoacyl-acyl carrier protein synthetase in Escherichia coli
1975
D'Agnolo, G.; Rosenfeld, I.S.; Vagelos, P.R.
J. Biol. Chem.
250
5289-5294
Purification of peroxisomal acyl-CoA:dihydroxyacetonephosphate acyltransferase from human placenta
1994
Ofman, R.; Wanders, R.J.A.
Biochim. Biophys. Acta
1206
27-34
A water-soluble homodimeric serine palmitoyltransferase from Sphingomonas paucimobilis EY2395T strain: purification, characterization, cloning, and overproduction
2001
Ikushiro, H.; Hayashi, H.; Kagamiyama, H.
J. Biol. Chem.
276
18249-18256
Membrane glycerophospholipid biosynthesis in Neisseria meningitidis and Neisseria gonorrhoeae: identification, characterization, and mutagenesis of a lysophosphatidic acid acyltransferase
1995
Swartley, J.S.; Balthazar, J.T.; Coleman, J.; Shafer, W.M.; Stephens, D.S.
Mol. Microbiol.
18
401-412
Characterization of a human lysophosphatidic acid acyltransferase that is encoded by a gene located in the class III region of the human major histocompatibility complex
1998
Aguado, B.; Campbell, R.D.
J. Biol. Chem.
273
4096-4105
Mechanism for adaptive modification during cold acclimation of phospholipid acyl chain composition in Tetrahymena. II. Activities of 2-acyl-sn-glycerol-3-phosphorylcholine and 2-acyl-sn-glycerol-3-phosphorylethanolamine acyltransferases involving the reacylation
1984
Yoshioka, S.; Kameyama, Y.; Nozawa, Y.
Biochim. Biophys. Acta
793
34-41
Studies on the mechanism of fatty acid synthesis. XIX. Preparation and general properties of palmityl thioesterase
1968
Barnes jr., E.M.; Wakil, S.J.
J. Biol. Chem.
243
2955-2962
Purification and properties of fatty acyl thioesterase I from Escherichia coli
1972
Bonner, W.M.; Bloch, K.
J. Biol. Chem.
247
3123-3133
Long-chain fatty acyl thioesterases I and II from Escherichia coli
1975
Barnes jr., E.M.
Methods Enzymol.
35
102-109
-
Purification and characterization of long-chain acyl coenzyme A thioesterase from Rhodopseudomonas sphaeroides
1984
Boyce, S.G.; Luecking, D.R.
Biochemistry
23
141-147
Biochemical and molecular characterization of ACH2, an acyl-CoA thioesterase from arabidopsis thaliana
2004
Tilton, G.B.; Shockey, J.M.; Browse, J.
J. Biol. Chem.
279
7487-7494
Influence of moderate temperatures on myristoyl-CoA metabolism and acyl-CoA thioesterase activity in the psychrophilic antarctic yeast Rhodotorula aurantiaca
2001
Sabri, A.; Bare, G.; Jacques, P.; Jabrane, A.; Ongena, M.; Van Heugen, J.C.; Devreese, B.; Thonart, P.
J. Biol. Chem.
276
12691-12696
Characterization of an acyl-coA thioesterase that functions as a major regulator of peroxisomal lipid metabolism
2002
Hunt, M.C.; Solaas, K.; Kase, B.F.; Alexson, S.E.
J. Biol. Chem.
277
1128-1138
Characterization of a novel plant acyl-coA synthetase that is expressed in lipogenic tissues of Brassica napus L
2001
Pongdontri, P.; Hills, M.
Plant Mol. Biol.
47
717-726
The initial step of glycerolipid metabolism in Leishmania major promastigotes involves a single glycerol-3-phosphate acyltransferase enzyme important for the synthesis of triacylglycerol but not essential for virulence
2005
Zufferey, R.; Mamoun, C.B.
Mol. Microbiol.
56
800-810
Acyl carrier protein synthases from Gram-negative, Gram-positive, and atypical bacterial species: Biochemical and structural properties and physiological implications
2006
McAllister, K.A.; Peery, R.B.; Zhao, G.
J. Bacteriol.
188
4737-4748
Identification of two novel human acyl-CoA wax alcohol acyltransferases: members of the diacylglycerol acyltransferase 2 (DGAT2) gene superfamily
2005
Turkish, A.R.; Henneberry, A.L.; Cromley, D.; Padamsee, M.; Oelkers, P.; Bazzi, H.; Christiano, A.M.; Billheimer, J.T.; Sturley, S.L.
J. Biol. Chem.
280
14755-14764
Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial beta-oxidation of unsaturated fatty acids
2005
Ensenauer, R.; He, M.; Willard, J.M.; Goetzman, E.S.; Corydon, T.J.; Vandahl, B.B.; Mohsen, A.W.; Isaya, G.; Vockley, J.
J. Biol. Chem.
280
32309-32316
Leishmania major expresses a single dihydroxyacetone phosphate acyltransferase localized in the glycosome, important for rapid growth and survival at high cell density and essential for virulence
2006
Zufferey, R.; Ben Mamoun, C.
J. Biol. Chem.
281
7952-7959
Analysis of the mouse and human acyl-CoA thioesterase (ACOT) gene clusters shows that convergent, functional evolution results in a reduced number of human peroxisomal ACOTs
2006
Hunt, M.C.; Rautanen, A.; Westin, M.A.; Svensson, L.T.; Alexson, S.E.
FASEB J.
20
1855-1864
Characterization of a novel long-chain acyl-CoA thioesterase from Alcaligenes faecalis
2006
Shahi, P.; Kumar, I.; Sharma, R.; Sanger, S.; Jolly, R.S.
FEBS J.
273
2374-2387
A small membrane-peripheral region close to the active center determines regioselectivity of membrane-bound fatty acid desaturases from Aspergillus nidulans
2007
Hoffmann, M.; Hornung, E.; Busch, S.; Kassner, N.; Ternes, P.; Braus, G.H.; Feussner, I.
J. Biol. Chem.
282
26666-26674
Expression and characterization of mutations in human very long-chain acyl-CoA dehydrogenase using a prokaryotic system
2007
Goetzman, E.S.; Wang, Y.; He, M.; Mohsen, A.W.; Ninness, B.K.; Vockley, J.
Mol. Genet. Metab.
91
138-147
Divergence of function in the hot dog fold enzyme superfamily: the bacterial thioesterase YciA
2008
Zhuang, Z.; Song, F.; Zhao, H.; Li, L.; Cao, J.; Eisenstein, E.; Herzberg, O.; Dunaway-Mariano, D.
Biochemistry
47
2789-2796
A novel tandem mass spectrometry method for rapid confirmation of medium- and very long-chain acyl-CoA dehydrogenase deficiency in newborns
2009
ter Veld, F.; Mueller, M.; Kramer, S.; Haussmann, U.; Herebian, D.; Mayatepek, E.; Laryea, M.D.; Primassin, S.; Spiekerkoetter, U.
PLoS ONE
4
e6449
Identification of a novel fatty acid elongase with a wide substrate specificity from arachidonic acid-producing fungus Mortierella alpina 1S-4
2009
Sakuradani, E.; Nojiri, M.; Suzuki, H.; Shimizu, S.
Appl. Microbiol. Biotechnol.
84
709-716
Macrobrachium borellii hepatopancreas contains a mitochondrial glycerol-3-phosphate acyltransferase which initiates triacylglycerol biosynthesis
2009
Pellon-Maison, M.; Garcia, C.F.; Cattaneo, E.R.; Coleman, R.A.; Gonzalez-Baro, M.R.
Lipids
44
337-344
The mechanisms of human hotdog-fold thioesterase 2 (hTHEM2) substrate recognition and catalysis illuminated by a structure and function based analysis
2009
Cao, J.; Xu, H.; Zhao, H.; Gong, W.; Dunaway-Mariano, D.
Biochemistry
48
1293-1304
Engineering and mechanistic studies of the Arabidopsis FAE1 beta-ketoacyl-CoA synthase, FAE1 KCS
2002
Ghanevati, M.; Jaworski, J.
Eur. J. Biochem.
269
3531-3539
Carnitine palmitoyl transferase activity and whole muscle oxidation rates vary with fatty acid substrate in avian flight muscles
2011
Price, E.R.; Staples, J.F.; Milligan, C.L.; Guglielmo, C.G.
J. Comp. Physiol. B
181
565-573
Fatty acyl-CoA reductase and wax synthase from Euglena gracilis in the biosynthesis of medium-chain wax esters
2010
Teerawanichpan, P.; Qiu, X.
Lipids
45
263-273
Characterization of a fatty acyl-CoA reductase from Marinobacter aquaeolei VT8: a bacterial enzyme catalyzing the reduction of fatty acyl-CoA to fatty alcohol
2011
Willis, R.M.; Wahlen, B.D.; Seefeldt, L.C.; Barney, B.M.
Biochemistry
50
10550-10558
Functional characterization of thioesterase superfamily member 1/Acyl-CoA thioesterase 11: implications for metabolic regulation
2012
Han, S.; Cohen, D.E.
J. Lipid Res.
53
2620-2631
Acyl coenzyme A thioesterase Them5/Acot15 is involved in cardiolipin remodeling and fatty liver development
2012
Zhuravleva, E.; Gut, H.; Hynx, D.; Marcellin, D.; Bleck, C.K.; Genoud, C.; Cron, P.; Keusch, J.J.; Dummler, B.; Esposti, M.D.; Hemmings, B.A.
Mol. Cell. Biol.
32
2685-2697
Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling
2007
Kurayoshi, M.; Yamamoto, H.; Izumi, S.; Kikuchi, A.
Biochem. J.
402
515-523
Monounsaturated fatty acid modification of Wnt p+rotein: its role in Wnt secretion
2006
Takada, R.; Satomi, Y.; Kurata, T.; Ueno, N.; Norioka, S.; Kondoh, H.; Takao, T.; Takada, S.
Dev. Cell
11
791-801
Porcupine-mediated lipid-modification regulates the activity and distribution of Wnt proteins in the chick neural tube
2007
Galli, L.; Barnes, T.; Secrest, S.; Kadowaki, T.; Burrus, L.
Development
134
3339-3348
The evolutionarily conserved porcupine family is involved in the processing of the Wnt family
2000
Tanaka, K.; Okabayashi, K.; Asashima, M.; Perrimon, N.; Kadowaki, T.
Eur. J. Biochem.
267
4300-4311
Identification of the WNT1 residues required for palmitoylation by Porcupine
2014
Miranda, M.; Galli, L.M.; Enriquez, M.; Szabo, L.A.; Gao, X.; Hannoush, R.N.; Burrus, L.W.
FEBS Lett.
588
4815-4824
Precise regulation of porcupine activity is required for physiological Wnt signaling
2012
Proffitt, K.D.; Virshup, D.M.
J. Biol. Chem.
287
34167-34178
Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine
2014
Gao, X.; Hannoush, R.N.
Nat. Chem. Biol.
10
61-68
Function and localization of the Arabidopsis thaliana diacylglycerol acyltransferase DGAT2 expressed in yeast
2014
Ayme, L.; Baud, S.; Dubreucq, B.; Joffre, F.; Chardot, T.
PLoS ONE
9
e92237
Purification and characterization of OleA from Xanthomonas campestris and demonstration of a non-decarboxylative claisen condensation reaction
2011
Frias, J.; Richman, J.; Erickson, J.; Wackett, L.
J. Biol. Chem.
286
10930-10938
Bioinformatics study of delta-12 fatty acid desaturase 2 (FAD2) gene in oilseeds
2014
Dehghan Nayeri, F.; Yarizade, K.
Mol. Biol. Rep.
41
5077-5087
Purification and characterization of 1-acyl-sn-glycerol-3-phosphate acyltransferase with a substrate preference for polyunsaturated fatty acyl donors from the eicosapentaenoic acid-producing bacterium Shewanella livingstonensis Ac10
2018
Ogawa, T.; Tanaka, A.; Kawamoto, J.; Kurihara, T.
J. Biochem.
164
33-39
Evaluation of thioesterases from Acinetobacter baylyi for production of free fatty acids
2017
Ukey, R.; Holmes, W.E.; Bajpai, R.; Chistoserdov, A.Y.
Can. J. Microbiol.
63
321-329
-
Identification and characterization of diacylglycerol acyltransferase in oleaginous yeast Rhodosporidium toruloides
2016
Wang, Z.; Zhang, H.; Zhao, L.; Song, Y.
Am. J. Biochem. Biotechnol.
12
230-240
Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids
2020
Lee, J.; Ridgway, N.
Biochim. Biophys. Acta
1865
158438-158448
Divergent effects of porcupine and Wntless on WNT1 trafficking, secretion, and signaling
2016
Galli, L.M.; Zebarjadi, N.; Li, L.; Lingappa, V.R.; Burrus, L.W.
Exp. Cell Res.
347
171-183
Cloning of glycerophosphocholine acyltransferase (GPCAT) from fungi and plants a novel enzyme phosphatidylcholine synthesis
2016
Glab, B.; Beganovic, M.; Anaokar, S.; Hao, M.S.; Rasmusson, A.G.; Patton-Vogt, J.; Banas, A.; Stymne, S.; Lager, I.
J. Biol. Chem.
291
25066-25076
An in vitro fatty acylation assay reveals a mechanism for Wnt recognition by the acyltransferase porcupine
2017
Asciolla, J.J.; Miele, M.M.; Hendrickson, R.C.; Resh, M.D.
J. Biol. Chem.
292
13507-13513
In vitro reconstitution of Wnt acylation reveals structural determinants of substrate recognition by the acyltransferase human porcupine
2019
Lee, C.J.; Rana, M.S.; Bae, C.; Li, Y.; Banerjee, A.
J. Biol. Chem.
294
231-245
Characterization of type 2 diacylglycerol acyltransferases in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis
2016
Liu, J.; Han, D.; Yoon, K.; Hu, Q.; Li, Y.
Plant J.
86
3-19
The Trypanosoma brucei dihydroxyacetonephosphate acyltransferase TbDAT is dispensable for normal growth but important for synthesis of ether glycerophospholipids
2017
Zufferey, R.; Pirani, K.; Cheung-See-Kit, M.; Lee, S.; Williams, T.; Chen, D.; Hossain, M.
PLoS ONE
12
e0181432
Production of long chain fatty alcohols found in bumblebee pheromones by Yarrowia lipolytica
2020
Hambalko, J.; Gajdos, P.; Nicaud, J.M.; Ledesma-Amaro, R.; Tupec, M.; Pichova, I.; Certik, M.
Front. Bioeng. Biotechnol.
8
593419