Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(S)-malate + deamino-NAD+ = oxaloacetate + deamino-NADH + H+
-
formate + deamino-NAD+ = CO2 + deamino-NADH
-
propanal + deamino-NAD+ + H2O = propionate + deamino-NADH
-
acetaldehyde + deamino-NAD+ + H2O = acetate + deamino-NADH + H+
-
L-Ala + H2O + deamino-NAD+ = pyruvate + NH3 + deamino-NADH
-
L-glutamate + deamino-NAD+ = L-glutamine + 2-oxoglutarate + deamino-NADH + H+
-
L-lysine + deamino-NAD+ + H2O = alpha-aminoadipate delta-semialdehyde + NH3 + deamino-NADH
-
L-phenylalanine + H2O + deamino-NAD+ = phenylpyruvate + NH3 + deamino-NADH
-
L-Leu + H2O + deamino-NAD+ = 4-methyl-2-oxopentanoate + NH3 + deamino-NADH
-
L-erythro-3,5-diaminohexanoate + H2O + deamino-NAD+ = 5-amino-3-oxohexanoate + NH3 + deamino-NADH + H+
-
NADPH + deamino-NAD+ = NADP+ + deamino-NADH
-
NADPH + deamino-NAD+ = NADP+ + deamino-NADH
-
deamido-NAD+ + hydrogencarbonate = AMP + pyridinium-3,5-biscarboxylate mononucleotide
-
phosphate + deamino-NAD+ = ?
-
nicotinic acid adenine dinucleotide + H2O = ?
-
deamino-NAD+ + H2O = deamino-NMN + AMP
-
nicotinic acid adenine dinucleotide + H2O = nicotinic acid mononucleotide + 5'-AMP
-
2-fluoro-ATP + deamido-NAD+ + NH3 = 2-fluoro-AMP + diphosphate + NAD+
2-fluoro-ATP + deamido-NAD+ + NH3 = 2-fluoro-AMP + diphosphate + NAD+
ATP + deamido-NAD+ + Asp = AMP + diphosphate + NAD+ + oxaloacetate
ATP + deamido-NAD+ + Asp = AMP + diphosphate + NAD+ + oxaloacetate
ATP + deamido-NAD+ + Glu = AMP + diphosphate + NAD+ + 2-oxoglutarate
ATP + deamido-NAD+ + Glu = AMP + diphosphate + NAD+ + 2-oxoglutarate
ATP + deamido-NAD+ + glutamine = AMP + diphosphate + glutamate + NAD+
ATP + deamido-NAD+ + glutamine = AMP + diphosphate + glutamate + NAD+
ATP + deamido-NAD+ + glutamine = AMP + diphosphate + NAD+ + glutamate
ATP + deamido-NAD+ + glutamine = AMP + diphosphate + NAD+ + glutamate
ATP + deamido-NAD+ + L-Gln = AMP + diphosphate + NAD+ + Glu
ATP + deamido-NAD+ + L-Gln = AMP + diphosphate + NAD+ + Glu
ATP + deamido-NAD+ + NH3 = ?
ATP + deamido-NAD+ + NH3 = ?
ATP + deamido-NAD+ + NH3 = AMP + diphosphate + NAD+
674946, 954, 955, 957, 649168, 675318, 956, 653053, 673359, 674687, 745674, 671310, 651734, 650637, 671062, 649175, 706533, 743959, 950, 951, 952, 953, 653920, 728574
ATP + deamido-NAD+ + NH3 = AMP + diphosphate + NAD+
674946, 954, 955, 957, 649168, 675318, 956, 653053, 673359, 674687, 745674, 671310, 651734, 650637, 671062, 649175, 706533, 743959, 950, 951, 952, 953, 653920, 728574
ATP + deamido-NAD+ + NH4+ = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ = AMP + diphosphate + NAD+ + H+
ATP + deamido-NAD+ + NH4+ = AMP + diphosphate + NAD+ + H+
dATP + deamido-NAD+ + NH3 = dAMP + diphosphate + NAD+
dATP + deamido-NAD+ + NH3 = dAMP + diphosphate + NAD+
ATP + deamido-NAD+ + Asn = AMP + diphosphate + NAD+ + Asp
ATP + deamido-NAD+ + Asn = AMP + diphosphate + NAD+ + Asp
ATP + deamido-NAD+ + Asn = AMP + diphosphate + NAD+ + Asp
ATP + deamido-NAD+ + Asn = AMP + diphosphate + NAD+ + Asp
ATP + deamido-NAD+ + Asn = AMP + diphosphate + NAD+ + Asp
ATP + deamido-NAD+ + Asn = AMP + diphosphate + NAD+ + Asp
ATP + deamido-NAD+ + Asn = AMP + diphosphate + NAD+ + Asp
ATP + deamido-NAD+ + Gln + hydroxylamine = AMP + diphosphate + hydroxamate analog + ?
ATP + deamido-NAD+ + Gln + hydroxylamine = AMP + diphosphate + hydroxamate analog + ?
ATP + deamido-NAD+ + Gln + hydroxylamine = AMP + diphosphate + hydroxamate analog + ?
ATP + deamido-NAD+ + Gln + hydroxylamine = AMP + diphosphate + hydroxamate analog + ?
ATP + deamido-NAD+ + Gln + hydroxylamine = AMP + diphosphate + hydroxamate analog + ?
ATP + deamido-NAD+ + Gln + hydroxylamine = AMP + diphosphate + hydroxamate analog + ?
ATP + deamido-NAD+ + Gln + hydroxylamine = AMP + diphosphate + hydroxamate analog + ?
ATP + deamido-NAD+ + L-Gln = AMP + diphosphate + NAD+ + L-Glu
ATP + deamido-NAD+ + L-Gln = AMP + diphosphate + NAD+ + L-Glu
ATP + deamido-NAD+ + L-Gln = AMP + diphosphate + NAD+ + L-Glu
ATP + deamido-NAD+ + L-Gln = AMP + diphosphate + NAD+ + L-Glu
ATP + deamido-NAD+ + L-Gln = AMP + diphosphate + NAD+ + L-Glu
ATP + deamido-NAD+ + L-Gln = AMP + diphosphate + NAD+ + L-Glu
ATP + deamido-NAD+ + L-Gln = AMP + diphosphate + NAD+ + L-Glu
ATP + deamido-NAD+ + L-glutamine + H2O = AMP + diphosphate + NAD+ + L-glutamate
ATP + deamido-NAD+ + L-glutamine + H2O = AMP + diphosphate + NAD+ + L-glutamate
ATP + deamido-NAD+ + L-glutamine + H2O = AMP + diphosphate + NAD+ + L-glutamate
ATP + deamido-NAD+ + L-glutamine + H2O = AMP + diphosphate + NAD+ + L-glutamate
ATP + deamido-NAD+ + L-glutamine + H2O = AMP + diphosphate + NAD+ + L-glutamate
ATP + deamido-NAD+ + L-glutamine + H2O = AMP + diphosphate + NAD+ + L-glutamate
ATP + deamido-NAD+ + L-glutamine + H2O = AMP + diphosphate + NAD+ + L-glutamate
ATP + deamido-NAD+ + NH3 + H2O = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH3 + H2O = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH3 + H2O = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH3 + H2O = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH3 + H2O = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH3 + H2O = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH3 + H2O = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH3 = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH3 = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH3 = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH3 = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH3 = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH3 = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH3 = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ + H2O = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ + H2O = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ + H2O = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ + H2O = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ + H2O = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ + H2O = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ + H2O = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ = AMP + diphosphate + NAD+
ATP + deamido-NAD+ + NH4+ = AMP + diphosphate + NAD+
1,N6-etheno-NADPH + oxidized acetyl pyridine adenine dinucleotide + H+[side 1] = 1,N6-etheno-NADP+ + reduced acetyl pyridine adenine dinucleotide + H+[side 2]
-
deamino-NADPH + oxidized acetyl pyridine adenine dinucleotide + H+[side 1] = deamino-NADP+ + reduced acetyl pyridine adenine dinucleotide + H+[side 2]
-
NADPH + oxidized acetyl pyridine adenine dinucleotide + H+/in = NADP+ + reduced acetyl pyridine adenine dinucleotide + H+/out
-
NADPH + oxidized acetyl pyridine adenine dinucleotide + H+[side 1] = NADP+ + reduced acetyl pyridine adenine dinucleotide + H+[side 2]
733772, 392618, 392619, 659437, 672325, 698677, 733380, 733762, 733850, 733371, 392674, 673613, 674550, 687656, 733849, 675352
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Structural gene for NAD synthetase in Salmonella typhimurium
1988
Hughes, K.T.; Baldomero, M.O.; Roth, J.R.
J. Bacteriol.
170
2113-2120
NAD synthetase
1985
Zalkin, H.
Methods Enzymol.
113
297-302
-
Purification and immobilization of NAD+ synthetase from Escherichia coli
1985
Lambrecht, R.H.D.; Slegers, G.; Claeys, A.; Vuye, A.
Enzyme Microb. Technol.
7
493-498
Biosynthesis of diphosphopyridine nucleotide. The purification and the properties of diphosphopyridine nucleotide synthetase from Escherichia coli
1967
Spencer, R.L.; Preiss, J.
J. Biol. Chem.
242
385-392
Crystallization of NAD+ synthetase from Bacillus subtilis
1996
Rizzi, M.; Nessi, C.; Bolognesi, M.; Coda, A.; Galizzi, A.
Proteins Struct. Funct. Genet.
26
236-238
The outB gene of Bacillus subtilis codes for NAD synthetase
1995
Nessi, C.; Albertini, A.M.; Speranza, M.L.; Galizzi, A.
J. Biol. Chem.
17
6181-6185
The Escherichia coli efg gene and the Rhodobacter capsulatus adgA gene code for NH3-dependent NAD synthetase
1994
Willison, J.C.; Tissot, G.
J. Bacteriol.
176
3400-3402
Crystal structure of NH3-dependent NAD+ synthetase from Bacillus subtilis
1996
Rizzi, M.; Nessi, C.; Mattevi, A.; Coda, A.; Bolognesi, M.; Galizzi, A.
EMBO J.
15
5125-5134
-
Enzymatic synthesis of NAD+ with the specific incorporation of atomic labels
1994
Rising, K.A.; Schramm, C.L.
J. Am. Chem. Soc.
116
6531-6536
The pyridine-nucleotide cycle in tobacco. Enzyme activities for the de-novo synthesis of NAD
1985
Wagner, R.; Wagner, K.G.
Planta
165
532-537
Purification and properties of yeast nicotinamide adenine dinucleotide synthetase
1972
Yu, C.K.; Dietrich, L.S.
J. Biol. Chem.
247
4794-4802
Partial purification and properties of nicotinamide adenine dinucleotide synthetase from human erythrocytes: evidence that enzyme activity is a sensitive indicator of lead exposure
1990
Zerez, C.R.; Wong, M.D.; Tanaka, K.R.
Blood
75
1576-1582
-
Tissue distribution of the enzymes concerned with the biosynthesis of NAD in rats
1986
Shibata, K.; Hayakawa, T.; Iwai, K.
Agric. Biol. Chem.
50
3037-3041
NAD glycohydrolases from rat liver nuclei
1986
Okayama, H.; Ueda, K.; Hayaishi, O.
Methods Enzymol.
66
151-154
-
Pyridine nucleotide-linked glycohydrolases
1989
Price, S.R.; Pekala, P.H.
Coenzymes and cofactors, Glutathione, Chem. Biochem. Med. Aspects Pt. A (Dolphin D, Poulson R, Avromonic O, eds. ) John Wiley & Sons, New York
2
514-548
Cloning, purification, and properties of a novel NADH pyrophosphatase
1995
Frick, D.N.; Bessman, M.J.
J. Biol. Chem.
270
1529-1534
Characterization of H. parasuis periplasmic nucleotide pyrophosphatase as a potential target enzyme for inhibition of growth
1997
Wise, D.J.; Anderson, C.D.; Anderson, B.M.
Vet. Microbiol.
58
261-276
Characterization of Haemophilus influenzae nucleotide pyrophosphatase. An enzyme of critical importance for growth of the organism
1996
Kahn, D.W.; Anderson, B.M.
J. Biol. Chem.
261
6016-6025
Kinetic mechanism of the endogenous lactate dehydrogenase activity of duck epsilon-crystallin
1991
Chang, G.G.; Huang, S.M.; Chiou, S.H.
Arch. Biochem. Biophys.
284
285-291
Purification and properties of malate dehydrogenase from Pseudomonas testosteroni
1975
You, K.S.; Kaplan, N.O.
J. Bacteriol.
123
704-716
Purification and regulatory properties of the biosynthetic L-glycerol 3-phosphate dehydrogenase from Escherichia coli
1969
Kito, M.; Pizer, L.I.
J. Biol. Chem.
244
3316-3323
D-3-Phosphoglycerate dehydrogenase from hog spinal cord-1
1975
Feld, R.D.; Sallach, H.J.
Methods Enzymol.
41
282-285
D-3-Phosphoglycerate dehydrogenase from wheat germ-1
1975
Rosenblum, I.Y.; Sallach, H.J.
Methods Enzymol.
41
285-289
Inhibition of 3-phosphoglycerate dehydrogenase from Pisum sativum by purine nucleotides
1973
Slaughter, J.C.
Biochem. J.
135
563-565
Kinetic and chemical mechanisms of yeast formate dehydrogenase
1980
Blanchard, J.S.; Cleland, W.W.
Biochemistry
19
3543-3550
Succinic semialdehyde dehydrogenase: purification and properties of the enzyme from monkey brain
1961
Albers, R.W.; Koval, G.J.
Biochim. Biophys. Acta
52
29-35
Purification and some properties of NAD-degrading purine nucleosidase from Aspergillus niger
1978
Kuwahara, M.; Fujii, T.
Can. J. Biochem.
56
345-348
Localization and characteristics of rat liver mitochondrial aldehyde dehydrogenases
1976
Siew, C.; Deitrich, R.A.
Arch. Biochem. Biophys.
176
638-649
Purification and characterization of aldehyde dehydrogenase from rat liver mitochondria
1988
Senior, d.J.; Tasi, C.S.
Arch. Biochem. Biophys.
262
211-220
A further characterization of alanine dehydrogenase from Streptomyces aureofaciens
1989
Vancurova, I.; Vancura, A.; Volc, J.; Neuzil, J.; Behal, V.
J. Basic Microbiol.
29
185-189
Alanine dehydrogenase from Streptomyces fradiae. Purification and properties
1989
Vancura, A.; Vancurova, I.; Volc, J.; Jones, S.K.T.; Flieger, M.; Basarova, G.; Behal, V.
Eur. J. Biochem.
179
221-227
Alanine dehydrogenase from Enterobacter aerogenes: purification, characterization, and primary structure
1998
Chowdhury, E.K.; Saitoh, T.; Nagata, S.; Ashiuchi, M.; Misono, H.
Biosci. Biotechnol. Biochem.
62
2357-2363
Purification and characterization of a dimeric phenylalanine dehydrogenase from Rhodococcus maris K-18
1989
Misono, H.; Yonezawa, J.; Nagata, S.; Nagasaki, S.
J. Bacteriol.
171
30-36
Properties of crystalline leucine dehydrogenase from Bacillus sphaericus
1978
Ohshima, T.; Misono, H.; Soda, K.
J. Biol. Chem.
253
5719-5725
-
NAD+-dependent lysine dehydrogenase from a plant-pathogenic bacterium, Agrobacterium tumefaciens
1991
Misono, H.
Vitamins (Kyoto)
65
1-12
Properties of L-lysine epsilon-dehydrogenase from Agrobacterium tumefaciens
1989
Misono, H.; Hashimoto, H.; Uehigashi, H.; Nagata, S.; Nagasaki, S.
J. Biochem.
105
1002-1008
Valine dehydrogenase from Streptomyces fradiae: purification and properties
1988
Vancura, A.; Vancurova, I.; Volc, J.; Fussey, S.P.M.; Flieger, M.; Neuzil, J.; Marsalek, J.; Behal, V.
J. Gen. Microbiol.
134
3213-3219
Isolation and characterization of valine dehydrogenase from Streptomyces aureofaciens
1988
Vancurova, I.; Vancura, A.; Volc, J.; Neuzil, J.; Flieger, M.; Basarova, G.; Behal, V.
J. Bacteriol.
170
5192-5196
Purification and characterization of a novel valine dehydrogenase from Streptomyces aureofaciens
1995
Nguyen, L.T.; Nguyen, K.T.; Kopecky, J.; Nova, P.; Novotna, J.; Behal, V.
Biochim. Biophys. Acta
1251
186-190
-
The tylosin producer, Streptomyces fradiae, contains a second valine dehydrogenase
1995
Nguyen, L.T.; Nguyen, K.T.; Spizek, J.; Behal, V.
Microbiology
141
1139-1145
Purification and properties of the pyridine nucleotide transhydrogenase from Pseudomonas aeruginosa
1970
Cohen, P.T.; Kaplan, N.O.
J. Biol. Chem.
245
2825-2836
Pyridine nucleotide transhydrogenase from Azotobacter vinelandii
1970
Chung, A.E.
J. Bacteriol.
102
438-447
-
Nicotinamide nucleotide transhydrogenases
1976
Rydström, J.; Hoek, J.B.; Ernster, L.
The Enzymes, 3rd Ed. (Boyer, P. D. , ed. )
13
51-88
Purification and properties of reconstitutively active nicotinamide nucleotide transhydrogenase of Escherichia coli
1985
Clarke, D.M.; Bragg, P.D.
Eur. J. Biochem.
149
517-523
Cloning and expression of the transhydrogenase gene of Escherichia coli
1985
Clarke, D.M.; Bragg, P.D.
J. Bacteriol.
162
367-373
A change in ionization of the NADP(H)-binding component (dIII) if proton-translocating transhydrogenase regulates both hydride transfer and nucleotide release
2001
Rodrigues, D.J.; Venning, J.D.; Quirk, P.G.; Jackson, J.B.
Eur. J. Biochem.
268
1430-1438
Inhibition of nicotinamide phosphoribosyltransferase by pyridine nucleotides
1972
Dietrich, L.S.; Muniz, O.
Biochemistry
11
1691-1695
Evidence for a physiologically active nicotinamide phosphoribosyltransferase in cultured human fibroblasts
1982
Elliott, G.C.; Rechsteiner, M.C.
Biochem. Biophys. Res. Commun.
104
996-1002
Pathway of diphosphopyridine nucleotide biosynthesis in Escherichia coli
1961
Imsande, J.
J. Biol. Chem.
236
1494-1497
The deamido-diphosphopyridine nucleotide and diphosphopyridine nucleotide pyrophosphorylases of Escherichia coli and yeast
1967
Dahmen, W.; Webb, B.; Preiss, J.
Arch. Biochem. Biophys.
120
440-450
NMN adenylyltransferase from bull testis: purification and properties
1995
Balducci, E.; Orsomando, G.; Polzonetti, V.; Vita, A.; Emanuelli, M.; Raffaelli, N.; Ruggieri, S.; Magni, G.; Natalini, P.
Biochem. J.
310
395-400
Identification, characterization, and crystal structure of Bacillus subtilis nicotinic acid mononucleotide adenylyltransferase
2002
Olland, A.M.; Underwood, K.W.; Czerwinski, R.M.; Lo, M.C.; Aulabaugh, A.; Bard, J.; Stahl, M.L.; Somers, W.S.; Sullivan, F.X.; Chopra, R.
J. Biol. Chem.
277
3698-3707
Phosphorolysis of adenosine diphosphoribose
1966
Evans, W.R.; Pietro, A.S.
Arch. Biochem. Biophys.
113
236-244
Stabilization of active-site loops in NH3-dependent NAD+ synthetase from Bacillus subtilis
2001
Devedjiev, Y.; Symersky, J.; Singh, R.; Jedrzejas, M.; Brouillette, C.; Brouillette, W.; Muccio, D.; Chattopadhyay, D.; DeLucas, L.
Acta Crystallogr. Sect. D
57
806-812
NH3-dependent NAD+ synthetase from Bacillus subtilis at 1 A resolution
2002
Symersky, J.; Devedjiev, Y.; Moore, K.; Brouillette, C.; DeLucas, L.
Acta Crystallogr. Sect. D
58
1138-1146
Stable ammonia-specific NAD synthetase from Bacillus stearothermophilus: purification, characterization, gene cloning, and applications
2002
Yamaguchi, F.; Koga, S.; Yoshioka, I.; Takahashi, M.; Sakuraba, H.; Ohshima, T.
Biosci. Biotechnol. Biochem.
66
2052-2059
The MTCY428.08 gene of Mycobacterium tuberculosis codes for NAD+ synthetase
1998
Cantoni, R.; Branzoni, M.; Labo, M.; Rizzi, M.; Riccardi, G.
J. Bacteriol.
180
3218-3221
Identification of NAD+ synthetase from Streptococcus sobrinus as a B-cell-stimulatory protein
2004
Veiga-Malta, I.; Duarte, M.; Dinis, M.; Madureira, P.; Ferreira, P.; Videira, A.
J. Bacteriol.
186
419-426
Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency
2003
Hara, N.; Yamada, K.; Terashima, M.; Osago, H.; Shimoyama, M.; Tsuchiya, M.
J. Biol. Chem.
278
10914-10921
Structural study of Escherichia coli NAD synthetase: overexpression, purification, crystallization, and preliminary crystallographic analysis
1999
Ozment, C.; Barchue, J.; DeLucas, L.J.; Chattopadhyay, D.
J. Struct. Biol.
127
279-282
Heterologous expression, purification, and enzymatic activity of Mycobacterium tuberculosis NAD(+) synthetase
2002
Bellinzoni, M.; De Rossi, E.; Branzoni, M.; Milano, A.; Peverali, F.A.; Rizzi, M.; Riccardi, G.
Protein Expr. Purif.
25
547-557
A novel deamido-NAD+-binding site revealed by the trapped NAD-adenylate intermediate in the NAD+ synthetase structure
1998
Rizzi, M.; Bolognesi, M.; Coda, A.
Structure
6
1129-1140
The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli
2004
Sauer, U.; Canonaco, F.; Heri, S.; Perrenoud, A.; Fischer, E.
J. Biol. Chem.
279
6613-6619
A fluorescence-based coupling reaction for monitoring the activity of recombinant human NAD synthetase
2005
Bembenek, M.E.; Kuhn, E.; Mallender, W.D.; Pullen, L.; Li, P.; Parsons, T.
Assay Drug Dev. Technol.
3
533-541
A new enzymatic cycling method for ammonia assay using NAD synthetase
2005
Yamaguchi, F.; Etoh, T.; Takahashi, M.; Misaki, H.; Sakuraba, H.; Ohshima, T.
Clin. Chim. Acta
352
165-173
Glutamine amidotransferase activity of NAD+ synthetase from Mycobacterium tuberculosis depends on an amino-terminal nitrilase domain
2005
Bellinzoni, M.; Buroni, S.; Pasca, M.R.; Guglierame, P.; Arcesi, F.; De Rossi, E.; Riccardi, G.
Res. Microbiol.
156
173-177
NAD deamidation a new reaction by an enzyme from Aspergillus terreus DSM 826
2005
Elzainy, T.A.; Ali, T.H.
Antonie van Leeuwenhoek
87
119-129
Structural adaptation of an interacting non-native C-terminal helical extension revealed in the crystal structure of NAD+ synthetase from Bacillus anthracis
2007
McDonald, H.M.; Pruett, P.S.; Deivanayagam, C.; Protasevich, I.I.; Carson, W.M.; DeLucas, L.J.; Brouillette, W.J.; Brouillette, C.G.
Acta Crystallogr. Sect. D
63
891-905
An enzymatic cycling assay for nicotinic acid adenine dinucleotide phosphate using NAD synthetase
2007
Yamaguchi, F.; Ohshima, T.; Sakuraba, H.
Anal. Biochem.
364
97-103
Nucleotide binding affinities of the intact proton-translocating transhydrogenase from Escherichia coli
2005
Bizouarn, T.; van Boxel, G.I.; Bhakta, T.; Jackson, J.B.
Biochim. Biophys. Acta
1708
404-410
-
Enhancement of the NAD(P)(H) pool in Escherichia coli for biotransformation
2007
Heuser, F.; Schroer, K.; Luetz, S.; Bringer-Meyer, S.; Sahm, H.
Eng. Life Sci.
7
343-353
Zinc ions selectively inhibit steps associated with binding and release of NADP(H) during turnover of proton-translocating transhydrogenase
2005
Whitehead, S.J.; Rossington, K.E.; Hafiz, A.; Cotton, N.P.; Jackson, J.B.
FEBS Lett.
579
2863-2867
The role of invariant amino acid residues at the hydride transfer site of proton-translocating transhydrogenase
2006
Brondijk, T.H.; van Boxel, G.I.; Mather, O.C.; Quirk, P.G.; White, S.A.; Jackson, J.B.
J. Biol. Chem.
281
13345-13354
Glutamine-dependent NAD+ synthetase. How a two-domain, three-substrate enzyme avoids waste
2006
Wojcik, M.; Seidle, H.F.; Bieganowski, P.; Brenner, C.
J. Biol. Chem.
281
33395-33402
A nuclear magnetic resonance-based functional assay for nicotinamide adenine dinucleotide synthetase
2007
Stockman, B.J.; Lodovice, I.J.; Fisher, D.A.; McColl, A.S.; Xie, Z.
J. Biomol. Screen.
12
457-463
Antibacterial nicotinamide adenine dinucleotide synthetase inhibitors: amide- and ether-linked tethered dimers with alpha-amino acid end groups
2007
Velu, S.E.; Mou, L.; Luan, C.H.; Yang, Z.W.; DeLucas, L.J.; Brouillette, C.G.; Brouillette, W.J.
J. Med. Chem.
50
2612-2621
X-ray structure of domain I of the proton-pumping membrane protein transhydrogenase from Escherichia coli
2005
Johansson, T.; Oswald, C.; Pedersen, A.; Toernroth, S.; Okvist, M.; Karlsson, B.G.; Rydstroem, J.; Krengel, U.
J. Mol. Biol.
352
299-312
Substitution of tyrosine 146 in the dI component of proton-translocating transhydrogenase leads to reversible dissociation of the active dimer into inactive monomers
2007
Obiozo, U.M.; Brondijk, T.H.; White, A.J.; van Boxel, G.; Dafforn, T.R.; White, S.A.; Jackson, J.B.
J. Biol. Chem.
282
36434-36443
2-Fluoro-ATP as a versatile tool for 19F NMR-based activity screening
2008
Stockman, B.J.
J. Am. Chem. Soc.
130
5870-5871
Purification and properties of L-erythro-3,5-diaminohexanoate dehydrogenase from Clostridium sticklandii
1974
Baker, J.J.; van der Drift, C.
Biochemistry
13
292-299
Proton-translocating transhydrogenase: an update of unsolved and controversial issues
2008
Pedersen, A.; Karlsson, G.B.; Rydstroem, J.
J. Bioenerg. Biomembr.
40
463-473
An ancestral glutamine-dependent NAD(+) synthetase revealed by poor kinetic synergism
2009
Resto, M.; Yaffe, J.; Gerratana, B.
Biochim. Biophys. Acta
1794
1648-1653
Molecular characterization of lysine 6-dehydrogenase from Achromobacter denitrificans
2008
Ruldeekulthamrong, P.; Maeda, S.; Kato, S.; Shinji, N.; Sittipraneed, S.; Packdibamrung, K.; Misono, H.
BMB Rep.
41
790-795
The NMN/NaMN adenylyltransferase (NMNAT) protein family
2009
Lau, C.; Niere, M.; Ziegler, M.
Front. Biosci.
14
410-431
Regulation of active site coupling in glutamine-dependent NAD(+) synthetase
2009
LaRonde-LeBlanc, N.; Resto, M.; Gerratana, B.
Nat. Struct. Mol. Biol.
16
421-429
Nicotinamide mononucleotide synthetase is the key enzyme for an alternative route of NAD biosynthesis in Francisella tularensis
2009
Sorci, L.; Martynowski, D.; Rodionov, D.A.; Eyobo, Y.; Zogaj, X.; Klose, K.E.; Nikolaev, E.V.; Magni, G.; Zhang, H.; Osterman, A.L.
Proc. Natl. Acad. Sci. USA
106
3083-3088
Evaluation of NAD(H) analogues as selective inhibitors for Trypanosoma cruzi S-adenosylhomocysteine hydrolase
2009
Li, Q.; Cai, S.; Fang, J.; Borchardt, R.; Kuczera, K.; Middaugh, C.; Schowen, R.
Nucleosides Nucleotides Nucleic Acids
28
473-484
Genomics-driven reconstruction of acinetobacter NAD metabolism: insights for antibacterial target selection
2010
Sorci, L.; Blaby, I.; De Ingeniis, J.; Gerdes, S.; Raffaelli, N.; de Crecy Lagard, V.; Osterman, A.
J. Biol. Chem.
285
39490-39499
Valine dehydrogenase from a non-spore-forming bacterium, Alcaligenes faecalis: purification and characterization
1993
Ohshima, T.; Soda, K.
Biochim. Biophys. Acta
1162
221-226
Pyridine nucleotide transhydrogenase from spinach. I. Purification and properties
1960
Keister, D.L.; San Pietro, A.; Stolzenbach, F.E.
J. Biol. Chem.
235
2989-2996
Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD+ synthetase
2012
Chuenchor, W.; Doukov, T.I.; Resto, M.; Chang, A.; Gerratana, B.
Biochem. J.
443
417-426
Glutamine versus ammonia utilization in the NAD synthetase family
2012
De Ingeniis, J.; Kazanov, M.D.; Shatalin, K.; Gelfand, M.S.; Osterman, A.L.; Sorci, L.
PLoS One
7
e39115
The pH dependences of reactions catalyzed by the complete proton-translocating transhydrogenase from Rhodospirillum rubrum, and by the complex formed from its recombinant nucleotide-binding domains
1997
Bizouarn, T.; Stilwell, S.; Venning, J.; Cotton, N.P.J.; Jackson, J.B.
Biochim. Biophys. Acta
1322
19-32
The specificity of proton-translocating transhydrogenase for nicotinamide nucleotides
2011
Huxley, L.; Quirk, P.G.; Cotton, N.P.J.; White, S.A.; Jackson, J.B.
Biochim. Biophys. Acta
1807
85-94
A review of the binding-change mechanism for proton-translocating transhydrogenase
2012
Jackson J.B, J.J.
Biochim. Biophys. Acta
1817
1839-1846
Kinetic resolution of the reaction catalysed by proton-translocating transhydrogenase from Escherichia coli as revealed by experiments with analogues of the nucleotide substrates
1994
Hutton, M.; Day, J.M.; Bizouarn, T.; Jackson, J.B.
Eur. J. Biochem.
219
1041-1051
Redox-sensitive loops D and E regulate NADP(H) binding in domain III and domain I-domain III interactions in proton-translocating Escherichia coli transhydrogenase
2002
Johansson, C.; Pedersen, A.; Karlsson, B.G.; Rydstroem, J.
Eur. J. Biochem.
269
4505-4515
Structural changes in the recombinant, NADP(H)-binding component of proton translocating transhydrogenase revealed by NMR spectroscopy
1999
Quirk, P.G.; Jeeves, M.; Cotton, N.P.; Smith, J.K.; Jackson, B.J.
FEBS Lett.
446
127-132
Structure and mechanism of proton-translocating transhydrogenase
1999
Jackson, J.B.; Peake, S.J.; White, S.A.
FEBS Lett.
464
1-8
Cloning, expression, purification, crystallization and preliminary X-ray diffraction studies of NAD synthetase from methicillin-resistant Staphylococcus aureus
2015
Arbade, G.K.; Srivastava, S.K.
Acta Crystallogr. Sect. F
71
763-769
In vitro characterization of the NAD+ synthetase NadE1 from Herbaspirillum seropedicae
2016
Laskoski, K.; Santos, A.R.; Bonatto, A.C.; Pedrosa, F.O.; Souza, E.M.; Huergo, L.F.
Arch. Microbiol.
198
307-313
Metabolic and bactericidal effects of targeted suppression of NadD and NadE enzymes in mycobacteria
2014
Rodionova, I.A.; Schuster, B.M.; Guinn, K.M.; Sorci, L.; Scott, D.A.; Li, X.; Kheterpal, I.; Shoen, C.; Cynamon, M.; Locher, C.; Rubin, E.J.; Osterman, A.L.
mBio
5
e00747-13
Nickel-pincer cofactor biosynthesis involves LarB-catalyzed pyridinium carboxylation and LarE-dependent sacrificial sulfur insertion
2016
Desguin, B.; Soumillion, P.; Hols, P.; Hausinger, R.
Proc. Natl. Acad. Sci. USA
113
5598-5603