Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
D-lactate + ferricytochrome c-553 = pyruvate + ferrocytochrome c-553
-
DL-2-hydroxybutyrate + ferricytochrome c-553 = 2-ketobutyrate + ferrocytochrome c-553
-
a primary alcohol + 2 ferricytochrome cL = an aldehyde + 2 ferrocytochrome cL + 2 H+
-
methanol + 2 ferricytochrome cL = formaldehyde + 2 ferrocytochrome cL + 2 H+
-
methanol + ferricytochrome cL = formaldehyde + ferrocytochrome cL
-
methanol + ferricytochrome c551i = formaldehyde + ferrocytochrome c551i
-
ferrocytochrome c2 + H2O2 = ferricytochrome c2 + OH-
-
ferrocytochrome c553 + H2O2 = ferriytochrome c553 + OH-
-
Fe(III)-nitrilotriacetate + ferricytochrome c3 = Fe(II)-nitrilotriacetate + ferrocytochrome c3
-
ferricytochrome c3 + 2 H2 = ferrocytochrome c3 + 4 H+
-
H2 + ferricytochrome c3 = H+ + ferrocytochrome c3
395570, 395559, 395567, 395573, 654261, 657318, 395560, 395561, 395568, 395562, 395563, 395566, 395571, 395574, 674919, 684509, 686734, 688655, 742006, 395564, 395565, 689932, 395569, 395572, 742696, 654899, 675360, 672118, 711266, 724456
-
H+ + ferrocytochrome c3 = H2 + ferricytochrome c3
-
lactate + ferrocytochrome c3 = pyruvate + ferricytochrome c3
-
pyruvate + ferrocytochrome c3 = lactate + ferricytochrome c3
-
pregnenolone + ferrocytochrome b5 + O2 = ?
-
progesterone + ferrocytochrome b5 + O2 = ?
-
24-methylidenecycloartanol + 2 ferrocytochrome b5 + O2 + 2 H+ = 4alpha-(hydroxymethyl)-4beta,14alpha-dimethyl-9beta,19-cyclo-5alpha-ergost-24(241)-en-3beta-ol + 2 ferricytochrome B5 + H2O
-
4alpha-(hydroxymethyl)-4beta,14alpha-dimethyl-9beta,19-cyclo-5alpha-ergost-24(241)-en-3beta-ol + 2 ferrocytochrome b5 + O2 + 2 H+ = 4alpha-formyl-4beta,14alpha-dimethyl-9beta,19-cyclo-5alpha-ergost-24(241)-en-3beta-ol + 2 ferricytochrome b5 + H2O
-
4-methyl fecosterol + 6 ferricytochrome b5 + 3 O2 + 6 H+ = 4,4-dimethyl fecosterol + 6 ferrocytochrome b5 + 4 H2O
-
parkeol + 6 ferricytochrome b5 + 3 O2 + 6 H+ = 9(11)-dehydroergosterol + 6 ferrocytochrome b5 + 4 H2O
-
24-methylidenecycloartanol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = 3beta-hydroxy-4beta,14alpha-dimethyl-9beta,19-cyclo-5alpha-ergost-24(241)-ene-4alpha-carboxylate + 6 ferricytochrome b5 + 4 H2O
-
(3alpha,4alpha,5alpha,10alpha,13alpha,20S)-4-methyl-9,19-cycloergosta-7,24(28)-dien-3-ol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = (3alpha,4alpha,5alpha,10alpha,13alpha,20S)-3-hydroxy-9,19-cycloergosta-7,24(28)-diene-4-carboxylic acid + 6 ferricytochrome b5 + 4 H2O
-
(3alpha,4alpha,5alpha,10alpha,13alpha,20S)-4-methylcholest-7-en-3-ol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = (3alpha,4alpha,5alpha,10alpha,13alpha,20S)-3-hydroxycholest-7-ene-4-carboxylic acid + 6 ferricytochrome b5 + 4 H2O
-
24-ethylidenelophenol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = (3beta,4alpha,5alpha,24Z)-3-hydroxystigmasta-7,24(28)-diene-4-carboxylic acid + 6 ferricytochrome b5 + 4 H2O
-
24-ethylidenelophenol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = 3beta,4alpha,5alpha-3-hydroxystigmasta-7,24(28)-diene-4-carboxylate + 6 ferricytochrome b5 + 4 H2O
-
24-methylidenelophenol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = 3beta-hydroxyergosta-7,24(241)-dien-4alpha-carboxylate + 6 ferricytochrome b5 + 4 H2O
-
24-methylidenelophenol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = 3beta-hydroxyergosta-7,24(241)-diene-4alpha-carboxylate + 6 ferricytochrome b5 + 4 H2O
-
CMP-N-acetylneuraminate + 2 ferrocytochrome b5 + O2 + 2 H+ = CMP-N-glycoloylneuraminate + 2 ferricytochrome b5 + H2O
-
CMP-N-acetylneuraminate + ferrocytochrome b5 + O2 + H+ = CMP-N-glycoloylneuraminate + ferricytochrome b5 + H2O
-
CMP-N-acetylneuraminate + ferrocytochrome b5 + O2 = CMP-N-glycoloylneuraminate + ferricytrochrome b5 + H2O
-
a 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine + 2 ferrocytochrome b5 + O2 + 2 H+ = a 1-acyl-2-ricinoleoyl-sn-glycero-3-phosphocholine + 2 ferricytochrome b5 + H2O
-
a 1-acyl-2-oleoyl-sn-glycero-3-phosphoethanolamine + 2 ferrocytochrome b5 + O2 + 2 H+ = a 1-acyl-2-ricinoleoyl-sn-glycero-3-phosphoethanolamine + 2 ferricytochrome b5 + H2O
-
oleic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = ricinoleic acid + 2 ferricytochrome b5 + H2O
-
1-acyl-2-oleoyl-sn-glycero-3-phosphocholine + ferrocytochrome b5 + O2 = 1-acyl-2-[(S)-12-hydroxyoleoyl]-sn-glycero-3-phosphocholine + ferricytochrome b5
-
1-acyl-2-oleoyl-sn-glycero-3-phosphocholine + ferrocytochrome b5 + O2 = 1-acyl-2-[(S)-12-hydroxyoleoyl]-sn-glycero-3-phosphocholine + ferricytochrome b5 + H2O
-
sphinganine ceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = 4-hydroxysphinganine ceramide + 2 ferricytochrome b5 + H2O
-
a phytoceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (2'R)-2'-hydroxyphytoceramide + 2 ferricytochrome b5 + H2O
-
monohexosylceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = 2'-hydroxymonohexosylceramide + 2 ferricytochrome b5 + H2O
-
palmitic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = (R)-2-hydroxypalmitic acid + 2 ferricytochrome b5 + H2O
-
phytoceramide + ferrocytochrome b5 + O2 + H+ = (2'R)-2'-hydroxyphytoceramide + ferricytochrome b5 + H2O
-
4,4-[30,31-14C]dimethyl-5alpha-cholest-7-en-3beta-ol + ferrocytochrome b5 + O2 + H+ = ?
-
4alpha-methyl-5alpha-cholest-7-en-3beta-ol + ferrocytochrome b5 + O2 + H+ = ?
-
4alpha[30-3H]-methyl-5alpha-cholest-7-en-3beta-ol + ferrocytochrome b5 + O2 + H+ = ?
-
palmitoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = palmitoleoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
stearoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = oleoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
palmitoyl-CoA + ferrocytochrome b5 + O2 + 2 H+ = palmitoleoyl-CoA + ferricytochrome b5 + 2 H2O
-
palmitoyl-CoA + ferrocytochrome b5 + O2 = palmitoleoyl-CoA + ferricytochrome b5 + H2O
-
stearoyl-CoA + ferrocytochrome b5 + H+ + O2 = oleoyl-CoA + ferricytochrome b5 + H2O
-
stearoyl-CoA + ferrocytochrome b5 + O2 + H+ = ?
-
stearoyl-CoA + ferrocytochrome b5 + O2 + H+ = oleoyl-CoA + ferricytochrome b5 + H2O
684339, 685606, 687766, 688248, 726658, 684785, 685575, 686320, 688230, 689281, 689313, 727426, 727151, 688607, 688772, 688769, 687321, 689882, 687427
-
stearoyl-CoA + ferrocytochrome b5 + O2 = oleoyl-CoA + ferricytochrome b5 + H2O
-
trans-2-hexadecenoyl-CoA + ferrocytochrome b5 + O2 + H+ = ?
-
icosanoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = (Z)-icos-5-enoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
alpha-linolenoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = coniferonoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
dihomolinoleoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = ?
-
eicosa-11,14,17-trienoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = ?
-
linoleoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = pinolenoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
oleoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = ?
-
(9Z,12Z)-hexadec-9,12-dienoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = ?
-
(9Z,12Z)-octadec-9,12-dienoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = ?
-
(9Z,12Z,15Z)-octadec-9,12,15-trienoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = ?
-
linoleoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = (9Z,11E,13Z)-octadeca-9,11,13-trienoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
a dihydroceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4E)-sphing-4-enine ceramide + 2 ferricytochrome b5 + 2 H2O
-
N-((2S,3R,6E)-1,3-dihydroxyoctadec-6-en-2-yl)-6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)hexanamide + 2 ferrocytochrome b5 + O2 + 2 H+ = N-((2S,3R,4E,6E)-1,3-dihydroxyoctadeca-4,6-dien-2-yl)-6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)hexanamide + 2 ferricytochrome b5 + 2 H2O
-
N-((2S,3R,6E)-1,3-dihydroxyoctadec-6-en-2-yl)octanamide + 2 ferrocytochrome b5 + O2 + 2 H+ = N-((2S,3R,4E,6E)-1,3-dihydroxyoctadeca-4,6-dien-2-yl)octanamide + 2 ferricytochrome b5 + 2 H2O
-
N-((2S,3R,6Z)-1,3-dihydroxyoctadec-6-en-2-yl)-6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)hexanamide + 2 ferrocytochrome b5 + O2 + 2 H+ = N-((2S,3R,4E,6Z)-1,3-dihydroxyoctadeca-4,6-dien-2-yl)-6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)hexanamide + 2 ferricytochrome b5 + 2 H2O
-
N-((2S,3R,6Z)-1,3-dihydroxyoctadec-6-en-2-yl)octanamide + 2 ferrocytochrome b5 + O2 + 2 H+ = N-((2S,3R,4E,6Z)-1,3-dihydroxyoctadeca-4,6-dien-2-yl)octanamide + 2 ferricytochrome b5 + 2 H2O
-
N-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl]-D-erythro-sphinganine + 2 ferrocytochrome b5 + O2 + 2 H+ = ?
-
dihydroceramide + ferrocytochrome b5 + O2 + H+ = (4E)-sphing-4-enine ceramide + ferricytochrome b5 + H2O
-
N-octanoylsphinganine + ferrocytochrome b5 + O2 + 2 H+ = N-octanoylsphingosine + ferricytochrome b5 + 2 H2O
-
(4E)-sphing-4-enine ceramide + ferrocytochrome b5 + O2 + H+ = (4E,8E)-sphing-4,8-dienine ceramide + ferricytochrome b5 + H2O
-
4-hydroxysphinganine + ferrocytochrome b5 + O2 + H+ = 4-hydroxy-trans-8-sphingenine + ferricytochrome b5 + H2O
-
C18-phytosphingenine + ferrocytochrome b5 + O2 + H+ = (8Z)-C18-phytosphingenine + (8E)-C18-phytosphingenine + ferricytochrome b5 + H2O
-
C18-phytosphingosine + ferrocytochrome b5 + O2 + H+ = (8Z)-C18-phytosphingenine + (8E)-C18-phytosphingenine + ferricytochrome b5 + H2O
-
sphinganine + ferrocytochrome b5 + O2 + H+ = ?
-
cerebroside B + 2 ferrocytochrome b5 + O2 + 2 H+ = fusaruside + 2 ferricytochrome b5 + 2 H2O
-
(4E,8E)-sphinga-4,8-dienine ceramide + ferrocytochrome b5 + O2 + H+ = (4E,8E,10E)-sphinga-4,8,10-trienine ceramide + ferricytochrome b5 + H2O
-
5alpha-cholest-7-en-3beta-ol + 2 ferrocytochrome b5 + O2 + 2 H+ = cholesta-5,7-dien-3beta-ol + 2 ferricytochrome b5 + 2 H2O
-
a DELTA7-sterol + 2 ferrocytochrome b5 + O2 + 2 H+ = a DELTA5,7-sterol + 2 ferricytochrome b5 + 2 H2O
-
cholesta-7,24-dien-3beta-ol + 2 ferrocytochrome b5 + O2 + 2 H+ = 7-dehydrodesmosterol + 2 ferricytochrome b5 + 2 H2O
-
lathosterol + 2 ferrocytochrome b5 + O2 + 2 H+ = 7-dehydrocholesterol + 2 ferricytochrome b5 + 2 H2O
-
(3beta,24R)-ergost-7-en-3-ol + ferrocytochrome b5 + O2 + H+ = (3beta,24R)-ergosta-5,7-dien-3-ol + ferricytochrome b5 + H2O
-
14-methylfecosterol + ferrocytochrome b5 + O2 + H+ = 14-methylergosta-5,8,24(28)-trien-3beta-ol + ferricytochrome b5 + H2O
-
5alpha-cholest-7-en-3beta-ol + ferrocytochrome b5 + H+ + O2 = cholesta-5,7-dien-3beta-ol + ferricytochrome b5 + 2 H2O
-
5alpha-cholest-7-en-3beta-ol + ferrocytochrome b5 + O2 + H+ = ? + ferricytochrome b5 + H2O
-
5alpha-cholesta-7,22-dien-3beta-ol + ferrocytochrome b5 + H+ + O2 = cholesta-5,7,22-trien-3beta-ol + ferricytochrome b5 + 2 H2O
-
5alpha-cholestan-3beta-ol + ferrocytochrome b5 + H+ + O2 = cholest-5-en-3beta-ol + ferricytochrome b5 + 2 H2O
-
5alpha-ergost-7,24(241)-dien-3beta-ol + O2 + ferrocytochrome b5 = ergosta-5,7,24(241)-trien-3beta-ol + H2O2 + ferricytochrome b5
-
5alpha-ergosta-7,22-dien-3beta-ol + ferrocytochrome b5 + O2 + H+ = ergosterol + ferricytochrome b5 + H2O
-
5alpha-ergosta-7,24-dien-3beta-ol + ferrocytochrome b5 + O2 + H+ = ergosta-5,7,24-trien-3beta-ol + ferricytochrome b5 + H2O
-
5alpha-ergosta-7-en-3beta-ol + ferrocytochrome b5 + O2 + H+ = ergosta-5,7-dien-3beta-ol + ferricytochrome b5 + H2O
-
avenasterol + ferrocytochrome b5 + O2 + H+ = ?
-
cholest-7-en-3beta-ol + ferrocytochrome b5 + O2 + H+ = cholest-5,7-dien-3beta-ol + ferricytochrome b5 + H2O
-
DELTA7-avenasterol + O2 + ferrocytochrome b5 = DELTA5,7-avenasterol + H2O + ferricytochrome b5
-
DELTA7-campesterol + O2 + ferrocytochrome b5 = DELTA5,7-campesterol + H2O + ferricytochrome b5
-
DELTA7-sitosterol + O2 + ferrocytochrome b5 = DELTA5,7-sitosterol + H2O + ferricytochrome b5
-
DELTA7-sterol + ferrocytochrome b5 + O2 + H+ = DELTA5,7-sterol + ferricytochrome b5 + H2O
-
DELTA7-ststigmast-7-en-3beta-ol + ferrocytochrome b5 + O2 + H+ = stigmast-5,7-dien-3beta-ol + ferricytochrome b5 + H2O
-
episterol + ferrocytochrome b5 + O2 + H+ = ? + ferricytochrome b5 + H2O
-
episterol + ferrocytochrome b5 + O2 + H+ = ergosta-5,7,24(28)-trien-3beta-ol + ferricytochrome b5 + 2 H2O
-
episterol + O2 + ferrocytochrome b5 = DELTA5,7-episterol + H2O + ferricytochrome b5
-
ergosta-7,22-dien-3beta-ol + ferrocytochrome b5 + O2 + H+ = ergosta-5,7,22-trien-3beta-ol + ferricytochrome b5 + 2 H2O
-
ergosta-7,22-dien-3beta-ol + ferrocytochrome b5 + O2 + H+ = ergosterol + ferricytochrome b5 + 2 H2O
-
ergosta-7,24(28)-dien-3beta-ol + ferrocytochrome b5 + O2 + H+ = ergosta-5,7,24(28)-trien-3beta-ol + ferricyctochrome b5 + H2O
-
ergosta-7-en-3beta-ol + ferrocytochrome b5 + O2 + H+ = ergosta-5,7-dien-3beta-ol + ferricyctochrome b5 + H2O
-
ergosta-8,22,24(28)-trien-3beta-ol + ferrocytochrome b5 + O2 + H+ = ergosta-5,8,22,24(28)-tetraen-3beta-ol + ferricyctochrome b5 + H2O
-
ergosta-8,22-dien-3beta-ol + ferrocytochrome b5 + O2 + H+ = ergosta-5,8,22-trien-3beta-ol + ferricyctochrome b5 + H2O
-
ergosterol + ferrocytochrome b5 + O2 + H+ = lanosterol + ferricyctochrome b5 + H2O
-
fecosterol + ferrocytochrome b5 + O2 + H+ = ergosta-5,7,24(28)-trien-3beta-ol + ferricyctochrome b5 + H2O
-
lanosterol + ferrocytochrome b5 + O2 + H+ = ? + ferricytochrome b5 + H2O
-
lanosterol + ferrocytochrome b5 + O2 + H+ = lanosta-5,8,24-trien-3beta-ol + ferricyctochrome b5 + H2O
-
lathosterol + ferrocytochrome b5 + O2 + H+ = 7-dehydrocholesterol + ferricytochrome b5 + H2O
-
lathosterol + ferrocytochrome b5 + O2 + H+ = ?
-
lathosterol + O2 + ferrocytochrome b5 = 7-dehydrocholesterol + H2O + ferricytochrome b5
-
stigmast-7-en-3beta-ol + ferrocytochrome b5 + O2 + H+ = stigmast-5,7-dien-3beta-ol + ferricyctochrome b5 + H2O
-
stigmasta-7,22-dien-3beta-ol + ferrocytochrome b5 + O2 + H+ = stigmast-5,7,22-trien-3beta-ol + ferricyctochrome b5 + H2O
-
zymosterol + ferrocytochrome b5 + O2 + H+ = cholesta-5,8,24-trien-3beta-ol + ferricyctochrome b5 + H2O
-
1,2-di-oleoyl-sn-glycero-3-phosphorylcholine + 2 ferrocytochrome b5 + O2 + 2 H+ = 1,2-di-linoleoyl-sn-glycero-3-phosphorylcholine + 2 ferricytochrome b5 + 2 H2O
-
1,2-dioleoylphosphatidylcholine + 2 ferrocytochrome b5 + O2 + 2 H+ = 1,2-linoleoylphosphatidylcholine + 2 ferricytochrome b5 + 2 H2O
-
1-acyl-2-oleoyl-sn-glycero-3-phosphorylcholine + 2 ferrocytochrome b5 + O2 + 2 H+ = 1-acyl-2-linoleoyl-sn-glycero-3-phosphorylcholine + 2 ferricytochrome b5 + 2 H2O
-
oleoyl-phosphatidylcholine + 2 ferrocytochrome b5 + O2 + 2 H+ = linoleoyl-phosphatidylcholine + 2 ferricytochrome b5 + 2 H2O
-
oleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = linoleoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
1-acyl-2-oleoyl-sn-glycero-3-phosphocholine + ferrocytochrome b5 + O2 + H+ = 1-acyl-2-linoleoyl-sn-glycero-3-phosphocholine + ferricytochrome b5 + H2O
390729, 390732, 390726, 390731, 390733, 390736, 390737, 390727, 390730, 390739, 390740, 390741, 390742, 390743, 688081, 390735, 390728, 390734, 390738, 688088, 686340, 698435, 700223
-
oleoyl-[CoA] + ferrocytochrome b5 + O2 + H+ = linoleoyl-[CoA] + ferricytochrome b5 + H2O
-
oleoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = linoleoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
palmitoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = hexadecadienoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
myristate + 2 ferrocytochrome b5 + O2 + 2 H+ = (11E)-11-tetradecenoate + 2 ferricytochrome b5 + 2 H2O
-
myristate + 2 ferrocytochrome b5 + O2 + 2 H+ = (11Z)-tetradecenoate + (11E)-tetradecenoate + 2 ferricytochrome b5 + 2 H2O
-
myristate + 2 ferrocytochrome b5 + O2 + 2 H+ = (Z)-11-tetradecenoate + (E)-11-tetradecenoate + 2 ferricytochrome b5 + 2 H2O
-
a dihomo-gamma-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
a gamma-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a stearidonoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an alpha-linolenoyl-[glycerolipid] + ferricytochrome b5 + 2 H2O
-
an arachidonoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
arachidonic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = eicosapentaenoic acid + 2 ferricytochrome b5 + 2 H2O
-
arachidonoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = eicosapentaenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = alpha-linolenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
omega-6 linoleic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = linolenic acid + 2 ferricytochrome b5 + 2 H2O
-
alpha-linolenic acid + ferrocytochrome b5 + O2 + H+ = stearidonic acid + ferricytochrome b5 + H2O
-
oleic acid + ferrocytochrome b5 + O2 + H+ = ?
-
palmitoleic acid + ferrocytochrome b5 + O2 + H+ = ?
-
a (4R)-4-hydroxysphinganine ceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4R,8E)-4-hydroxysphing-8-enine ceramide + 2 ferricytochrome b5 + 2 H2O
-
a (4R)-4-hydroxysphinganine ceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4R,8Z)-4-hydroxysphing-8-enine ceramide + 2 ferricytochrome b5 + 2 H2O
-
phytosphinganine + 2 ferrocytochrome b5 + O2 + 2 H+ = (4R,8E)-4-hydroxy-8-sphingenine + 2 ferricytochrome b5 + 2 H2O
-
phytosphinganine + 2 ferrocytochrome b5 + O2 + 2 H+ = (4R,8Z)-4-hydroxy-8-sphingenine + 2 ferricytochrome b5 + 2 H2O
-
(4R)-4-hydroxysphinganine ceramide + ferrocytochrome b5 + O2 + H+ = (4R,8E)-4-hydroxysphing-8-enine ceramide + (4R,8Z)-4-hydroxysphing-8-enine ceramide + ferricytochrome b5 + H2O
-
(4R)-4-hydroxysphinganine ceramide + ferrocytochrome b5 + O2 + H+ = (4R,8E)-4-hydroxysphing-8-enine ceramide + ferricytochrome b5 + H2O
-
(4R)-4-hydroxysphinganine ceramide + ferrocytochrome b5 + O2 + H+ = (4R,8Z)-4-hydroxysphing-8-enine ceramide + ferricytochrome b5 + H2O
-
(E)-sphing-4-enine + ferrocytochrome b5 + O2 + H+ = (4E,8E)-sphinga-4,8-dienine + ferricytochrome b5 + H2O
-
C18-phytosphinganine + ferrocytochrome b5 + O2 + H+ = C18-8-phytosphingenine + ferricytochrome b5 + H2O
-
C18-phytosphinganine + ferrocytochrome b5 + O2 + H+ = DELTA8-trans/cis-C18-phytosphingenine + ferricytochrome b5 + H2O
-
C20-phytosphinganine + ferrocytochrome b5 + O2 + H+ = DELTA8-trans/cis-C-20-phytosphingenine + ferricytochrome b5 + H2O
-
C20-phytosphinganine + ferrocytochrome b5 + O2 + H+ = DELTA8-trans/cis-C20-phytosphingenine + ferricytochrome b5 + H2O
-
fluorinated phytosphinganine + ferrocytochrome b5 + O2 + H+ = ?
-
sphinganine + ferrocytochrome b5 + O2 + H+ = 8-sphingenine + ferricytochrome b5 + H2O
-
sphinganine ceramide + ferrocytochrome b5 + O2 + H+ = 8-sphingenine ceramide + ferricytochrome b5 + H2O
-
alpha-linolenoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = stearidonoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
linoleoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = gamma-linolenoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
alpha-linolenoyl-CoA + ferrocytochrome b5 + O2 + H+ = stearidonoyl-CoA + ferricytochrome b5 + H2O
-
linoleoyl-CoA + ferrocytochrome b5 + O2 + H+ = gamma-linolenoyl-CoA + ferricytochrome b5 + H2O
-
an (8Z,11Z,14Z)-icosa-8,11,14-trienoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (5Z,8Z,11Z,14Z)-icosatetra-5,8,11,14-tetraenoyl-[glycerolipid] + ferricytochrome b5 + 2 H2O
-
an (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-[glycerolipid] + ferricytochrome b5 + 2 H2O
-
(7Z)-octadec-7-enoic acid + ferrocytochrome b5 + O2 + H+ = (5Z,7Z)-octadeca-5,7-dienoic acid + ferricytochrome b5 + H2O
-
(8Z,11Z,14Z)-eicosa-8,11,14-trienoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = (5Z,8Z,11Z,14Z)-eicosatetra-5,8,11,14-tetraenoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
(8Z,11Z,14Z)-icosa-8,11,14-trienoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = (5Z,8Z,11Z,14Z)-icosatetra-5,8,11,14-tetraenoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
(8Z,11Z,14Z,17Z)-eicosa-8,11,14,17-tetraenoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = (5Z,8Z,11Z,14Z,17Z)-eicosa-5,8,11,14,17-pentaenoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
di-homo-gamma-linolenic acid + ferrocytochrome b5 + O2 + H+ = arachidonic acid + ferricytochrome b5 + H2O
-
dihomo-gamma-linolenic acid + ferrocytochrome b5 + O2 + H+ = arachidonic acid + ferricytochrome b5 + H2O
-
linoleic acid + ferrocytochrome b5 + O2 + H+ = pinolenic acid + ferricytochrome b5 + H2O
-
oleic acid + ferrocytochrome b5 + O2 + H+ = taxoleic acid + ferricytochrome b5 + H2O
-
22:4 DELTA7,10,13,16-docosatetraenoic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = 22:5 DELTA4,7,10,13,16-docosapentaenoic acid + 2 ferricytochrome b5 + 2 H2O
-
22:5 DELTA7,10,13,16,19-docosapentaenoic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = 22:6 DELTA4,7,10,13,16,19-docosahexaenoic acid + 2 ferricytochrome b5 + 2 H2O
-
a (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyl-[glycerolipid] + ferricytochrome b5 + 2 H2O
-
a (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl-[glycerolipid] + ferricytochrome b5 + 2 H2O
-
docosa-7,10,13,16,19-pentaenoic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = docosa-4,7,10,13,16,19-hexaenoic acid + 2 ferricytochrome b5 + 2 H2O
-
docosa-7,10,13,16-tetraenoic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = docosa-4,7,10,13,16-pentaenoic acid + 2 ferricytochrome b5 + 2 H2O
-
palmitoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = (14E)-hexadec-14-enoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
palmitoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = (14Z)-hexadec-14-enoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
(6Z,9Z,12Z)-octadeca-6,9,12-trienoate + 2 ferrocytochrome b5 + O2 + 2 H+ = (6Z,9Z,11E,13E)-octadeca-6,9,11,13-tetraenoate + 2 ferricytochrome b5 + 2 H2O
-
(9Z)-hexadecenoate + 2 ferrocytochrome b5 + O2 + 2 H+ = (9Z,12E)-hexadeca-9,12-dienoate + 2 ferricytochrome b5 + 2 H2O
-
(9Z)-octadecenoate + 2 ferrocytochrome b5 + O2 + 2 H+ = (9Z,12E)-octadeca-9,12-dienoate + 2 ferricytochrome b5 + 2 H2O
-
a gamma-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an alpha-parinaroyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an alpha-eleostearoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
octadec-9-ynoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = (13Z)-octadecen-13-en-9-ynoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
an oleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (9Z,12E)-octadeca-9,12-dienoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
gamma-linolenoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = (9Z,12Z)-octadeca-9,12-dien-6-ynoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
stearidonoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = (9Z,12Z,15Z)-octadeca-9,12,15-trien-6-ynoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
(8Z,11Z,14Z)-icosa-8,11,14-trienoyl-CoA + ferrocytochrome b5 + O2 + H+ = arachidonoyl-CoA + ferricytochrome b5 + H2O
-
(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl-CoA + ferrocytochrome b5 + O2 + H+ = (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA + ferricytochrome b5 + H2O
-
alpha-linolenoyl-CoA + ferrocytochrome b5 + O2 + H+ = eicosapentaenoyl-CoA + ferricytochrome b5 + H2O
-
dihomo-gamma linolenoyl-CoA + ferrocytochrome b5 + O2 + H+ = arachidonoyl-CoA + ferricytochrome b5 + H2O
-
dihomo-gamma-linolenic acid + ferrocytochrome b5 + O2 + H+ = arachidonic acid + ferricytochrome b5 + H2O
-
dihomo-gamma-linolenoyl-CoA + ferrocytochrome b5 + O2 + H+ = arachidonoyl-CoA + ferricytochrome b5 + H2O
-
dihomo-gamma-linolenoyl-phospholipid + ferrocytochrome b5 + O2 + H+ = arachidonic acid-phospholipid + ferricytochrome b5 + H2O
-
docosapentaenoyl-CoA + ferrocytochrome b5 + O2 + H+ = docosahexanoyl-CoA + ferricytochrome b5 + H2O
-
eicosatetraenoic acid + ferrocytochrome b5 + O2 + H+ = eicosapentaenoic acid + ferricytochrome b5 + H2O
-
eicosatetraenoyl-CoA + ferrocytochrome b5 + O2 + H+ = eicosapentaenoyl-CoA + ferricytochrome b5 + H2O
-
eicosatetraenoyl-phospholipid + ferrocytochrome b5 + O2 + H+ = eicosapentaenoyl-phospholipid + ferricytochrome b5 + H2O
-
alpha-linolenoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = stearidonoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
linoleoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = gamma-linolenoyl-[glycerolipid] + ferricytochrome b5 + H2O
733370, 734532, 734925, 734928, 726857, 734669, 734946, 734988, 733244, 733927, 734601, 734976
-
myristic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = (Z)-11-tetradecenoate + (E)-11-tetradecenoate + 2 ferricytochrome b5 + 2 H2O
-
oleoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = linoleoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
palmitoleoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = (9Z,12Z)-hexadeca-9,12-dienoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
1-hexacosanoyl-2-acyl-[phosphoglycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = 1-[(17Z)-hexacos-17-enoyl]-2-acyl-[phosphoglycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
1-tetracosanoyl-2-acyl-[phosphoglycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = 1-[(15Z)-tetracos-15-enoyl]-2-acyl-[phosphoglycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
a plasmanylethanolamine + 2 ferrocytochrome b5 + O2 + 2 H+ = a plasmenylethanolamine + 2 ferricytochrome b5 + 2 H2O
-
octadec-9-ynoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = (13Z)-octadecen-13-en-9-ynoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
formate + ferricytochrome c-553 = CO2 + ferrocytochrome c-553
-
formaldehyde + ferricytochrome b559/569 + H2O = formate + ferrocytochrome b559/569 + 2 H+
-
pyruvate + ferricytochrome b1 + H2O = acetate + CO2 + ferrocytochrome b1
-
2 ferricytochrome b5 + NADH = 2 ferrocytochrome b5 + NAD+ + H+
657460, 657648, 659107, 659784, 672788, 713187, 394211, 657966, 712873, 713204, 699061, 394209, 394231, 394252, 726519, 726541, 726166, 671607, 725046, 725047, 711543, 658832, 671595, 657675, 657949, 671983, 672018, 685857, 685672, 712469, 659255, 725721, 658252, 394226, 392811, 394200, 394216, 394225, 394230, 394228, 394214, 394218, 394227, 394229, 394255, 394245, 394249, 394202, 394247, 394219, 394233, 394236, 394234, 394257, 394253, 394238, 394199, 394235, 724801
-
2 ferricytochrome b5 + NADPH + H+ = 2 ferrocytochrome b5 + NADP+ + H+
-
2 ferricytochrome b5 + NADPH = 2 ferrocytochrome b5 + NADP+ + H+
-
ferricytochrome b5 + 4-(5-(4-[amino(hydroxyamino)methyl]phenyl)-2-furyl)-N'-hydroxybenzenecarboximidamide = ferrocytochrome b5 + ?
-
ferricytochrome b5 + 4-(5-(4-[amino(hydroxyamino)methyl]phenyl)-2-furyl)-N'-methoxybenzenecarboximidamide = ferrocytochrome b5 + ?
-
ferricytochrome b5 + cytoglobin 1 = ferrocytochrome b5 + ?
-
ferricytochrome b5 + cytoglobin 2 = ferrocytochrome b5 + ?
-
ferricytochrome b5 + globin x = ferrocytochrome b5 + ?
-
ferricytochrome b5 + N-hydroxy-2-amino-1-methyl-6-phenylimidazol[4,5-b]pyridine = ferrocytochrome b5 + ?
-
ferricytochrome b5 + N-hydroxy-4-aminobiphenyl = ferrocytochrome b5 + ?
-
NADH + ferricytochrome b5 + oxidized soluble guanylate cyclase = NAD+ + H+ + ferrocytochrome b5 + reduced soluble guanylate cyclase
-
NADH + ferricytochrome b5 = NAD+ + H+ + 2 ferrocytochrome b5
-
NADH + ferricytochrome b5 = NAD+ + H+ + ferrocytochrome b5
743370, 742236, 743313, 743645, 741542, 741562, 742304, 742321, 742351, 743878, 392811, 394199, 394213, 394225, 394238, 394251, 742271, 742561, 743151, 394247, 394260, 742559, 394197, 394212, 394254, 394259, 699061, 394228, 394214, 394218, 394227, 394255, 394205, 741995, 743591, 394249, 394194, 741940, 742875, 743288, 394258, 657675, 742526, 743832, 742608, 742312
-
NADPH + ferricytochrome b5 = NADP+ + H+ + ferrocytochrome b5
-
NADPH + H+ + ferricytochrome b5 = NADP+ + ferrocytochrome b5
-
NADPH + H+ + ferrocytochrome b5 = NADP+ + ferricytochrome b5
-
NADPH + H+ + ferricytochrome c2 = NADP+ + ferrocytochrome c2
-
NAD(P)H + ferrileghemoglobin = NAD(P)+ + ferroleghemoglobin
-
NADH + ferrileghemoglobin = NAD+ + ferroleghemoglobin
-
NADH + H+ + ferrileghemoglobin = NAD+ + ferroleghemoglobin
-
NADPH + H+ + ferrileghemoglobin = NADP+ + ferroleghemoglobin
-
2 ferricytochrome b5 + NADH = 2 ferrocytochrome b5 + NAD+ + H+
-
nitrite + ferrocytochrome b5 + 2 H+ = nitric oxide + H2O + ferricytochrome b5
-
nitrite + ferrocytochrome c2 = NO + H2O + ferricytochrome c2
-
4-methylmorpholine-N-oxide + (ferrocytochrome c)-subunit + H+ = 4-methylmorpholine + (ferricytochrome c)-subunit + H2O
-
biotin sulfoxide + (ferrocytochrome c)-subunit = ? + (ferrocytochrome c)-subunit
-
bromate + (ferrocytochrome c)-subunit = ? + (ferricytochrome c)-subunit
-
dimethylsulfoxide + (ferrocytochrome c)-subunit + 2 H+ = dimethylsulfide + (ferricytochrome c)-subunit + H2O
-
hydroxylamine + (ferrocytochrome c)-subunit = ? + (ferricytochrome c)-subunit
-
nicotinic acid N-oxide + (ferrocytochrome c)-subunit + H+ = nicotinic acid + (ferricytochrome c)-subunit + H2O
-
picoline N-oxide + (ferrocytochrome c)-subunit + H+ = picoline + (ferricytochrome c)-subunit + H2O
-
tetramethylene sulfoxide + (ferrocytochrome c)-subunit + H+ = ? + (ferricytochrome c)-subunit
-
trimethylamine N-oxide + (ferrocytochrome c)-subunit + H+ = trimethylamine + (ferricytochrome c)-subunit + H2O
-
trimethylamine N-oxide + 2 (ferrocytochrome c)-subunit + 2 H+ = trimethylamine + 2 (ferricytochrome c)-subunit + H2O
-
ferrileghemoglobin + NADH + H+ = ferroleghemoglobin + NAD+
-
thiosulfate + 2 ferrocytochrome c3 = sulfite + hydrogen sulfide + 2 ferricytochrome c3
-
dimethyl sulfide + ferricytochrome c2 + H2O = dimethyl sulfoxide + ferrocytochrome c2
-
thiosulfate + 2 ferrocytochrome c3 = sulfite + hydrogen sulfide + 2 ferricytochrome c3
-
adenylyl sulfate + ferrocytochrome c3 = AMP + sulfite + ferricytochrome
-
ubiquinol + ferricytochrome b-561 = ubiquinone + ferrocytochrome b-561
-
ferrocytochrome c553 + O2 + H+ = ferricytochrome c553 + H2O
-
L-(+)-ascorbate + ferricytochrome b5 = monodehydro-L(+)-ascorbate + ferrocytochrome b5
-
L-ascorbate + ferricytochrome b5 = monodehydro-L-ascorbate + ferrocytochrome b5
-
L-ascorbate + ferricytochrome b5 = monodehydroascorbate + ferrocytochrome b5 + H+
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
D-lactate + ferricytochrome c-553 = pyruvate + ferrocytochrome c-553
-
DL-2-hydroxybutyrate + ferricytochrome c-553 = 2-ketobutyrate + ferrocytochrome c-553
-
a primary alcohol + 2 ferricytochrome cL = an aldehyde + 2 ferrocytochrome cL + 2 H+
-
methanol + 2 ferricytochrome cL = formaldehyde + 2 ferrocytochrome cL + 2 H+
-
methanol + ferricytochrome cL = formaldehyde + ferrocytochrome cL
-
methanol + ferricytochrome c551i = formaldehyde + ferrocytochrome c551i
-
ferrocytochrome c2 + H2O2 = ferricytochrome c2 + OH-
-
H+ + ferrocytochrome c3 = H2 + ferricytochrome c3
-
lactate + ferrocytochrome c3 = pyruvate + ferricytochrome c3
-
pyruvate + ferrocytochrome c3 = lactate + ferricytochrome c3
-
Fe(III)-nitrilotriacetate + ferricytochrome c3 = Fe(II)-nitrilotriacetate + ferrocytochrome c3
-
ferricytochrome c3 + 2 H2 = ferrocytochrome c3 + 4 H+
-
H2 + ferricytochrome c3 = H+ + ferrocytochrome c3
-
24-methylidenecycloartanol + 2 ferrocytochrome b5 + O2 + 2 H+ = 4alpha-(hydroxymethyl)-4beta,14alpha-dimethyl-9beta,19-cyclo-5alpha-ergost-24(241)-en-3beta-ol + 2 ferricytochrome B5 + H2O
-
4alpha-(hydroxymethyl)-4beta,14alpha-dimethyl-9beta,19-cyclo-5alpha-ergost-24(241)-en-3beta-ol + 2 ferrocytochrome b5 + O2 + 2 H+ = 4alpha-formyl-4beta,14alpha-dimethyl-9beta,19-cyclo-5alpha-ergost-24(241)-en-3beta-ol + 2 ferricytochrome b5 + H2O
-
24-methylidenecycloartanol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = 3beta-hydroxy-4beta,14alpha-dimethyl-9beta,19-cyclo-5alpha-ergost-24(241)-ene-4alpha-carboxylate + 6 ferricytochrome b5 + 4 H2O
-
4-methyl fecosterol + 6 ferricytochrome b5 + 3 O2 + 6 H+ = 4,4-dimethyl fecosterol + 6 ferrocytochrome b5 + 4 H2O
-
parkeol + 6 ferricytochrome b5 + 3 O2 + 6 H+ = 9(11)-dehydroergosterol + 6 ferrocytochrome b5 + 4 H2O
-
(3alpha,4alpha,5alpha,10alpha,13alpha,20S)-4-methyl-9,19-cycloergosta-7,24(28)-dien-3-ol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = (3alpha,4alpha,5alpha,10alpha,13alpha,20S)-3-hydroxy-9,19-cycloergosta-7,24(28)-diene-4-carboxylic acid + 6 ferricytochrome b5 + 4 H2O
-
(3alpha,4alpha,5alpha,10alpha,13alpha,20S)-4-methylcholest-7-en-3-ol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = (3alpha,4alpha,5alpha,10alpha,13alpha,20S)-3-hydroxycholest-7-ene-4-carboxylic acid + 6 ferricytochrome b5 + 4 H2O
-
24-ethylidenelophenol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = (3beta,4alpha,5alpha,24Z)-3-hydroxystigmasta-7,24(28)-diene-4-carboxylic acid + 6 ferricytochrome b5 + 4 H2O
-
24-ethylidenelophenol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = 3beta,4alpha,5alpha-3-hydroxystigmasta-7,24(28)-diene-4-carboxylate + 6 ferricytochrome b5 + 4 H2O
-
24-methylidenelophenol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = 3beta-hydroxyergosta-7,24(241)-dien-4alpha-carboxylate + 6 ferricytochrome b5 + 4 H2O
-
24-methylidenelophenol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = 3beta-hydroxyergosta-7,24(241)-diene-4alpha-carboxylate + 6 ferricytochrome b5 + 4 H2O
-
CMP-N-acetylneuraminate + 2 ferrocytochrome b5 + O2 + 2 H+ = CMP-N-glycoloylneuraminate + 2 ferricytochrome b5 + H2O
-
CMP-N-acetylneuraminate + ferrocytochrome b5 + O2 + H+ = CMP-N-glycoloylneuraminate + ferricytochrome b5 + H2O
-
a 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine + 2 ferrocytochrome b5 + O2 + 2 H+ = a 1-acyl-2-ricinoleoyl-sn-glycero-3-phosphocholine + 2 ferricytochrome b5 + H2O
-
a 1-acyl-2-oleoyl-sn-glycero-3-phosphoethanolamine + 2 ferrocytochrome b5 + O2 + 2 H+ = a 1-acyl-2-ricinoleoyl-sn-glycero-3-phosphoethanolamine + 2 ferricytochrome b5 + H2O
-
oleic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = ricinoleic acid + 2 ferricytochrome b5 + H2O
-
1-acyl-2-oleoyl-sn-glycero-3-phosphocholine + ferrocytochrome b5 + O2 = 1-acyl-2-[(S)-12-hydroxyoleoyl]-sn-glycero-3-phosphocholine + ferricytochrome b5
-
1-acyl-2-oleoyl-sn-glycero-3-phosphocholine + ferrocytochrome b5 + O2 = 1-acyl-2-[(S)-12-hydroxyoleoyl]-sn-glycero-3-phosphocholine + ferricytochrome b5 + H2O
-
sphinganine ceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = 4-hydroxysphinganine ceramide + 2 ferricytochrome b5 + H2O
-
a phytoceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (2'R)-2'-hydroxyphytoceramide + 2 ferricytochrome b5 + H2O
-
monohexosylceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = 2'-hydroxymonohexosylceramide + 2 ferricytochrome b5 + H2O
-
palmitic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = (R)-2-hydroxypalmitic acid + 2 ferricytochrome b5 + H2O
-
phytoceramide + ferrocytochrome b5 + O2 + H+ = (2'R)-2'-hydroxyphytoceramide + ferricytochrome b5 + H2O
-
palmitoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = palmitoleoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
stearoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = oleoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
palmitoyl-CoA + ferrocytochrome b5 + O2 + 2 H+ = palmitoleoyl-CoA + ferricytochrome b5 + 2 H2O
-
palmitoyl-CoA + ferrocytochrome b5 + O2 = palmitoleoyl-CoA + ferricytochrome b5 + H2O
-
stearoyl-CoA + ferrocytochrome b5 + H+ + O2 = oleoyl-CoA + ferricytochrome b5 + H2O
-
stearoyl-CoA + ferrocytochrome b5 + O2 + H+ = oleoyl-CoA + ferricytochrome b5 + H2O
-
stearoyl-CoA + ferrocytochrome b5 + O2 = oleoyl-CoA + ferricytochrome b5 + H2O
-
icosanoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = (Z)-icos-5-enoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
alpha-linolenoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = coniferonoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
linoleoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = pinolenoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
linoleoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = (9Z,11E,13Z)-octadeca-9,11,13-trienoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
a dihydroceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4E)-sphing-4-enine ceramide + 2 ferricytochrome b5 + 2 H2O
-
N-((2S,3R,6E)-1,3-dihydroxyoctadec-6-en-2-yl)-6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)hexanamide + 2 ferrocytochrome b5 + O2 + 2 H+ = N-((2S,3R,4E,6E)-1,3-dihydroxyoctadeca-4,6-dien-2-yl)-6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)hexanamide + 2 ferricytochrome b5 + 2 H2O
-
N-((2S,3R,6E)-1,3-dihydroxyoctadec-6-en-2-yl)octanamide + 2 ferrocytochrome b5 + O2 + 2 H+ = N-((2S,3R,4E,6E)-1,3-dihydroxyoctadeca-4,6-dien-2-yl)octanamide + 2 ferricytochrome b5 + 2 H2O
-
N-((2S,3R,6Z)-1,3-dihydroxyoctadec-6-en-2-yl)-6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)hexanamide + 2 ferrocytochrome b5 + O2 + 2 H+ = N-((2S,3R,4E,6Z)-1,3-dihydroxyoctadeca-4,6-dien-2-yl)-6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)hexanamide + 2 ferricytochrome b5 + 2 H2O
-
N-((2S,3R,6Z)-1,3-dihydroxyoctadec-6-en-2-yl)octanamide + 2 ferrocytochrome b5 + O2 + 2 H+ = N-((2S,3R,4E,6Z)-1,3-dihydroxyoctadeca-4,6-dien-2-yl)octanamide + 2 ferricytochrome b5 + 2 H2O
-
dihydroceramide + ferrocytochrome b5 + O2 + H+ = (4E)-sphing-4-enine ceramide + ferricytochrome b5 + H2O
-
N-octanoylsphinganine + ferrocytochrome b5 + O2 + 2 H+ = N-octanoylsphingosine + ferricytochrome b5 + 2 H2O
-
(4E)-sphing-4-enine ceramide + ferrocytochrome b5 + O2 + H+ = (4E,8E)-sphing-4,8-dienine ceramide + ferricytochrome b5 + H2O
-
4-hydroxysphinganine + ferrocytochrome b5 + O2 + H+ = 4-hydroxy-trans-8-sphingenine + ferricytochrome b5 + H2O
-
C18-phytosphingenine + ferrocytochrome b5 + O2 + H+ = (8Z)-C18-phytosphingenine + (8E)-C18-phytosphingenine + ferricytochrome b5 + H2O
-
C18-phytosphingosine + ferrocytochrome b5 + O2 + H+ = (8Z)-C18-phytosphingenine + (8E)-C18-phytosphingenine + ferricytochrome b5 + H2O
-
cerebroside B + 2 ferrocytochrome b5 + O2 + 2 H+ = fusaruside + 2 ferricytochrome b5 + 2 H2O
-
(4E,8E)-sphinga-4,8-dienine ceramide + ferrocytochrome b5 + O2 + H+ = (4E,8E,10E)-sphinga-4,8,10-trienine ceramide + ferricytochrome b5 + H2O
-
5alpha-cholest-7-en-3beta-ol + 2 ferrocytochrome b5 + O2 + 2 H+ = cholesta-5,7-dien-3beta-ol + 2 ferricytochrome b5 + 2 H2O
-
a DELTA7-sterol + 2 ferrocytochrome b5 + O2 + 2 H+ = a DELTA5,7-sterol + 2 ferricytochrome b5 + 2 H2O
-
cholesta-7,24-dien-3beta-ol + 2 ferrocytochrome b5 + O2 + 2 H+ = 7-dehydrodesmosterol + 2 ferricytochrome b5 + 2 H2O
-
lathosterol + 2 ferrocytochrome b5 + O2 + 2 H+ = 7-dehydrocholesterol + 2 ferricytochrome b5 + 2 H2O
-
(3beta,24R)-ergost-7-en-3-ol + ferrocytochrome b5 + O2 + H+ = (3beta,24R)-ergosta-5,7-dien-3-ol + ferricytochrome b5 + H2O
-
14-methylfecosterol + ferrocytochrome b5 + O2 + H+ = 14-methylergosta-5,8,24(28)-trien-3beta-ol + ferricytochrome b5 + H2O
-
5alpha-cholest-22-en-3beta-ol + ferrocytochrmoe b5 + H+ + O2 = cholesta-5,22-dien-3beta-ol + ferricytochrome b5 + 2 H2O
-
5alpha-cholest-7-en-3beta-ol + ferrocytochrmoe b5 + H+ + O2 = cholesta-5,7-dien-3beta-ol + ferricytochrome b5 + H2O
-
5alpha-cholest-7-en-3beta-ol + ferrocytochrome b5 + H+ + O2 = cholesta-5,7-dien-3beta-ol + ferricytochrome b5 + 2 H2O
-
5alpha-cholest-7-en-3beta-ol + ferrocytochrome b5 + O2 + H+ = ? + ferricytochrome b5 + H2O
-
5alpha-cholesta-7,22-dien-3beta-ol + ferrocytochrome b5 + H+ + O2 = cholesta-5,7,22-trien-3beta-ol + ferricytochrome b5 + 2 H2O
-
5alpha-cholestan-3beta-ol + ferrocytochrome b5 + H+ + O2 = cholest-5-en-3beta-ol + ferricytochrome b5 + 2 H2O
-
5alpha-ergost-7,24(241)-dien-3beta-ol + O2 + ferrocytochrome b5 = ergosta-5,7,24(241)-trien-3beta-ol + H2O2 + ferricytochrome b5
-
5alpha-ergosta-7,22-dien-3beta-ol + ferrocytochrome b5 + O2 + H+ = ergosterol + ferricytochrome b5 + H2O
-
5alpha-ergosta-7,24-dien-3beta-ol + ferrocytochrome b5 + O2 + H+ = ergosta-5,7,24-trien-3beta-ol + ferricytochrome b5 + H2O
-
5alpha-ergosta-7-en-3beta-ol + ferrocytochrome b5 + O2 + H+ = ergosta-5,7-dien-3beta-ol + ferricytochrome b5 + H2O
-
cholest-7-en-3beta-ol + ferrocytochrome b5 + O2 + H+ = cholest-5,7-dien-3beta-ol + ferricytochrome b5 + H2O
-
DELTA7-avenasterol + O2 + ferrocytochrome b5 = DELTA5,7-avenasterol + H2O + ferricytochrome b5
-
DELTA7-campesterol + O2 + ferrocytochrome b5 = DELTA5,7-campesterol + H2O + ferricytochrome b5
-
DELTA7-sitosterol + O2 + ferrocytochrome b5 = DELTA5,7-sitosterol + H2O + ferricytochrome b5
-
DELTA7-sterol + ferrocytochrome b5 + O2 + H+ = DELTA5,7-sterol + ferricytochrome b5 + H2O
-
DELTA7-ststigmast-7-en-3beta-ol + ferrocytochrome b5 + O2 + H+ = stigmast-5,7-dien-3beta-ol + ferricytochrome b5 + H2O
-
episterol + ferrocytochrome b5 + O2 + H+ = ? + ferricytochrome b5 + H2O
-
episterol + ferrocytochrome b5 + O2 + H+ = ergosta-5,7,24(28)-trien-3beta-ol + ferricytochrome b5 + 2 H2O
-
episterol + O2 + ferrocytochrome b5 = DELTA5,7-episterol + H2O + ferricytochrome b5
-
ergosta-7,22-dien-3beta-ol + ferrocytochrome b5 + O2 + H+ = ergosta-5,7,22-trien-3beta-ol + ferricytochrome b5 + 2 H2O
-
ergosta-7,22-dien-3beta-ol + ferrocytochrome b5 + O2 + H+ = ergosterol + ferricytochrome b5 + 2 H2O
-
lanosterol + ferrocytochrome b5 + O2 + H+ = ? + ferricytochrome b5 + H2O
-
lathosterol + ferrocytochrome b5 + O2 + H+ = 7-dehydrocholesterol + ferricytochrome b5 + H2O
-
lathosterol + O2 + ferrocytochrome b5 = 7-dehydrocholesterol + H2O + ferricytochrome b5
-
1,2-di-oleoyl-sn-glycero-3-phosphorylcholine + 2 ferrocytochrome b5 + O2 + 2 H+ = 1,2-di-linoleoyl-sn-glycero-3-phosphorylcholine + 2 ferricytochrome b5 + 2 H2O
-
1,2-dioleoylphosphatidylcholine + 2 ferrocytochrome b5 + O2 + 2 H+ = 1,2-linoleoylphosphatidylcholine + 2 ferricytochrome b5 + 2 H2O
-
1-acyl-2-oleoyl-sn-glycero-3-phosphorylcholine + 2 ferrocytochrome b5 + O2 + 2 H+ = 1-acyl-2-linoleoyl-sn-glycero-3-phosphorylcholine + 2 ferricytochrome b5 + 2 H2O
-
oleoyl-phosphatidylcholine + 2 ferrocytochrome b5 + O2 + 2 H+ = linoleoyl-phosphatidylcholine + 2 ferricytochrome b5 + 2 H2O
-
oleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = linoleoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
1-acyl-2-oleoyl-sn-glycero-3-phosphocholine + ferrocytochrome b5 + O2 + H+ = 1-acyl-2-linoleoyl-sn-glycero-3-phosphocholine + ferricytochrome b5 + H2O
-
oleoyl-[CoA] + ferrocytochrome b5 + O2 + H+ = linoleoyl-[CoA] + ferricytochrome b5 + H2O
-
oleoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = linoleoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
palmitoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = hexadecadienoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
myristate + 2 ferrocytochrome b5 + O2 + 2 H+ = (11E)-11-tetradecenoate + 2 ferricytochrome b5 + 2 H2O
-
myristate + 2 ferrocytochrome b5 + O2 + 2 H+ = (11Z)-tetradecenoate + (11E)-tetradecenoate + 2 ferricytochrome b5 + 2 H2O
-
myristate + 2 ferrocytochrome b5 + O2 + 2 H+ = (Z)-11-tetradecenoate + (E)-11-tetradecenoate + 2 ferricytochrome b5 + 2 H2O
-
a dihomo-gamma-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
a gamma-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a stearidonoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
an arachidonoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
arachidonic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = eicosapentaenoic acid + 2 ferricytochrome b5 + 2 H2O
-
arachidonoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = eicosapentaenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = alpha-linolenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
omega-6 linoleic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = linolenic acid + 2 ferricytochrome b5 + 2 H2O
-
a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an alpha-linolenoyl-[glycerolipid] + ferricytochrome b5 + 2 H2O
-
alpha-linolenic acid + ferrocytochrome b5 + O2 + H+ = stearidonic acid + ferricytochrome b5 + H2O
-
a (4R)-4-hydroxysphinganine ceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4R,8E)-4-hydroxysphing-8-enine ceramide + 2 ferricytochrome b5 + 2 H2O
-
a (4R)-4-hydroxysphinganine ceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4R,8Z)-4-hydroxysphing-8-enine ceramide + 2 ferricytochrome b5 + 2 H2O
-
phytosphinganine + 2 ferrocytochrome b5 + O2 + 2 H+ = (4R,8E)-4-hydroxy-8-sphingenine + 2 ferricytochrome b5 + 2 H2O
-
phytosphinganine + 2 ferrocytochrome b5 + O2 + 2 H+ = (4R,8Z)-4-hydroxy-8-sphingenine + 2 ferricytochrome b5 + 2 H2O
-
(4R)-4-hydroxysphinganine ceramide + ferrocytochrome b5 + O2 + H+ = (4R,8E)-4-hydroxysphing-8-enine ceramide + (4R,8Z)-4-hydroxysphing-8-enine ceramide + ferricytochrome b5 + H2O
-
(4R)-4-hydroxysphinganine ceramide + ferrocytochrome b5 + O2 + H+ = (4R,8E)-4-hydroxysphing-8-enine ceramide + ferricytochrome b5 + H2O
-
(4R)-4-hydroxysphinganine ceramide + ferrocytochrome b5 + O2 + H+ = (4R,8Z)-4-hydroxysphing-8-enine ceramide + ferricytochrome b5 + H2O
-
(E)-sphing-4-enine + ferrocytochrome b5 + O2 + H+ = (4E,8E)-sphinga-4,8-dienine + ferricytochrome b5 + H2O
-
C18-phytosphinganine + ferrocytochrome b5 + O2 + H+ = C18-8-phytosphingenine + ferricytochrome b5 + H2O
-
C18-phytosphinganine + ferrocytochrome b5 + O2 + H+ = DELTA8-trans/cis-C18-phytosphingenine + ferricytochrome b5 + H2O
-
C20-phytosphinganine + ferrocytochrome b5 + O2 + H+ = DELTA8-trans/cis-C-20-phytosphingenine + ferricytochrome b5 + H2O
-
C20-phytosphinganine + ferrocytochrome b5 + O2 + H+ = DELTA8-trans/cis-C20-phytosphingenine + ferricytochrome b5 + H2O
-
sphinganine + ferrocytochrome b5 + O2 + H+ = 8-sphingenine + ferricytochrome b5 + H2O
-
sphinganine ceramide + ferrocytochrome b5 + O2 + H+ = 8-sphingenine ceramide + ferricytochrome b5 + H2O
-
alpha-linolenoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = stearidonoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
linoleoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = gamma-linolenoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
alpha-linolenoyl-CoA + ferrocytochrome b5 + O2 + H+ = stearidonoyl-CoA + ferricytochrome b5 + H2O
-
linoleoyl-CoA + ferrocytochrome b5 + O2 + H+ = gamma-linolenoyl-CoA + ferricytochrome b5 + H2O
-
(7Z)-octadec-7-enoic acid + ferrocytochrome b5 + O2 + H+ = (5Z,7Z)-octadeca-5,7-dienoic acid + ferricytochrome b5 + H2O
-
(8Z,11Z,14Z)-eicosa-8,11,14-trienoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = (5Z,8Z,11Z,14Z)-eicosatetra-5,8,11,14-tetraenoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
(8Z,11Z,14Z)-icosa-8,11,14-trienoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = (5Z,8Z,11Z,14Z)-icosatetra-5,8,11,14-tetraenoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
(8Z,11Z,14Z,17Z)-eicosa-8,11,14,17-tetraenoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = (5Z,8Z,11Z,14Z,17Z)-eicosa-5,8,11,14,17-pentaenoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
an (8Z,11Z,14Z)-icosa-8,11,14-trienoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (5Z,8Z,11Z,14Z)-icosatetra-5,8,11,14-tetraenoyl-[glycerolipid] + ferricytochrome b5 + 2 H2O
-
an (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-[glycerolipid] + ferricytochrome b5 + 2 H2O
-
di-homo-gamma-linolenic acid + ferrocytochrome b5 + O2 + H+ = arachidonic acid + ferricytochrome b5 + H2O
-
dihomo-gamma-linolenic acid + ferrocytochrome b5 + O2 + H+ = arachidonic acid + ferricytochrome b5 + H2O
-
linoleic acid + ferrocytochrome b5 + O2 + H+ = pinolenic acid + ferricytochrome b5 + H2O
-
oleic acid + ferrocytochrome b5 + O2 + H+ = taxoleic acid + ferricytochrome b5 + H2O
-
22:4 DELTA7,10,13,16-docosatetraenoic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = 22:5 DELTA4,7,10,13,16-docosapentaenoic acid + 2 ferricytochrome b5 + 2 H2O
-
22:5 DELTA7,10,13,16,19-docosapentaenoic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = 22:6 DELTA4,7,10,13,16,19-docosahexaenoic acid + 2 ferricytochrome b5 + 2 H2O
-
docosa-7,10,13,16,19-pentaenoic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = docosa-4,7,10,13,16,19-hexaenoic acid + 2 ferricytochrome b5 + 2 H2O
-
docosa-7,10,13,16-tetraenoic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = docosa-4,7,10,13,16-pentaenoic acid + 2 ferricytochrome b5 + 2 H2O
-
a (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyl-[glycerolipid] + ferricytochrome b5 + 2 H2O
-
a (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl-[glycerolipid] + ferricytochrome b5 + 2 H2O
-
palmitoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = (14E)-hexadec-14-enoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
palmitoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = (14Z)-hexadec-14-enoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
(6Z,9Z,12Z)-octadeca-6,9,12-trienoate + 2 ferrocytochrome b5 + O2 + 2 H+ = (6Z,9Z,11E,13E)-octadeca-6,9,11,13-tetraenoate + 2 ferricytochrome b5 + 2 H2O
-
(9Z)-hexadecenoate + 2 ferrocytochrome b5 + O2 + 2 H+ = (9Z,12E)-hexadeca-9,12-dienoate + 2 ferricytochrome b5 + 2 H2O
-
(9Z)-octadecenoate + 2 ferrocytochrome b5 + O2 + 2 H+ = (9Z,12E)-octadeca-9,12-dienoate + 2 ferricytochrome b5 + 2 H2O
-
a gamma-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an alpha-parinaroyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an alpha-eleostearoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
octadec-9-ynoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = (13Z)-octadecen-13-en-9-ynoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
an oleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (9Z,12E)-octadeca-9,12-dienoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
gamma-linolenoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = (9Z,12Z)-octadeca-9,12-dien-6-ynoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
stearidonoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = (9Z,12Z,15Z)-octadeca-9,12,15-trien-6-ynoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
(8Z,11Z,14Z)-icosa-8,11,14-trienoyl-CoA + ferrocytochrome b5 + O2 + H+ = arachidonoyl-CoA + ferricytochrome b5 + H2O
-
(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl-CoA + ferrocytochrome b5 + O2 + H+ = (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA + ferricytochrome b5 + H2O
-
alpha-linolenoyl-CoA + ferrocytochrome b5 + O2 + H+ = eicosapentaenoyl-CoA + ferricytochrome b5 + H2O
-
dihomo-gamma linolenoyl-CoA + ferrocytochrome b5 + O2 + H+ = arachidonoyl-CoA + ferricytochrome b5 + H2O
-
dihomo-gamma-linolenic acid + ferrocytochrome b5 + O2 + H+ = arachidonic acid + ferricytochrome b5 + H2O
-
dihomo-gamma-linolenoyl-CoA + ferrocytochrome b5 + O2 + H+ = arachidonoyl-CoA + ferricytochrome b5 + H2O
-
dihomo-gamma-linolenoyl-phospholipid + ferrocytochrome b5 + O2 + H+ = arachidonic acid-phospholipid + ferricytochrome b5 + H2O
-
docosapentaenoyl-CoA + ferrocytochrome b5 + O2 + H+ = docosahexanoyl-CoA + ferricytochrome b5 + H2O
-
eicosatetraenoic acid + ferrocytochrome b5 + O2 + H+ = eicosapentaenoic acid + ferricytochrome b5 + H2O
-
eicosatetraenoyl-CoA + ferrocytochrome b5 + O2 + H+ = eicosapentaenoyl-CoA + ferricytochrome b5 + H2O
-
eicosatetraenoyl-phospholipid + ferrocytochrome b5 + O2 + H+ = eicosapentaenoyl-phospholipid + ferricytochrome b5 + H2O
-
alpha-linolenoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = stearidonoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
linoleoyl-[glycerolipid] + ferrocytochrome b5 + O2 + H+ = gamma-linolenoyl-[glycerolipid] + ferricytochrome b5 + H2O
-
myristic acid + 2 ferrocytochrome b5 + O2 + 2 H+ = (Z)-11-tetradecenoate + (E)-11-tetradecenoate + 2 ferricytochrome b5 + 2 H2O
-
oleoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = linoleoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
palmitoleoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = (9Z,12Z)-hexadeca-9,12-dienoyl-CoA + 2 ferricytochrome b5 + 2 H2O
-
1-hexacosanoyl-2-acyl-[phosphoglycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = 1-[(17Z)-hexacos-17-enoyl]-2-acyl-[phosphoglycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
1-tetracosanoyl-2-acyl-[phosphoglycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = 1-[(15Z)-tetracos-15-enoyl]-2-acyl-[phosphoglycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
a plasmanylethanolamine + 2 ferrocytochrome b5 + O2 + 2 H+ = a plasmenylethanolamine + 2 ferricytochrome b5 + 2 H2O
-
octadec-9-ynoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = (13Z)-octadecen-13-en-9-ynoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
-
formate + ferricytochrome c-553 = CO2 + ferrocytochrome c-553
-
2 ferricytochrome c2 + NADPH = 2 ferrocytochrome c2 + NADP+ + H+
-
2 ferricytochrome c2 + NADPH = 2 ferrocytochrome c2 + NADP+ + H+
-
formaldehyde + ferricytochrome b559/569 + H2O = formate + ferrocytochrome b559/569 + 2 H+
-
pyruvate + ferricytochrome b1 + H2O = acetate + CO2 + ferrocytochrome b1
-
2 ferricytochrome b5 + NADH = 2 ferrocytochrome b5 + NAD+ + H+
0, 394211, 394226, 392811, 394200, 394225, 394230, 394228, 394214, 394218, 394227, 394229, 394245, 394202, 394219, 394233, 394236, 394234, 394257, 394253, 394199, 394235
-
2 ferricytochrome b5 + NADPH + H+ = 2 ferrocytochrome b5 + NADP+ + H+
-
2 ferricytochrome b5 + NADPH = 2 ferrocytochrome b5 + NADP+ + H+
-
NADH + ferricytochrome b5 = NAD+ + H+ + 2 ferrocytochrome b5
-
ferricytochrome b5 + 4-(5-(4-[amino(hydroxyamino)methyl]phenyl)-2-furyl)-N'-hydroxybenzenecarboximidamide = ferrocytochrome b5 + ?
-
ferricytochrome b5 + 4-(5-(4-[amino(hydroxyamino)methyl]phenyl)-2-furyl)-N'-methoxybenzenecarboximidamide = ferrocytochrome b5 + ?
-
ferricytochrome b5 + cytoglobin 1 = ferrocytochrome b5 + ?
-
ferricytochrome b5 + cytoglobin 2 = ferrocytochrome b5 + ?
-
ferricytochrome b5 + globin x = ferrocytochrome b5 + ?
-
ferricytochrome b5 + N-hydroxy-2-amino-1-methyl-6-phenylimidazol[4,5-b]pyridine = ferrocytochrome b5 + ?
-
ferricytochrome b5 + N-hydroxy-4-aminobiphenyl = ferrocytochrome b5 + ?
-
NADH + ferricytochrome b5 + oxidized soluble guanylate cyclase = NAD+ + H+ + ferrocytochrome b5 + reduced soluble guanylate cyclase
-
NADH + ferricytochrome b5 = NAD+ + H+ + ferrocytochrome b5
-
NADPH + ferricytochrome b5 = NADP+ + H+ + ferrocytochrome b5
-
NADPH + H+ + ferrocytochrome b5 = NADP+ + ferricytochrome b5
-
NADPH + H+ + ferricytochrome b5 = NADP+ + ferrocytochrome b5
-
2 ferricytochrome c2 + NADPH = 2 ferrocytochrome c2 + NADP+ + H+
-
NADPH + H+ + ferricytochrome c2 = NADP+ + ferrocytochrome c2
-
NAD(P)H + ferrileghemoglobin = NAD(P)+ + ferroleghemoglobin
-
NADH + ferrileghemoglobin = NAD+ + ferroleghemoglobin
-
NADH + H+ + ferrileghemoglobin = NAD+ + ferroleghemoglobin
-
NADPH + H+ + ferrileghemoglobin = NADP+ + ferroleghemoglobin
-
2 ferricytochrome b5 + NADH = 2 ferrocytochrome b5 + NAD+ + H+
-
nitrite + ferrocytochrome b5 + 2 H+ = nitric oxide + H2O + ferricytochrome b5
-
nitrite + ferrocytochrome c2 = NO + H2O + ferricytochrome c2
-
4-methylmorpholine-N-oxide + (ferrocytochrome c)-subunit + H+ = 4-methylmorpholine + (ferricytochrome c)-subunit + H2O
-
bromate + (ferrocytochrome c)-subunit = ? + (ferricytochrome c)-subunit
-
dimethylsulfoxide + (ferrocytochrome c)-subunit + 2 H+ = dimethylsulfide + (ferricytochrome c)-subunit + H2O
-
hydroxylamine + (ferrocytochrome c)-subunit = ? + (ferricytochrome c)-subunit
-
nicotinic acid N-oxide + (ferrocytochrome c)-subunit + H+ = nicotinic acid + (ferricytochrome c)-subunit + H2O
-
picoline N-oxide + (ferrocytochrome c)-subunit + H+ = picoline + (ferricytochrome c)-subunit + H2O
-
tetramethylene sulfoxide + (ferrocytochrome c)-subunit + H+ = ? + (ferricytochrome c)-subunit
-
trimethylamine N-oxide + (ferrocytochrome c)-subunit + H+ = trimethylamine + (ferricytochrome c)-subunit + H2O
-
biotin sulfoxide + (ferrocytochrome c)-subunit = ? + (ferrocytochrome c)-subunit
-
trimethylamine N-oxide + 2 (ferrocytochrome c)-subunit + 2 H+ = trimethylamine + 2 (ferricytochrome c)-subunit + H2O
-
ferrileghemoglobin + NADH + H+ = ferroleghemoglobin + NAD+
-
thiosulfate + 2 ferrocytochrome c3 = sulfite + hydrogen sulfide + 2 ferricytochrome c3
-
dimethyl sulfide + ferricytochrome c2 + H2O = dimethyl sulfoxide + ferrocytochrome c2
-
thiosulfate + 2 ferrocytochrome c3 = sulfite + hydrogen sulfide + 2 ferricytochrome c3
-
ubiquinol + 2 ferricytochrome c2 = ubiquinone + 2 ferrocytochrome c2 + 2 H+[side 2]
-
ubiquinol + ferricytochrome b-561 = ubiquinone + ferrocytochrome b-561
-
ferrocytochrome c553 + O2 + H+ = ferricytochrome c553 + H2O
-
L-(+)-ascorbate + ferricytochrome b5 = monodehydro-L(+)-ascorbate + ferrocytochrome b5
-
L-ascorbate + ferricytochrome b5 = monodehydro-L-ascorbate + ferrocytochrome b5
-
L-ascorbate + ferricytochrome b5 = monodehydroascorbate + ferrocytochrome b5 + H+
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Activation of pyruvate oxidase by monomeric and micellar amphiphiles
1978
Blake, R.; Hager, L.P.
J. Biol. Chem.
253
1963-1971
A crystalline flavin pyruvate oxidase
1961
Williams, F.R.; Hager, L.P.
J. Biol. Chem.
236
PC36-PC37
Purification and properties of cytochrome c-553, an electron acceptor for formate dehydrogenase of Desulfovibrio vulgaris, Miyazaki
1979
Yagi, T.
Biochim. Biophys. Acta
548
96-105
Formate: cytochrome oxidoreductase of Desulfovibrio vulgaris
1969
Yagi, T.
J. Biochem.
66
473-478
The formate dehydrogenase-cytochrome c553 complex from Desulovibrio vulgaris Hildenborough
1998
Sebban-Kreuzer, C.; Dolla, A.; Guerlesquin, F.
Eur. J. Biochem.
253
645-652
Tyrosine 64 of cytochrome c553 is required for electron exchange with formate dehydrogenase in Desulfovibrio vulgaris Hildenborough
1998
Sebban-Kreuzer, C.; Blackledge, M.; Dolla, A.; Marion, D.; Guerlesquin, F.
Biochemistry
37
8331-8340
Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus bath
2001
Zahn, J.A.; Bergmann, D.J.; Boyd, J.M.; Kunz, R.C.; DiSpirito, A.A.
J. Bacteriol.
183
6832-6840
D-Lactate dehydrogenase of Desulfovibrio vulgaris
1981
Ogata, M.; Arihara, K.; Yagi, T.
J. Biochem.
89
1423-1431
Kinetische Untersuchungen an einer Ascorbat:Ferricytochrom-b5-oxydoreduktase (EC1.1.2.?)
1969
Everling, F.B.; Weis, W.; Staudinger, H.
Hoppe-Seyler's Z. Physiol. Chem.
350
S.1485-1492
Praeparative Untersuchungen and der mikrosomalen Ascorbat:Fericytochrom-b5-oxidoreduktase (EC1.10.2.1)
1972
Weber, H.; Weis, W.; Staudinger, H.
Hoppe-Seyler's Z. Physiol. Chem.
353
S.1415-1419
Unterschiedliche Cytochrom-b5-Formen als Substrate fuer die L-ascorbat:ferricytochrom-b5-oxidoreduktase (EC1.10.2.1) aus Saeugetierlebermikrosomen
1973
Weber, H.; Weis, W.; Schaeg, W.; Staudinger, H.
Hoppe-Seyler's Z. Physiol. Chem.
354
S.1277-1284
Trägergebundenes Cytochrom b5 als Substrat fuer die Ascorbat:Ferricytochrom-b5-oxidoreduktase aus Saeugetierlebermikrosomen
1974
Scherer, G.; Weber, H.; Weis, W.
Hoppe-Seyler's Z. Physiol. Chem.
355
S.1350-1354
Monodehydro-L(+)-ascorbat reduzierende Systeme in unterschiedlich praeparierten Schweinelebermikrosomen
1974
Weber, H.; Weis, W.; Wolf, B.
Hoppe-Seyler's Z. Physiol. Chem.
355
S.595-599
Discrimination between ascorbate:ferricytochrome b5 oxidoreductase and the cyanide-sensitive factor of acyl-CoA desaturase
1976
Wolf, B.; Weis, W.
Biochem. Biophys. Res. Commun.
72
190-194
Partial purification of L-ascorbate:ferricytochrome b5 oxidoreductase from rat liver microsomes
1977
Scherer, G.; Weis, W.
Hoppe-Seyler's Z. Physiol. Chem.
358
S.1499-1503
-
Participation of L-ascorbate:ferricytochrome b5 oxidoreductase in ascorbate-dependent fatty acid desaturation of rat liver microsomes
1978
Scherer, G.; Weis, W.
Hoppe-Seyler's Z. Physiol. Chem.
359
S.1527-1530
Characterization of a cytochrome b558 ferric/cupric reductase from rabbit duodenal brush border membranes
2002
Knoepfel, M.; Solioz, M.
Biochem. Biophys. Res. Commun.
291
220-225
Some properties of a microsomal oleate desaturase from leaves
1976
Slack, C.R.; Roughan, P.G.; Terpstra, J.
Biochem. J.
155
71-80
-
Effects of the catalytic hydrogenation of microsomal lipids upon four enzyme activities involved in oleic acid desaturation
1986
Demandre, C.; Vigh, L.; Justin, A.M.; Jolliot, A.; Wolf, C.; Mazliak, P.
Plant Sci.
44
13-21
The biosynthesis of linoleate from oleoyl-CoA via oleoyl-phosphatidylcholine in microsomes of developing safflower seeds
1978
Stymne, S.; Appelqvist, L.A.
Eur. J. Biochem.
90
223-229
Thermoadaptive regulation of microsomal desaturase and electron-transport enzyme activities in lipid-manipulated Tetrahymena cells. Extent of unsaturated fatty acid production is dependent on membrane fluidity before temperature down-shift
1984
Umeki, S.; Nozawa, Y.
Biochim. Biophys. Acta
793
123-128
Changes in the enzymes for fatty acid synthesis and desaturation during acclimation of developing soybean seeds to altered growth temperature
1989
Cheesbrough, T.M.
Plant Physiol.
90
760-764
-
Solubilisation of oleoyl-CoA thioesteras, oleoyl-CoA:phosphatidylcholine acyltransferase and oleoyl phosphatidylcholine desaturase
1983
Murphy, D.J.; Woodrow, I.E.; Latzko, E.; Mukherjee, K.D.
FEBS Lett.
162
442-446
-
Desaturation of oleoyl and linoleoyl residues linked to phospholipids in growing roots of yellow lupin
1983
Citharel, B.; Oursel, A.; Mazliak, P.
FEBS Lett.
161
251-256
Substrate specificities of the enzymes of the oleate desaturase system from photosynthetic tissue
1985
Murphy, D.J.; Woodrow, I.E.; Mukherjee, K.D.
Biochem. J.
225
267-270
-
The effects of temperature and oxygen on the rates of fatty acid synthesis and oleate desaturation in seaflower (Carthamus tinctorius) seed
1983
Browse, J.; Slack, C.R.
Biochim. Biophys. Acta
753
145-152
Lipid involvement in oleoyl CoA desaturase activity of Fusarium oxysporum microsomes
1980
Wilson, A.C.; Adams, W.C.; Miller, R.W.
Can. J. Biochem.
58
97-102
Lipid metabolism in microsomal fraction from photosynthetic tissue. Effects of catalase and hydrogen peroxide on oleate desaturation
1983
Murphy, D.J.; Mukherjee, K.D.; Latzko, E.
Biochem. J.
213
249-252
Desaturation of oleic and linoleic acids by leaves of dark- and light-grown maize seedlings
1980
Hawke, J.C.; Stumpf, P.K.
Plant Physiol.
65
1027-1030
Evidence for an oleoyl phosphatidylcholine desaturase in microsomal preparations from cotyledons of safflower (Carthamus tinctorius) seed
1979
Slack, C.R.; Grattan Roughan, P.; Browse, J.
Biochem. J.
179
649-656
Characterization of a membrane-bound phospholipid desaturase system of candida lipolytica
1975
Pugh, E.L.; Kates, M.
Biochim. Biophys. Acta
380
442-453
-
Oleate desaturation and acyl turnover in sunflower (Helianthus annuus L.) seed lipids during rapid temperature adaption
1998
Sarmiento, C.; Garces, R.; Mancha, M.
Planta
205
595-600
-
Intracellular location of oleate desaturase and associated constituents in developing sunflower (Helianthus annuus) seeds
1996
Gray, D.A.; Kekwick, R.G.O.
Plant Sci.
119
11-21
-
Oleate desaturase activity in sunflower (Helianthus annuus) seeds and its relation to associated constituents during seed development
1996
Gray, D.A.; Kekwick, R.G.O.
Plant Sci.
115
39-47
Temperature and oxygen regulation of oleate desaturation in developing sunflower (Helianthus annuus) seeds
2002
Garcia-Diaz, M.T.; Martinez-Rivas, J.M.; Mancha, M.
Physiol. Plant.
114
13-20
Microsomal enzymes of cholesterol biosynthesis from lanosterol. Purification and characterization of DELTA 7-sterol 5-desaturase of rat liver microsomes
1985
Kawata, S.; Traskos, J.M.; Gaylor, J.L.
J. Biol. Chem.
260
6609-6617
Total enzymic synthesis of cholesterol from 4,4,14alpha-trimethyl-5alpha-cholesta-8,24-dien-3beta-ol. Solubilization, resolution, and reconstitution of DELTA 7-sterol 5-desaturase
1982
Grinstead, G.F.; Gaylor, J.L.
J. Biol. Chem.
257
13937-13944
Intermembrane transfer of 5alpha-cholest-7-en-3beta-ol. Facilitation by supernatant protein (SCP)
1981
Ishibashi, T.; Bloch, K.
J. Biol. Chem.
256
12962-12967
DELTA7-sterol-C5-desaturase: molecular characterization and functional expression of wild-type and mutant alleles
1999
Husselstein, T.; Schaller, H.; Gachotte, D.; Benveniste, P.
Plant Mol. Biol.
39
891-906
Role of highly conserved residues in the reaction catalyzed by recombinant DELTA7-sterol-C5(6)-desaturase studied by site-directed mutagenesis
2000
Taton, M.; Husselstein, T.; Benveniste, P.; Rahier, A.
Biochemistry
39
701-711
Biochemistry and site-directed mutational analysis of DELTA7-sterol-C5(6)-desaturase
2000
Rahier, A.; Benveniste, P.; Husselstein, T.; Taton, M.
Biochem. Soc. Trans.
28
799-803
The isolation and characterization of a NADH: semidehydroascorbic acid oxidoreductase from Neurospora crassa
1972
Schulze, H.U.; Schott, H.H.; Staudinger, H.
Hoppe-Seyler's Z. Physiol. Chem.
353
1931-1942
-
Anaerobic induction of trimethylamine N-oxide reductase and cytochromes by dimethyl sulfoxide in Escherichia coli
1990
Yamamoto, I.; Hinakura, M.; Seki, S.; Seki, Y.; Kondo, H.
Curr. Microbiol.
20
245-249
-
Identification of cytochromes involved in electron transport to trimethylamine N-oxide/dimethyl sulfoxide reductase in Rhodobacter capsulatus
1989
McEwan, A.G.; Richardson, D.J.; Hudig, H.; Ferguson, S.J.; Jackson, J.B.
Biochim. Biophys. Acta
973
308-314
Trimethylamine N-oxide respiration by aerobic photosynthetic bacterium, Erythrobacter sp. OCh 114
1988
Arata, H.; Serikawa, Y.; Takamiya, K.
J. Biochem.
103
1011-1015
Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 A resolution
1998
Czjzek, M.; Dos Santos, J.P.; Pommier, J.; Giordano, G.; Mejean, V.; Haser, R.
J. Mol. Biol.
284
435-447
Purification and properties of human erythrocyte membrane NADH-cytochrome b5 reductase
1981
Kitajima, S.; Yasukochi, Y.; Minakami, S.
Arch. Biochem. Biophys.
210
330-339
Catalytic properties of adenylylsulfate reductase from Desulfovibrio vulgaris Miyazaki
1996
Yagi, T.; Ogata, M.
Biochimie
78
838-846
Molecular cloning, functional characterization, and subcellular localization of soybean nodule dihydrolipoamide reductase
2002
Moran, J.F.; Sun, Z.; Sarath, G.; Arredondo-Peter, R.; James, E.K.; Becana, M.; Klucas, R.V.
Plant Physiol.
128
300-313
Purification and properties of a membrane-bound NADH-cytochrome-b5 reductase from erythrocytes of the sipunculid worm, Phascolopsis gouldii
1989
Bonomi, F.; Long, R.C.; Kurtz, D.M.
Biochim. Biophys. Acta
999
147-156
Effect of divalent cations on NADH-dependent and NADPH-dependent cytochrome b5 reduction by hepatic microsomes
1990
Tamura, M.; Yoshida, S.; Tamura, T.; Saitoh, T.; Takeshita, M.
Arch. Biochem. Biophys.
280
313-319
Expression of human erythrocyte NADH-cytochrome b5 reductase as an alpha-thrombin-cleavable fused protein in Escherichia coli
1989
Shirabe, K.; Yubisui, T.; Takeshita, M.
Biochim. Biophys. Acta
1008
189-192
The NH2-terminal structures of human and rat liver microsomal NADH-cytochrome b5 reductases
1989
Murakami, K.; Yubisui, T.; Takeshita, M.; Miyata, T.
J. Biochem.
105
312-317
Cytochrome b5 and NADH-cytochrome-b5 reductase from sipunculan erythrocytes; a methemerythrin reduction system from Phascolopsis gouldii
1988
Utecht, R.E.; Kurtz, D.M.
Biochim. Biophys. Acta
953
164-178
Purification and characterization of microsomal cytochrome b5 and NADH cytochrome b5 reductase from Pisum sativum
1987
Jollie, D.R.; Sligar, S.G.; Schuler, M.
Plant Physiol.
85
457-462
The inhibitory effect of halides and carboxylates on hepatic NADH: cytochrome b5 oxidoreductase
1985
Tamura, M.; Yubisui, T.; Takeshita, M.
Biochem. J.
230
273-276
Properties and biochemical characterization of NADH 5alpha-reductase from rat liver microsomes
1985
Golf, S.W.; Graf, V.; Rempeters, G.; Mersdorf, S.
Biol. Chem. Hoppe-Seyler
366
647-653
One-electron oxidation-reduction properties of hepatic NADH-cytochrome b5 reductase
1984
Iyanagi, T.; Watanabe, S.; Anan, K.F.
Biochemistry
23
1418-1425
Human NADH-cytochrome b5 reductases: comparison among those of erythrocyte membrane, erythrocyte cytosol, and liver microsomes
1983
Kitajima, S.; Minakami, S.
J. Biochem.
93
615-620
Microsomal NADH-cytochrome b5 reductase of bovine brain: purification and properties
1983
Tamura, M.; Yubisui, T.; Takeshita, M.
J. Biochem.
94
1547-1555
Properties of NADH-cytochrome-b5 reductase from human neutrophils
1983
Badwey, J.A.; Tauber, A.I.; Karnovsky, M.L.
Blood
62
152-157
Purification and properties of soluble NADH-cytochrome b5 reductase of rabbit erythrocytes
1982
Yubisui, T.; Takeshita, M.
J. Biochem.
91
1467-1477
Purification and partial characterization of cytochrome b5 from Tetrahymena pyriformis
1982
Fukushima, H.; Umeki, S.; Watanabe, T.; Nozawa, Y.
Biochem. Biophys. Res. Commun.
105
502-508
Methemoglobin reduction system of erythrocytes
1978
Hultquist, D.E.
Methods Enzymol.
52
463-473
Detergent-solubilized NADH-cytochrome b5 reductase
1978
Mihara, K.; Sato, R.
Methods Enzymol.
52
102-108
Soluble NADH-cytochrome b5 reductase from rabbit liver cytosol: partial purification and characterization
1978
Lostanlen, D.; De Barro, A.V.; Leroux, A.; Kaplan, J.C.
Biochim. Biophys. Acta
526
42-51
Studies on the microsomal electron-transport system of anaerobically grown yeast. IV. Purification and characterization of NADH-cytochrome b5 reductase
1977
Kubota, S.; Yoshida, Y.; Kumaoka, H.
J. Biochem.
81
187-195
Purification and properties of the intact form of NADH-cytochrome b5 reductase from rabbit liver microsomes
1975
Mihara, K.; Sato, R.
J. Biochem.
78
1057-1073
Purification and properties of NADH-cytochrome b5 reductase solubilized by lysosomes from rat liver microsomes
1970
Takesue, S.; Omura, T.
J. Biochem.
67
267-276
-
NADH-cytochrome b5 reductase
1967
Strittmatter, P.
Methods Enzymol.
10
561-565
Stimulation by phenols of the reoxidation microsomal bound cytochrome b5 and its implication to fatty acid desaturation
1971
Oshino, N.; Sato, R.
J. Biochem.
69
169-180
-
Cytochrome P450-Structure, Mechanism and Biochemistry
1986
Ortiz de Montellano, P.R.
Cytochrome P450. Structure, Mechanism Biochem. (Ortiz de Montellano, P. R. ed. ) Plenum Press, New York
-
-
Catalysis of methaemoglobin reduction by erythrocyte cytochrome b5 and cytochrome b5 reductase
1971
Hultquist, D.E.; Passon, P.G.
Nat. New Biol.
229
252-254
Cyanide sensitivity and induction of the microsomal oleoyl-CoA desaturase of potato tuber
1977
Kader, J.C.
Biochim. Biophys. Acta
486
429-436
Role of Lys-110 of human NADH-cytochrome b5 reductase in NADH binding as probed by site-directed mutagenesis
1993
Fujimoto, Y.; Shirabe, K.; Nagai, T.; Yubisui, T.; Takeshita, M.
FEBS Lett.
322
30-32
Development and validation of a spectrophotometric assay for measuring the activity of NADH: cytochrome b5 reductase in human tumour cells
1996
Barham, H.M.; Inglis, R.; Chinje, E.C.; Stratford, I.J.
Br. J. Cancer
74
1188-1193
High-level expression in Escherichia coli of the soluble, catalytic domain of rat hepatic cytochrome b5 reductase
1996
Barber, M.J.; Quinn, G.B.
Protein Expr. Purif.
8
41-47
Purification and characterization of cytochrome b5 reductase from the house fly, Musca domestica
1996
Zhang, M.; Scott, J.G.
Comp. Biochem. Physiol. B
113
175-183
Role of carboxyl residues surrounding heme of human cytochrome b5 in the electrostatic interaction with NADH-cytochrome b5 reductase
1998
Kawano, M.; Shirabe, K.; Nagai, T.; Takeshita, M.
Biochem. Biophys. Res. Commun.
245
666-669
-
Purification and comparison of NADH-cytochrome b5 reductase from mitochondrial outer membrane of bovine heart and turnip
1998
Lee, J.Y.; Kim, Y.H.; Lee, S.J.
Bull. Chem. Soc. Kor.
19
160-164
Biodiversity of the P450 catalytic cycle: yeast cytochrome b5/NADH cytochrome b5 reductase complex efficiently drives the entire sterol 14-demethylation (CYP51) reaction
1999
Lamb, D.C.; Kelly, D.E.; Manning, N.J.; Kaderbhai, M.A.; Kelly, S.L.
FEBS Lett.
462
283-288
Systematic mutations of highly conserved His49 and carboxyl-terminal of recombinant porcine liver NADH-cytochrome b5 reductase solubilized domain
1999
Kimura, S.; Emi, Y.; Ikushiro, S.; Iyanagi, T.
Biochim. Biophys. Acta
1430
290-301
Simultaneous purification and characterization of cytochrome b5 reductase and cytochrome b5 from sheep liver
1999
Arinc, E.; Cakir, D.
Int. J. Biochem. Cell Biol.
31
345-362
Tonoplast subcellular localization of maize cytochrome b5 reductases
2000
Bagnaresi, P.; Mazars-Marty, D.; Pupilld, P.; Marty, F.; Briat, J.F.
Plant J.
24
645-654
The structure and biochemistry of NADH-dependent cytochrome b5 reductase are now consistent
2001
Bewley, M.C.; Marohnic, C.C.; Barber, M.J.
Biochemistry
40
13574-13582
Effects of flavin-binding motif amino acid mutations in the NADH-cytochrome b5 reductase catalytic domain on protein stability and catalysis
2001
Kimura, S.; Nishida, H.; Iyanagi, T.
J. Biochem.
130
481-490
Heterologous expression of an endogenous rat cytochrome b5/cytochrome b5 reductase fusion protein: Identification of histidines 62 and 85 as the heme axial ligands
2002
Davis, C.A.; Dhawan, I.K.; Johnson, M.K.; Barber, M.J.
Arch. Biochem. Biophys.
400
63-75
Ferric leghemoglobin reductase from soybean root nodules
1984
Saari, L.L.; Klucas, R.V.
Arch. Biochem. Biophys.
231
102-113
Enzymatic and nonenzymatic mechanisms for ferric leghemoglobin reduction in legume root nodules
1990
Becana, M.; Klucas, R.V.
Proc. Natl. Acad. Sci. USA
87
7295-7299
Purification and characterization of soybean root nodule ferric leghemoglobin reductase
1991
Ji, L.; Wood, S.; Becana, M.; Klucas, R.V.
Plant Physiol.
96
32-37
Involvement of molecular oxygen in the enzyme-catalyzed NADH oxidation and ferric leghemoglobin reduction
1992
Ji, L.; Becana, M.; Klucas, R.V.
Plant Physiol.
100
33-39
Overproduction in Escherichia coli and characterization of a soybean ferric leghemoglobin reductase
1994
Ji, L.; Becana, M.; Sarath, G.; Shearman, L.; Klucas, R.V.
Plant Physiol.
106
203-209
Analysis of a ferric leghemoglobin reductase from cowpea (Vigna unguiculata) root nodules
2000
Luan, P.; Arechaga-Ocampo, E.; Sarath, G.; Arredondo-Peter, R.; Klucas, R.V.
Plant Sci.
154
161-170
Cloning, overproduction and characterization of cytochrome c peroxidase from the purple phototrophic bacterium Rhodobacter capsulatus
2001
De Smet, L.; Pettigrew, G.W.; Van Beeumen, J.J.
Eur. J. Biochem.
268
6559-6568
A di-heme cytochrome c peroxidase from Nitrosomonas europaea catalytically active in both the oxidized and half-reduced states
1994
Arciero, D.M.; Hooper, A.B.
J. Biol. Chem.
269
11878-11886
Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio
1984
Odom, J.M.; Peck, H.D.
Annu. Rev. Microbiol.
38
551-592
Purification and properties of the membrane-bound by hydrogenase from Desulfovibrio desulfuricans
1983
Lalla-Maharajh, W.V.; Hall, D.O.; Cammack, R.; Rao, K.K.
Biochem. J.
209
445-454
Purification and properties of hydrogenases of different origins
1968
Yagi, T.; Honya, M.; Tamiya, N.
Biochim. Biophys. Acta
153
699-705
Properties of purified hydrogenase from the particulate fraction of Desulfovibrio vulgaris, Miyazaki
1976
Yagi, T.; Kimura, K.; Daidoji, H.; Sakai, F.; Tamura, S.; Inokuchi, H.
J. Biochem.
79
661-671
Kinetic properties of hydrogenase isolated from Desulfovibrio vulgaris (Hildenborough)
1983
Grande, H.J.; van Berkel-Arts, A.; Bregh, J.; van Dijk, K.; Veeger, C.
Eur. J. Biochem.
131
81-88
-
Kinetic studies of hydrogenase in AOT reversed micelles
1989
Castro, M.J.M.; Cabral, J.M.S.
Enzyme Microb. Technol.
11
6-11
-
Stability of hydrogenase in AOT reversed micelles
1989
Castro, M.J.M.; Cabral, J.M.S.
Enzyme Microb. Technol.
11
668-672
Single crystals of hydrogenase from Desulfovibrio vulgaris Miyazaki F
1987
Higuchi, Y.; Yasuoka, N.; Kakudo, M.; Katsube, Y.; Yagi, T.; Inokuchi, H.
J. Biol. Chem.
262
2823-2825
Purification and properties of the soluble hydrogenase from Desulfovibrio desulfuricans (strain Norway 4)
1984
Rieder, R.; Cammack, R.; Hall, D.O.
Eur. J. Biochem.
145
637-643
Nonaheme cytochrome c, a new physiological electron acceptor for [Ni,Fe] hydrogenase in the sulfate-reducing bacterium Desulfovibrio desulfuricans Essex: primary sequence, molecular parameters, and redox properties
2001
Fritz, G.; Griesshaber, D.; Seth, O.; Kroneck, P.M.
Biochemistry
40
1317-1324
-
Hydrogenase of purple bacteria: properties and regulation of synthesis
1984
Gogotov, I.N.
Arch. Microbiol.
140
86-90
Solubilization and partial purification of the membrane-bound hydrogenase of Escherichia coli
1978
Adams, M.W.W.; Hall, D.O.
Biochem. Soc. Trans.
6
1339-1341
A sequential electron transfer from hydrogenases to cytochromes in sulfate-reducing bacteria
2000
Aubert, C.; Brugna, M.; Dolla, A.; Bruschi, M.; Giudici-Orticoni, M.T.
Biochim. Biophys. Acta
1476
85-92
Reduction of technetium(VII) by Desulfovibrio fructosovorans is mediated by the nickel-iron hydrogenase
2001
De Luca, G.; De Philip, P.; Dermoun, Z.; Rousset, M.; Vermegljo, A.
Appl. Environ. Microbiol.
67
4583-4587
-
Kinetic properties of the periplasmic hydrogenase from Desulfovibrio desulfuricans NCIMB 8372 and use in photosensitized hydrogen-production
1993
Eng, L.H.; Lewin, M.B.M.; Neujahr, H.Y.
J. Chem. Technol. Biotechnol.
56
317-324
Liberation of hydrogen sulfide during the catalytic action of Desulfovibrio hydrogenase under the atmosphere of hydrogen
1999
Higuchi, Y.; Yagi, T.
Biochem. Biophys. Res. Commun.
255
295-299
Characterization of a cb-type cytochrome c oxidase from Helicobacter pylori
1999
Tsukita, S.; Koyanagi, S.; Nagata, K.; Koizuka, H.; Akashi, H.; Shimoyama, T.; Tamura, T.; Sone, N.
J. Biochem.
125
194-201
Immunochemical evidence for the enzymatic difference of DELTA6-desaturase from DELTA9- and DELTA5-desaturase in rat liver microsomes
1983
Fujiwara, Y.; Okayasu, T.; Ishibashi, T.; Imai, Y.
Biochem. Biophys. Res. Commun.
110
36-41
Purification and properties of trimethylamine N-oxide reductase from aerobic photosynthetic bacterium Roseobacter denitrificans
1992
Arata, H.; Shimizu, M.; Takamiya, K.
J. Biochem.
112
470-475
Electron transfer and binding of the c-type cytochrome TorC to the trimethylamine N-oxide reductase in Escherichia coli
2001
Gon, S.; Giudici-Orticoni, M.T.; Mejean, V.; Iobbi-Nivol, C.
J. Biol. Chem.
276
11545-11551
The torYZ (yecK bisZ) operon encodes a third respiratory trimethylamine N-oxide reductase in Escherichia coli
2000
Gon, S.; Patte, J.C.; Mejean, V.; Iobbi-Nivol, C.
J. Bacteriol.
182
5779-5786
Isolation, cloning, sequence analysis and X-ray structure of dimethyl sulfoxide/trimethylamine N-oxide reductase from Rhodobacter capsulatus
1997
Knäblein, J.; Dobbek, H.; Ehlert, S.; Schneider, F.
Biol. Chem.
378
293-302
TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon
1994
Mejean, V.; Iobbi-Nivol, C.; Lepelletier, M.; Giordano, G.; Chippaux, M.; Pascal, M.C.
Mol. Microbiol.
11
1169-1179
Isolation, purification, and some properties of reduced nicotinamide adenine dinucleotide phosphate-cytochrome C2 reductase from Rhodopseudomonas spheroides
1968
Sabo, D.J.; Orlando, J.A.
J. Biol. Chem.
243
3742-3749
Recent studies of the enzymic synthesis of ricinoleic acid by developing castor beans
1981
Moreau, R.A.; Stumpf, P.K.
Plant Physiol.
67
672-676
Characterization of oleoyl-12-hydroxylase in castor microsomes using the putative substrate, 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine
1996
Lin, J.T.; McKeon, T.A.; Goodrich-Tanrikulu, M.; Stafford, A.E.
Lipids
31
571-577
Reduction of cytochrome b-561 through the antimycin-sensitive site of the ubiquinol-cytochrome c2 oxidoreductase complex of Rhodopseudomonas sphaeroides
1984
Glaser, E.G.; Meinhardt, S.W.; Crofts, A.R.
FEBS Lett.
178
336-342
Participation of cytochrome b5 in CMP-N-acetylneuraminic acid hydroxylation in mouse liver cytosol
1990
Kozutsumi, Y.; Kawano, T.; Yamakawa, T.; Suzuki, A.
J. Biochem.
108
704-706
CMP-N-acetylneuraminic acid hydroxylase from mouse liver and pig submandibular glands. Interaction with membrane-bound and soluble cytochrome b5-dependent electron transport chains
1994
Shaw, L.; Schneckenburger, P.; Schlenzka, W.; Carlsen, J.; Christiansen, K.; Juergensen, D.; Schauer, R.
Eur. J. Biochem.
219
1001-1011
Reaction mechanism underlying CMP-N-acetylneuraminic acid hydroxylation in mouse liver: formation of a ternary complex of cytochrome b5, CMP-N-acetylneuraminic acid, and a hydroxylation enzyme
1994
Takematsu, H.; Kawano, T.; Koyama, S.; Kozutsumi, Y.; Suzuki, A.; Kawasaki, T.
J. Biochem.
115
381-386
Purification, characterization and reconstitution of CMP-N-acetylneuraminate hydroxylase from mouse liver
1994
Schneckenburger, P.; Shaw, L.; Schauer, R.
Glycoconjugate J.
11
194-203
Cytidine monophosphate-N-acetylneuraminate hydroxylase in the starfish Asterias rubens and other echinoderms
1998
Gollub, M.; Schauer, R.; Shaw, L.
Comp. Biochem. Physiol. B
120
605-615
Isolation and characterization of cytidine-5'-monophosphate-N-acetylneuraminate hydroxylase from the starfish Asterias rubens
2003
Gollub, M.; Shaw, L.
Comp. Biochem. Physiol. B
134
89-101
Mouse liver cytidine-5-monophosphate-N-acetylneuraminic acid hydroxylase. Catalytic function and regulation
1992
Shaw, L.; Schneckenburger, P.; Carlsen, J.; Christiansen, K.; Schauer, R.
Eur. J. Biochem.
206
269-277
Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome c3 mutant
2002
Payne, R.B.; Gentry, D.M.; Rapp-Giles, B.J.; Casalot, L.; Wall, J.D.
Appl. Environ. Microbiol.
68
3129-3132
Interaction and electron transfer between the high molecular weight cytochrome and cytochrome c3 from Desulfovibrio vulgaris Hildenborough: kinetic, microcalorimetric, EPR and electrochemical studies
2005
Guiral, M.; Leroy, G.; Bianco, P.; Gallice, P.; Guigliarelli, B.; Bruschi, M.; Nitschke, W.; Giudici-Orticoni, M.T.
Biochim. Biophys. Acta
1723
45-54
Lathosterolosis: an inborn error of human and murine cholesterol synthesis due to lathosterol 5-desaturase deficiency
2003
Krakowiak, P.A.; Wassif, C.A.; Kratz, L.; Cozma, D.; Kovarova, M.; Harris, G.; Grinberg, A.; Yang, Y.; Hunter, A.G.; Tsokos, M.; Kelley, R.I.; Porter, F.D.
Hum. Mol. Genet.
12
1631-1641
Molecular basis for redox-Bohr and cooperative effects in cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774: crystallographic and modeling studies of oxidized and reduced high-resolution structures at pH 7.6
2004
Bento, I.; Matias, P.M.; Baptista, A.M.; da Costa, P.N.; van Dongen, W.M.; Saraiva, L.M.; Schneider, T.R.; Soares, C.M.; Carrondo, M.A.
Proteins
54
135-152
Structure of human erythrocyte NADH-cytochrome b5 reductase
2004
Bando, S.; Takano, T.; Yubisui, T.; Shirabe, K.; Takeshita, M.; Nakagawa, A.
Acta Crystallogr. Sect. D
60
1929-1934
Functional identification of a DELTA8-sphingolipid desaturase from Borago officinalis
2001
Sperling, P.; Libisch, B.; Zahringer, U.; Napier, J.A.; Heinz, E.
Arch. Biochem. Biophys.
388
293-298
Cytochrome b5 reductase and cytochrome b5 support the CYP2E1-mediated activation of nitrosamines in a recombinant Ames test
2003
Mokashi, V.; Li, L.; Porter, T.D.
Arch. Biochem. Biophys.
412
147-152
Cytochrome b5 reductase: the roles of the recessive congenital methemoglobinemia mutants P144L, L148P, and R159*
2004
Davis, C.A.; Crowley, L.J.; Barber, M.J.
Arch. Biochem. Biophys.
431
233-244
Chimeras of DELTA6-fatty acid and DELTA8-sphingolipid desaturases
2000
Libisch, B.; Michaelson, L.V.; Lewis, M.J.; Shewry, P.R.; Napier, J.A.
Biochem. Biophys. Res. Commun.
279
779-785
In vivo characterization of the first acyl-CoA DELTA6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri
2005
Domergue, F.; Abbadi, A.; Zahringer, U.; Moreau, H.; Heinz, E.
Biochem. J.
389
483-490
Further characterization of DELTA8-sphingolipid desaturases from higher plants
2000
Sperling, P.; Blume, A.; Zahringer, U.; Heinz, E.
Biochem. Soc. Trans.
28
638-641
Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase
2003
Marohnic, C.C.; Bewley, M.C.; Barber, M.J.
Biochemistry
42
11170-11182
The structure of the S127P mutant of cytochrome b5 reductase that causes methemoglobinemia shows the AMP moiety of the flavin occupying the substrate binding site
2003
Bewley, M.C.; Davis, C.A.; Marohnic, C.C.; Taormina, D.; Barber, M.J.
Biochemistry
42
13145-13151
Identification of cytochrome-b5 reductase as the enzyme responsible for NADH-dependent lucigenin chemiluminescence in human spermatozoa
2005
Baker, M.A.; Krutskikh, A.; Curry, B.J.; Hetherington, L.; Aitken, R.J.
Biol. Reprod.
73
334-42
Isolation and characterization of the genes encoding DELTA8-sphingolipid desaturase from Saccharomyces kluyveri and Kluyveromyces lactis
2002
Takakuwa, N.; Kinoshita, M.; Oda, Y.; Ohnishi, M.
Curr. Microbiol.
45
459-461
Fatty acid desaturases from the microalga Thalassiosira pseudonana
2005
Tonon, T.; Sayanova, O.; Michaelson, L.V.; Qing, R.; Harvey, D.; Larson, T.R.; Li, Y.; Napier, J.A.; Graham, I.A.
FEBS J.
272
3401-3412
Identification and characterization of a novel splice variant of mouse and rat cytochrome b5/cytochrome b5 reductase
2004
Curry, B.J.; Roman, S.D.; Wallace, C.A.; Scott, R.; Miriami, E.; Aitken, R.J.
Genomics
83
425-438
Hydrogen peroxide- and cell-density-regulated expression of NADH-cytochrome b5 reductase in HeLa cells
2003
Bello, R.I.; Alcain, F.J.; Gomez-Diaz, C.; Lopez-Lluch, G.; Navas, P.; Villalba, J.M.
J. Bioenerg. Biomembr.
35
169-179
Role of Thr(66) in porcine NADH-cytochrome b5 reductase in catalysis and control of the rate-limiting step in electron transfer
2003
Kimura, S.; Kawamura, M.; Iyanagi, T.
J. Biol. Chem.
278
3580-3589
NADH cytochrome b5 reductase and cytochrome b5 catalyze the microsomal reduction of xenobiotic hydroxylamines and amidoximes in humans
2004
Kurian, J.R.; Bajad, S.U.; Miller, J.L.; Chin, N.A.; Trepanier, L.A.
J. Pharmacol. Exp. Ther.
311
1171-1178
Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana
2003
Smith, M.A.; Moon, H.; Chowrira, G.; Kunst, L.
Planta
217
507-516
Crystal structures of cytochrome c(L) and methanol dehydrogenase from Hyphomicrobium denitrificans: structural and mechanistic insights into interactions between the two proteins
2006
Nojiri, M.; Hira, D.; Yamaguchi, K.; Okajima, T.; Tanizawa, K.; Suzuki, S.
Biochemistry
45
3481-3492
The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens
2005
Williams, P.A.; Coates, L.; Mohammed, F.; Gill, R.; Erskine, P.T.; Coker, A.; Wood, S.P.; Anthony, C.; Cooper, J.B.
Acta Crystallogr. Sect. D
D61
75-79
Expression of a novel P275L variant of NADH:cytochrome b5 reductase gives functional insight into the conserved motif important for pyridine nucleotide binding
2006
Percy, M.J.; Crowley, L.J.; Boudreaux, J.; Barber, M.J.
Arch. Biochem. Biophys.
447
59-67
Expression and characterization of a functional canine variant of cytochrome b5 reductase
2006
Roma, G.W.; Crowley, L.J.; Barber, M.J.
Arch. Biochem. Biophys.
452
69-82
Mutagenesis of glycine 179 modulates both catalytic efficiency and reduced pyridine nucleotide specificity in cytochrome b5 reductase
2005
Roma, G.W.; Crowley, L.J.; Davis, C.A.; Barber, M.J.
Biochemistry
44
13467-13476
Role of the tetrahemic subunit in Desulfovibrio vulgaris hildenborough formate dehydrogenase
2005
ElAntak, L.; Dolla, A.; Durand, M.C.; Bianco, P.; Guerlesquin, F.
Biochemistry
44
14828-14834
Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis
2005
Marohnic, C.C.; Crowley, L.J.; Davis, C.A.; Smith, E.T.; Barber, M.J.
Biochemistry
44
2449-2461
Redox interaction of cytochrome c3 with [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F
2006
Yahata, N.; Saitoh, T.; Takayama, Y.; Ozawa, K.; Ogata, H.; Higuchi, Y.; Akutsu, H.
Biochemistry
45
1653-1662
Identification and characterization of the novel FAD-binding lobe G75S mutation in cytochrome b(5) reductase: an aid to determine recessive congenital methemoglobinemia status in an infant
2006
Percy, M.J.; Crowley, L.J.; Roper, D.; Vulliamy, T.J.; Layton, D.M.; Barber, M.J.
Blood Cells Mol. Dis.
36
81-90
Recessive congenital methaemoglobinaemia: functional characterization of the novel D239G mutation in the NADH-binding lobe of cytochrome b5 reductase
2005
Percy, M.J.; Crowley, L.J.; Davis, C.A.; McMullin, M.F.; Savage, G.; Hughes, J.; McMahon, C.; Quinn, R.J.; Smith, O.; Barber, M.J.; Lappin, T.R.
Br. J. Haematol.
129
847-853
Reductive detoxification of arylhydroxylamine carcinogens by human NADH cytochrome b5 reductase and cytochrome b5
2006
Kurian, J.R.; Chin, N.A.; Longlais, B.J.; Hayes, K.L.; Trepanier, L.A.
Chem. Res. Toxicol.
19
1366-1373
Unusual dehydroxylation of antimicrobial amidoxime prodrugs by cytochrome b5 and NADH cytochrome b5 reductase
2005
Saulter, J.Y.; Kurian, J.R.; Trepanier, L.A.; Tidwell, R.R.; Bridges, A.S.; Boykin, D.W.; Stephens, C.E.; Anbazhagan, M.; Hall, J.E.
Drug Metab. Dispos.
33
1886-1893
Functional characterization of front-end desaturases from trypanosomatids depicts the first polyunsaturated fatty acid biosynthetic pathway from a parasitic protozoan
2006
Tripodi, K.E.; Buttigliero, L.V.; Altabe, S.G.; Uttaro, A.D.
FEBS J.
273
271-280
Hydrogenases in Desulfovibrio vulgaris Hildenborough: structural and physiologic characterisation of the membrane-bound [NiFeSe] hydrogenase
2005
Valente, F.M.; Oliveira, A.S.; Gnadt, N.; Pacheco, I.; Coelho, A.V.; Xavier, A.V.; Teixeira, M.; Soares, C.M.; Pereira, I.A.
J. Biol. Inorg. Chem.
10
667-682
The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway
2005
Pieulle, L.; Morelli, X.; Gallice, P.; Lojou, E.; Barbier, P.; Czjzek, M.; Bianco, P.; Guerlesquin, F.; Hatchikian, E.C.
J. Mol. Biol.
354
73-90
Electron transfer to nitrite reductase of Rhodobacter sphaeroides 2.4.3: examination of cytochromes c2 and cY
2006
Laratta, W.P.; Nanaszko, M.J.; Shapleigh, J.P.
Microbiology
152
1479-1488
Loss of stearoyl-CoA desaturase 1 inhibits fatty acid oxidation and increases glucose utilization in the heart
2008
Dobrzyn, P.; Sampath, H.; Dobrzyn, A.; Miyazaki, M.; Ntambi, J.M.
Am. J. Physiol. Endocrinol. Metab.
294
E357-E364
Characterization of a DELTA8-sphingolipid desaturase from higher plants: a stereochemical and mechanistic study on the origin of E,Z isomers
2002
Beckmann Christop, B.C.; Rattke Janin, R.J.; Oldham Neil, O.N.; Sperling Petr, S.P.; Heinz Erns, H.E.; Boland Wilhel, B.W.
Angew. Chem. Int. Ed. Engl.
41
2298-2300
Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants
2007
Park, H.S.; Lin, S.; Voordouw, G.
Antonie van Leeuwenhoek
93
79-85
The quinoprotein dehydrogenases for methanol and glucose
2004
Anthony, C.
Arch. Biochem. Biophys.
428
2-9
Association of stearoyl-CoA desaturase 1 activity with familial combined hyperlipidemia
2008
Mar-Heyming, R.; Miyazaki, M.; Weissglas-Volkov, D.; Kolaitis, N.A.; Sadaat, N.; Plaisier, C.; Pajukanta, P.; Cantor, R.M.; de Bruin, T.W.; Ntambi, J.M.; Lusis, A.J.
Arterioscler. Thromb. Vasc. Biol.
28
1193-1199
The role of the novel disulphide ring in the active site of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens
1995
Avezoux, A.; Goodwin, M.G.; Anthony, C.
Biochem. J.
307
735-741
Reconstitution of the quinoprotein methanol dehydrogenase from inactive Ca(2+)-free enzyme with Ca2+, Sr2+ or Ba2+
1996
Goodwin, M.G.; Avezoux, A.; Dales, S.L.; Anthony, C.
Biochem. J.
319
839-842
A new kinetic model for the steady-state reactions of the quinoprotein methanol dehydrogenase from Paracoccus denitrificans
1993
Harris, T.K.; Davidson, V.L.
Biochemistry
32
4362-4368
The structure and mechanism of methanol dehydrogenase
2003
Anthony, C.; Williams, P.
Biochim. Biophys. Acta
1647
18-23
Discovery of 1-(4-phenoxypiperidin-1-yl)-2-arylaminoethanone stearoyl-CoA desaturase 1 inhibitors
2007
Zhao, H.; Serby, M.D.; Smith, H.T.; Cao, N.; Suhar, T.S.; Surowy, T.K.; Camp, H.S.; Collins, C.A.; Sham, H.L.; Liu, G.
Bioorg. Med. Chem. Lett.
17
3388-3391
Discovery of piperidine-aryl urea-based stearoyl-CoA desaturase 1 inhibitors
2008
Xin, Z.; Zhao, H.; Serby, M.D.; Liu, B.; Liu, M.; Szczepankiewicz, B.G.; Nelson, L.T.; Smith, H.T.; Suhar, T.S.; Janis, R.S.; Cao, N.; Camp, H.S.; Collins, C.A.; Sham, H.L.; Surowy, T.K.; Liu, G.
Bioorg. Med. Chem. Lett.
18
4298-4302
Structure and properties of the recombinant NADH-cytochrome b5 reductase of Physarum polycephalum
2007
Ikegami, T.; Kameyama, E.; Yamamoto, S.Y.; Minami, Y.; Yubisui, T.
Biosci. Biotechnol. Biochem.
71
783-790
Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) mutations associated with the domestic cat AB blood group
2007
Bighignoli, B.; Niini, T.; Grahn, R.A.; Pedersen, N.C.; Millon, L.V.; Polli, M.; Longeri, M.; Lyons, L.A.
BMC Genet.
8
27
Recessive congenital methaemoglobinaemia: cytochrome b(5) reductase deficiency
2008
Percy, M.J.; Lappin, T.R.
Br. J. Haematol.
141
298-308
Low hepatic stearoyl-CoA desaturase 1 activity is associated with fatty liver and insulin resistance in obese humans
2008
Stefan, N.; Peter, A.; Cegan, A.; Staiger, H.; Machann, J.; Schick, F.; Claussen, C.D.; Fritsche, A.; Haering, H.U.; Schleicher, E.
Diabetologia
51
648-656
Isolation and characterization of a seed-specific isoform of microsomal omega-6 fatty acid desaturase gene (FAD2-1B) from soybean
2008
Li, L.; Wang, X.; Gai, J.; Yu, D.
DNA Seq.
19
28-36
The [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough is a bacterial lipoprotein lacking a typical lipoprotein signal peptide
2007
Valente, F.M.; Pereira, P.M.; Venceslau, S.S.; Regalla, M.; Coelho, A.V.; Pereira, I.A.
FEBS Lett.
581
3341-3344
Corn oil supplementation to steers grazing endophyte-free tall fescue. II. Effects on longissimus muscle and subcutaneous adipose fatty acid composition and stearoyl-CoA desaturase activity and expression
2007
Pavan, E.; Duckett, S.K.
J. Anim. Sci.
85
1731-1740
In vivo inactivation of mycobacterial integral membrane stearoyl-CoA desaturase DesA3 by a C-terminal specific degradation process
2008
Chang, Y.; Wesenberg, G.; Bingman, C.A.; Fox, B.G.
J. Bacteriol.
190
6686-6696
Purification and properties of methanol dehydrogenase from Methylosinus sp. WI 14
1998
Grosse, S.; Voigt, C.; Wendlandt, K.D.; Kleber, H.P.
J. Basic Microbiol.
38
189-196
Stearoyl-CoA desaturase 2 is required for peroxisome proliferator-activated receptor gamma expression and adipogenesis in cultured 3T3-L1 cells
2008
Christianson, J.L.; Nicoloro, S.; Straubhaar, J.; Czech, M.P.
J. Biol. Chem.
283
2906-2916
X-ray structure of methanol dehydrogenase from Paracoccus denitrificans and molecular modeling of its interactions with cytochrome c-551i
2003
Xia, Z.X.; Dai, W.W.; He, Y.N.; White, S.A.; Mathews, F.S.; Davidson, V.L.
J. Biol. Inorg. Chem.
8
843-854
Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds
2007
Rolletschek, H.; Borisjuk, L.; Sanchez-Garcia, A.; Gotor, C.; Romero, L.C.; Martinez-Rivas, J.M.; Mancha, M.
J. Exp. Bot.
58
3171-3181
Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum)
2008
Kargiotidou, A.; Deli, D.; Galanopoulou, D.; Tsaftaris, A.; Farmaki, T.
J. Exp. Bot.
59
2043-2056
Compartmentalization of stearoyl-CoA desaturase enzyme-1 activity in HepG2 cells
2008
Yee, J.K.; Mao, C.S.; Hummel, H.S.; Lim, S.; Sugano, S.; Rehan, V.K.; Xiao, G.; Lee, W.N.
J. Lipid Res.
49
2124-2134
Discovery of potent, selective, orally bioavailable stearoyl-CoA desaturase 1 inhibitors
2007
Liu, G.; Lynch, J.K.; Freeman, J.; Liu, B.; Xin, Z.; Zhao, H.; Serby, M.D.; Kym, P.R.; Suhar, T.S.; Smith, H.T.; Cao, N.; Yang, R.; Janis, R.S.; Krauser, J.A.; Cepa, S.P.; Beno, D.W.; Sham, H.L.; Collins, C.A.; Surowy, T.K.; Camp, H.S.
J. Med. Chem.
50
3086-3100
The 1.6A X-ray structure of the unusual c-type cytochrome, cytochrome cL, from the methylotrophic bacterium Methylobacterium extorquens
2006
Williams, P.; Coates, L.; Mohammed, F.; Gill, R.; Erskine, P.; Bourgeois, D.; Wood, S.P.; Anthony, C.; Cooper, J.B.
J. Mol. Biol.
357
151-162
Stearoyl-CoA desaturase activity is elevated by the suppression of its degradation by clofibric acid in the liver of rats
2007
Toyama, T.; Kudo, N.; Mitsumoto, A.; Hibino, Y.; Tsuda, T.; Kawashima, Y.
J. Pharmacol. Sci.
103
383-390
-
Role of positive charge of lysine residue on cytochrome c3 for electrostatic interaction with hydrogenase
2007
Iida, S.; Asakura, N.; Tabata, K.; Okura, I.; Kamachi, T.
J. Porphyr. Phthalocyanines
11
66-73
Identification and characterization of a novel bovine stearoyl-CoA desaturase isoform with homology to human SCD5
2007
Lengi, A.J.; Corl, B.A.
Lipids
42
499-508
Identification and characterization of hamster stearoyl-CoA desaturase isoforms
2008
Wang, J.; Yu, L.; Wang, H.; Gao, Y.; Schrementi, J.P.; Porter, R.K.; Yurek, D.A.; Kuo, M.; Suen, C.S.; Cao, G.; Bean, J.S.; Kauffman, R.F.; Qian, Y.
Lipids
43
197-205
A self-induction method to produce high quantities of recombinant functional flavo-leghemoglobin reductase
2008
Urarte, E.; Auzmendi, I.; Rol, S.; Ariz, I.; Aparicio-Tejo, P.; Arredondo-Peter, R.; Moran, J.F.
Methods Enzymol.
436
411-423
The active site of methanol dehydrogenase contains a disulphide bridge between adjacent cysteine residues
1994
Blake, C.C.; Ghosh, M.; Harlos, K.; Avezoux, A.; Anthony, C.
Nat. Struct. Biol.
1
102-105
Plasma palmitoleic acid, a product of stearoyl-coA desaturase activity, is an independent marker of triglyceridemia and abdominal adiposity
2008
Paillard, F.; Catheline, D.; Duff, F.L.; Bouriel, M.; Deugnier, Y.; Pouchard, M.; Daubert, J.C.; Legrand, P.
Nutr. Metab. Cardiovasc. Dis.
18
436-440
A high activity index of stearoyl-CoA desaturase is associated with increased risk of fracture in men
2008
Melhus, H.; Riserus, U.; Warensjoe, E.; Wernroth, L.; Jensevik, K.; Berglund, L.; Vessby, B.; Michaelsson, K.
Osteoporos. Int.
19
929-934
A higher plant DELTA8 sphingolipid desaturase with a preference for (Z)-isomer formation confers aluminum tolerance to yeast and plants
2007
Ryan, P.R.; Liu, Q.; Sperling, P.; Dong, B.; Franke, S.; Delhaize, E.
Plant Physiol.
144
1968-1977
Wheat germ cell-free translation, purification, and assembly of a functional human stearoyl-CoA desaturase complex
2008
Goren, M.A.; Fox, B.G.
Protein Expr. Purif.
62
171-178
Proton pathways in a [NiFe]-hydrogenase: A theoretical study
2008
Teixeira, V.H.; Soares, C.M.; Baptista, A.M.
Proteins
70
1010-1022
The refined structure of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens at 1.94 A
1995
Ghosh, M.; Anthony, C.; Harlos, K.; Goodwin, M.G.; Blake, C.
Structure
3
177-187
Biochemical and physiological function of stearoyl-CoA desaturase
2009
Paton, C.M.; Ntambi, J.M.
Am. J. Physiol. Endocrinol. Metab.
297
E28-E37
Development of a high-throughput screening assay for stearoyl-CoA desaturase using rat liver microsomes, deuterium labeled stearoyl-CoA and mass spectrometry
2008
Soulard, P.; McLaughlin, M.; Stevens, J.; Connolly, B.; Coli, R.; Wang, L.; Moore, J.; Kuo, M.S.; LaMarr, W.A.; Ozbal, C.C.; Bhat, B.G.
Anal. Chim. Acta
627
105-111
C-5(6) sterol desaturase from Tetrahymena thermophila: Gene identification and knockout, sequence analysis, and comparison to other C-5(6) sterol desaturases
2009
Nusblat, A.D.; Najle, S.R.; Tomazic, M.L.; Uttaro, A.D.; Nudel, C.B.
Eukaryot. Cell
8
1287-1297
Expression analysis identifies FAD2-2 as the olive oleate desaturase gene mainly responsible for the linoleic acid content in virgin olive oil
2009
Hernandez, M.L.; Padilla, M.N.; Mancha, M.; Martinez-Rivas, J.M.
J. Agric. Food Chem.
57
6199-6206
Structural and mechanistic roles of three consecutive Pro residues of porcine NADH-cytochrome b5 reductase for the binding of beta-NADH
2009
Nishimura, Y.; Shibuya, M.; Muraki, A.; Takeuchi, F.; Park, S.; Tsubaki, M.
J. Biosci. Bioeng.
108
286-292
Variation of DELTA9-desaturase activity in dairy cattle
2008
Soyeurt, H.; Dehareng, F.; Mayeres, P.; Bertozzi, C.; Gengler, N.
J. Dairy Sci.
91
3211-3224
Disruption of the sphingolipid DELTA8-desaturase gene causes a delay in morphological changes in Candida albicans
2008
Oura, T.; Kajiwara, S.
Microbiology
154
3795-3803
An insertion of oleate desaturase homologous sequence silences via siRNA the functional gene leading to high oleic acid content in sunflower seed oil
2009
Lacombe, S.; Souyris, I.; Berville, A.J.
Mol. Genet. Genomics
281
43-54
Human CMP-N-acetylneuraminic acid hydroxylase (CMAH) is a novel stem cell marker linked to stem cell-specific mechanisms
2010
Nystedt, J.; Anderson, H.; Hirvonen, T.; Impola, U.; Jaatinen, T.; Heiskanen, A.; Blomquist, M.; Satomaa, T.; Natunen, J.; Saarinen, J.; Lehenkari, P.; Valmu, L.; Laine, J.
Stem Cells
28
258-267
-
Enzymatic recovery of platinum (IV) from industrial wastewater using a biosulphidogenic hydrogenase
2008
Rashamuse, K.; Mutambanengwe, C.; Whiteley, C.
Afr. J. Biotechnol.
7
1087-1095
Novel CYP17 inhibitors: synthesis, biological evaluation, structure-activity relationships and modelling of methoxy- and hydroxy-substituted methyleneimidazolyl biphenyls
2009
Hille, U.E.; Hu, Q.; Vock, C.; Negri, M.; Bartels, M.; Mueller-Vieira, U.; Lauterbach, T.; Hartmann, R.W.
Eur. J. Med. Chem.
44
2765-2775
Reconstitution of native Escherichia coli pyruvate oxidase from apoenzyme monomers and FAD
1982
Recny, M.A.; Hager, L.P.
J. Biol. Chem.
257
12878-12886
Redox linked conformational changes in cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774
2010
Paixao, V.B.; Vis, H.; Turner, D.L.
Biochemistry
49
9620-9629
Secretory expression and purification of a soluble NADH cytochrome b5 reductase enzyme from Mucor racemosus in Pichia pastoris based on codon usage adaptation
2010
Mirzaei, S.A.; Yazdi, M.T.; Sepehrizadeh, Z.
Biotechnol. Lett.
32
1705-1711
Study of the individual cytochrome b5 and cytochrome b5 reductase domains of Ncb5or reveals a unique heme pocket and a possible role of the CS domain
2010
Deng, B.; Parthasarathy, S.; Wang, W.; Gibney, B.R.; Battaile, K.P.; Lovell, S.; Benson, D.R.; Zhu, H.
J. Biol. Chem.
285
30181-30191
Conformational studies on the DELTA8(E,Z)-sphingolipid desaturase from Helianthus annuus with chiral fluoropalmitic acids as mechanistic probes
2010
Habel, A.; Sperling, P.; Bartram, S.; Heinz, E.; Boland, W.
J. Org. Chem.
75
4975-4982
L-type calcium channels and cytochrome b5 reductase are components of protein complexes tightly associated with lipid rafts microdomains of the neuronal plasma membrane
2010
Marques-da-Silva, D.; Samhan-Arias, A.K.; Tiago, T.; Gutierrez-Merino, C.
J. Proteomics
73