Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 7.6.2.2 - ABC-type xenobiotic transporter and Organism(s) Homo sapiens and UniProt Accession Q5T3U5

for references in articles please use BRENDA:EC7.6.2.2
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
IUBMB Comments
An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. Does not undergo phosphorylation during the transport process. The enzymes from Gram-positive bacteria and eukaryotic cells export a number of drugs with unusual specificity, covering various groups of unrelated substances while ignoring some that are closely related structurally. Several distinct enzymes may be present in a single eukaryotic cell. Many of them also transport glutathione---drug conjugates (see EC 7.6.2.3, ABC-type glutathione-S-conjugate transporter) while others also show some 'flippase' activity (cf. EC 7.6.2.1, P-type phospholipid transporter).
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Homo sapiens
UNIPROT: Q5T3U5
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Homo sapiens
The expected taxonomic range for this enzyme is: Eukaryota, Bacteria, Archaea
Reaction Schemes
+
+
xenobiotic[side 1]
=
+
+
xenobiotic[side 2]
Synonyms
p-glycoprotein, abcb1, abcg2, atp-binding cassette transporter, abcc2, breast cancer resistance protein, abcc1, multidrug resistance-associated protein, mdr1a, multidrug transporter, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
ABC drug transporter
-
ABCB1
ABCC1
ABCC10
-
-
ABCC2
ABCC3
-
-
ABCC4
ABCG2
ATP phosphohydrolase (xenobiotic-exporting)
-
-
-
-
ATP-binding cassette drug transporter
-
ATP-binding cassette G subfamily member 2
-
-
ATP-binding cassette transporter
-
breast cancer resistance protein
canalicular multispecific organic anion transporter
MDR-ABC transporter
-
-
MDR1 P-glycoprotein
-
-
MDR1b
-
-
MOAT
-
-
MRD1a
-
-
MRP
-
-
-
-
MRP1/ABCC1
-
-
MRP3/ABCC3
-
-
MRP7
-
-
multidrug resistance associated protein 5
-
-
multidrug resistance gp170
-
-
multidrug resistance protein
-
-
multidrug resistance protein 1
-
-
multidrug resistance protein 2
-
-
multidrug resistance protein 3
-
-
multidrug resistance protein 4
-
-
multidrug resistance protein 7
-
-
multidrug resistance-associated protein 1
-
-
multidrug resistance-associated protein 2
multidrug resistance-associated protein 5
-
-
multidrug resistance-linked ATP-binding cassette transporter
-
multidrug resistanceassociated protein 1
-
-
multidrug resistant transporter
-
multidrug transporter
multidrug-resistance protein
-
-
-
-
multidrugresistance 1
-
P-glycoprotein
P-glycoprotein-ATPase
-
-
P-gp ABC transporter
-
-
PGY1
-
-
phospho-glycoprotein
-
-
transporter protein MRP
-
-
-
-
xenobiotic ABC efflux transporter
-
-
xenobiotic-transporting ATPase
-
-
-
-
additional information
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
ATP + H2O + xenobiotic[side 1] = ADP + phosphate + xenobiotic[side 2]
show the reaction diagram
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis of phosphoric ester
-
-
-
-
PATHWAY SOURCE
PATHWAYS
-
-
SYSTEMATIC NAME
IUBMB Comments
ATP phosphohydrolase (ABC-type, xenobiotic-exporting)
An ATP-binding cassette (ABC) type transporter, characterized by the presence of two similar ATP-binding domains/proteins and two integral membrane domains/proteins. Does not undergo phosphorylation during the transport process. The enzymes from Gram-positive bacteria and eukaryotic cells export a number of drugs with unusual specificity, covering various groups of unrelated substances while ignoring some that are closely related structurally. Several distinct enzymes may be present in a single eukaryotic cell. Many of them also transport glutathione---drug conjugates (see EC 7.6.2.3, ABC-type glutathione-S-conjugate transporter) while others also show some 'flippase' activity (cf. EC 7.6.2.1, P-type phospholipid transporter).
CAS REGISTRY NUMBER
COMMENTARY hide
9000-83-3
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
ATP + H2O + cytarabine[side 1]
ADP + phosphate + cytarabine[side 2]
show the reaction diagram
substrate for ABCC10
-
-
?
ATP + H2O + xenobiotic[side 1]
ADP + phosphate + xenobiotic[side 2]
show the reaction diagram
-
-
-
?
2,4-dinitrophenyl S-glutathione/in + ATP + H2O
2,4-dinitrophenyl S-glutathione/out + ADP + H2O
show the reaction diagram
-
-
-
?
6-mercaptopurine/in + ATP + H2O
6-mercaptopurine/out + ADP + phosphate
show the reaction diagram
-
-
-
?
8-azido-ATP + H2O + xenobiotic/in
8-azido-ADP + phosphate + xenobiotic/out
show the reaction diagram
-
-
-
-
?
9-(2-phosphonylmethoxyethyl)adenine/in + ATP + H2O
9-(2-phosphonylmethoxyethyl)adenine/out + ADP + phosphate
show the reaction diagram
-
-
-
?
aflatoxin B1-epoxide-GSH conjugate/in + ATP + H2O
aflatoxin B1-epoxide-GSH conjugate/out + ADP + phosphate
show the reaction diagram
-
-
-
?
aflatoxin B1/in + ATP + H2O
aflatoxin B1/out + ADP + phosphate
show the reaction diagram
ATP + H2O
?
show the reaction diagram
-
-
-
-
?
ATP + H2O
ADP + phosphate
show the reaction diagram
-
-
-
-
?
ATP + H2O + 1,13-bis[4'-(4H-chromen-4-on-2-yl)phenyl]-N-(benzyl)-1,4,10,13-tetraoxa-7-azatridecane/in
ADP + phosphate + 1,13-bis[4'-(4H-chromen-4-on-2-yl)phenyl]-N-(benzyl)-1,4,10,13-tetraoxa-7-azatridecane/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + 17beta-estradiol 17-(beta-D-glucuronide)/in
ADP + phosphate + 17beta-estradiol 17-(beta-D-glucuronide)/out
show the reaction diagram
ATP + H2O + 17beta-glucuronosyl oestradiol/in
ADP + phosphate + 17beta-glucuronosyl oestradiol/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + 2',3'-dideoxycytidine/in
ADP + phosphate + 2',3'-dideoxycytidine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein/in
ADP + phosphate + 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + 2',7'-bis-(3-carboxyethyl)-5-carboxyfluorescein/in
ADP + phosphate + 2',7'-bis-(3-carboxyethyl)-5-carboxyfluorescein/out
show the reaction diagram
-
fluorescent substrate
-
-
?
ATP + H2O + 2',7'-bis-(3-carboxyethyl)-6-carboxyfluorescein/in
ADP + phosphate + 2',7'-bis-(3-carboxyethyl)-6-carboxyfluorescein/out
show the reaction diagram
-
fluorescent substrate
-
-
?
ATP + H2O + 2'-(4-ethoxyphenyl)-5-(4-methyl-1-piperazinyl)-2,5'-bis-1H-benzimidazole/in
ADP + phosphate + 2'-(4-ethoxyphenyl)-5-(4-methyl-1-piperazinyl)-2,5'-bis-1H-benzimidazole/out
show the reaction diagram
-
Hoechst 33342
-
-
?
ATP + H2O + 2,4-dinitrophenyl-S-glutathione[side 1]
ADP + phosphate + 2,4-dinitrophenyl-S-glutathione[side 2]
show the reaction diagram
-
-
-
?
ATP + H2O + 2,5-dimethoxy-4-iodoamphetamine/in
ADP + phosphate + 2,5-dimethoxy-4-iodoamphetamine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + 2,7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester[side 1]
ADP + phosphate + 2,7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester[side 2]
show the reaction diagram
-
-
-
-
?
ATP + H2O + 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine[side 1]
ADP + phosphate + 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine[side 2]
show the reaction diagram
ATP + H2O + 3,4-methylenedioxy-alpha-ethylphenethylamine/in
ADP + phosphate + 3,4-methylenedioxy-alpha-ethylphenethylamine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + 4-(2-aminoethyl)benzenesulfonylfluoride/in
ADP + phosphate + 4-(2-aminoethyl)benzenesulfonylfluoride/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + 4-aminohippurate[side 1]
ADP + phosphate + 4-aminohippurate[side 2]
show the reaction diagram
substrate for MPR2
-
-
?
ATP + H2O + 4-aminohippuric acid/in
ADP + phosphate + 4-aminohippuric acid/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + 5-(glutathione-S-yl)-N-methyl-alpha-methyldopamine/in
ADP + phosphate + 5-(glutathione-S-yl)-N-methyl-alpha-methyldopamine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + 5-fluorouracil[side 1]
ADP + phosphate + 5-fluorouracil[side 2]
show the reaction diagram
ATP + H2O + 6-thioguanine[side 1]
ADP + phosphate + 6-thioguanine[side 2]
show the reaction diagram
substrate for ABCC4
-
-
?
ATP + H2O + 9-hydroxyrisperidone/in
ADP + phosphate + 9-hydroxyrisperidone/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + acitretin/in
ADP + phosphate + acitretin/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + acridine orange[side 1]
ADP + phosphate + acridine orange[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + actinomycin D[side 1]
ADP + phosphate + actinomycin D[side 2]
show the reaction diagram
ATP + H2O + adefovir/in
ADP + phosphate + adefovir/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + adevovir[side 1]
ADP + phosphate + adevovir[side 2]
show the reaction diagram
substrate for MPR2
-
-
?
ATP + H2O + aflatoxin B[side 1]
ADP + phosphate + aflatoxin B[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + allopurinol/in
ADP + phosphate + allopurinol/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + amiodarone[side 1]
ADP + phosphate + amiodarone[side 2]
show the reaction diagram
ATP + H2O + ampicillin[side 1]
ADP + phosphate + ampicillin[side 2]
show the reaction diagram
substrate for MPR2
-
-
?
ATP + H2O + amprenavir[side 1]
ADP + phosphate + amprenavir[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + arsenite[side 1]
ADP + phosphate + arsenite[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + asimadoline[side 1]
ADP + phosphate + asimadoline[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + azacytidine[side 1]
ADP + phosphate + azacytidine[side 2]
show the reaction diagram
substrate for ABCC4
-
-
?
ATP + H2O + azidopine[side 1]
ADP + phosphate + azidopine[side 2]
show the reaction diagram
ATP + H2O + azidothymidine[side 1]
ADP + phosphate + azidothymidine[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + azithromycin[side 1]
ADP + phosphate + azithromycin[side 2]
show the reaction diagram
substrate for MPR2
-
-
?
ATP + H2O + BCECF-acetoxymethylester[side 1]
ADP + phosphate + BCECF-acetoxymethylester[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + bepridil[side 1]
ADP + phosphate + bepridil[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + bilirubin[side 1]
ADP + phosphate + bilirubin[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + bisantrene[side 1]
ADP + phosphate + bisantrene[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + Bodipy-verapamil/in
ADP + phosphate + Bodipy-verapamil/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + buspirone/in
ADP + phosphate + buspirone/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + C12E08/in
ADP + phosphate + C12E08/out
show the reaction diagram
-
-
-
?
ATP + H2O + calcein acetoxymethylester/in
ADP + phosphate + calcein acetoxymethylester/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + calcein acetoxymethylester[side 1]
ADP + phosphate + calcein acetoxymethylester[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + calcein-acetoxymethylester[side 1]
ADP + phosphate + calcein-acetoxymethylester[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + calcein/in
ADP + phosphate + calcein/out
show the reaction diagram
ATP + H2O + calcein[side 1]
ADP + phosphate + calcein[side 2]
show the reaction diagram
ATP + H2O + calphostin C[side 1]
ADP + phosphate + calphostin C[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + cAMP/in
ADP + phosphate + cAMP/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cefazolin/in
ADP + phosphate + cefazolin/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cefmetazole/in
ADP + phosphate + cefmetazole/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cefodizime[side 1]
ADP + phosphate + cefodizime[side 2]
show the reaction diagram
substrate for MPR2
-
-
?
ATP + H2O + cefoperazone[side 1]
ADP + phosphate + cefoperazone[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + cefotaxime/in
ADP + phosphate + cefotaxime/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + ceftizoxime/in
ADP + phosphate + ceftizoxime/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + ceftriaxone[side 1]
ADP + phosphate + ceftriaxone[side 2]
show the reaction diagram
ATP + H2O + celecoxib/in
ADP + phosphate + celecoxib/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cerivastatin[side 1]
ADP + phosphate + cerivastatin[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + cGMP/in
ADP + phosphate + cGMP/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + chenodeoxycholylglycine/in
ADP + phosphate + chenodeoxycholylglycine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + chenodeoxycholyltaurine/in
ADP + phosphate + chenodeoxycholyltaurine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + chlorambucil[side 1]
ADP + phosphate + chlorambucil[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + chlorpromazine/in
ADP + phosphate + chlorpromazine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + chlorpromazine[side 1]
ADP + phosphate + chlorpromazine[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + cholate/in
ADP + phosphate + cholate/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cholesterol/in
ADP + phosphate + cholesterol/out
show the reaction diagram
ATP + H2O + cholesterol[side 1]
ADP + phosphate + cholesterol[side 2]
show the reaction diagram
the enzyme does not catalyze significant cholesterol transport in vivo
-
-
?
ATP + H2O + cholylglycine/in
ADP + phosphate + cholylglycine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cholytaurine/in
ADP + phosphate + cholytaurine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + chrysin[side 1]
ADP + phosphate + chrysin[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + cidofovir[side 1]
ADP + phosphate + cidofovir[side 2]
show the reaction diagram
substrate for MPR2
-
-
?
ATP + H2O + cimetidine[side 1]
ADP + phosphate + cimetidine[side 2]
show the reaction diagram
ATP + H2O + ciprofloxacin[side 1]
ADP + phosphate + ciprofloxacin[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + cisplatin[side 1]
ADP + phosphate + cisplatin[side 2]
show the reaction diagram
substrate for P-glycoprotein and MPR2
-
-
?
ATP + H2O + citalopram/in
ADP + phosphate + citalopram/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + clarithromycin[side 1]
ADP + phosphate + clarithromycin[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + clorambucil[side 1]
ADP + phosphate + clorambucil[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + colchicine/in
ADP + phosphate + colchicine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + colchicine[side 1]
ADP + phosphate + colchicine[side 2]
show the reaction diagram
ATP + H2O + cyclic guanosine monophosphate/in
ADP + phosphate + cyclic guanosine monophosphate/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cyclobenzaprine/in
ADP + phosphate + cyclobenzaprine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cyclophosphamide[side 1]
ADP + phosphate + cyclophosphamide[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + cyclosporin A/in
ADP + phosphate + cyclosporin A/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cyclosporin A[side 1]
ADP + phosphate + cyclosporin A[side 2]
show the reaction diagram
substrate for P-glycoprotein and BCRP
-
-
?
ATP + H2O + cyclosporin H[side 1]
ADP + phosphate + cyclosporin H[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + cyclosporine A/in
ADP + phosphate + cyclosporine A/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cyclosporine A[side 1]
ADP + phosphate + cyclosporine A [side 2]
show the reaction diagram
-
-
-
?
ATP + H2O + cyclosporine A[side 1]
ADP + phosphate + cyclosporine A[side 2]
show the reaction diagram
-
-
-
?
ATP + H2O + cyclosporine[side 1]
ADP + phosphate + cyclosporine[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + cytarabine/in
ADP + phosphate + cytarabine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cytarabine[side 1]
ADP + phosphate + cytarabine[side 2]
show the reaction diagram
ATP + H2O + daunomycin/in
ADP + phosphate + daunomycin/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + daunomycin[side 1]
ADP + phosphate + daunomycin[side 2]
show the reaction diagram
-
-
-
?
ATP + H2O + daunorubicin/in
ADP + phosphate + daunorubicin/out
show the reaction diagram
ATP + H2O + daunorubicin[side 1]
ADP + phosphate + daunorubicin[side 2]
show the reaction diagram
ATP + H2O + dehydroepiandrosterone sulfate/in
ADP + phosphate + dehydroepiandrosterone sulfate/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + dehydroepiandrosterone sulfate[side 1]
ADP + phosphate + dehydroepiandrosterone sulfate[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + dehydroepiandrosterone-3-sulfate/in
ADP + phosphate + dehydroepiandrosterone-3-sulfate/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + delavirdine[side 1]
ADP + phosphate + delavirdine[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + deoxycholylglycine/in
ADP + phosphate + deoxycholylglycine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + diazepam/in
ADP + phosphate + diazepam/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + diclofenac/in
ADP + phosphate + diclofenac/out
show the reaction diagram
-
substrate of BCRP, but not of P-gp and MDR1
-
-
?
ATP + H2O + digoxin/in
ADP + phosphate + digoxin/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + digoxin[side 1]
ADP + phosphate + digoxin[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + diltiazem/in
ADP + phosphate + diltiazem/out
show the reaction diagram
ATP + H2O + diltiazem[side 1]
ADP + phosphate + diltiazem[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + dinitrophenyl[side 1]
ADP + phosphate + dinitrophenyl[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + dipyridamole/in
ADP + phosphate + dipyridamole/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + dipyridamole[side 1]
ADP + phosphate + dipyridamole[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + docetaxel/in
ADP + phosphate + docetaxel/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + docetaxel[side 1]
ADP + phosphate + docetaxel[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + doxorubicin/in
ADP + phosphate + doxorubicin/out
show the reaction diagram
ATP + H2O + doxorubicin[side 1]
ADP + phosphate + doxorubicin[side 2]
show the reaction diagram
ATP + H2O + doxycycline[side 1]
ADP + phosphate + doxycycline[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + E217betaG/in
ADP + phosphate + E217betaG/out
show the reaction diagram
-
MRP3 preferentially transports E217betaG with a medium affinity and a very high capacity, while MRP1 transports E217betaG with a higher affinity but with much lower capacity
-
-
?
ATP + H2O + edaravone glucuronide/in
ADP + phosphate + edaravone glucuronide/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + endosulfan[side 1]
ADP + phosphate + endosulfan[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + epirubicin[side 1]
ADP + phosphate + epirubicin[side 2]
show the reaction diagram
substrate for P-glycoprotein, BCRP, and MPR2
-
-
?
ATP + H2O + epothilone B/in
ADP + phosphate + epothilone B/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + erythromycin[side 1]
ADP + phosphate + erythromycin[side 2]
show the reaction diagram
ATP + H2O + estradiol 17-beta-D-glucuronide/in
ADP + phosphate + estradiol 17-beta-D-glucuronide/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + estradiol glucuronide/in
ADP + phosphate + estradiol glucuronide/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + estradiol[side 1]
ADP + phosphate + estradiol[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + estrone-3-sulfate/in
ADP + phosphate + estrone-3-sulfate/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + estrone-3-sulfate[side 1]
ADP + phosphate + estrone-3-sulfate[side 2]
show the reaction diagram
ATP + H2O + estrone[side 1]
ADP + phosphate + estrone[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + ethacrynic acid[side 1]
ADP + phosphate + ethacrynic acid[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + ethidium bromide[side 1]
ADP + phosphate + ethidium bromide[side 2]
show the reaction diagram
-
-
-
?
ATP + H2O + ethinylestradiol-3-O-glucuronide[side 1]
ADP + phosphate + ethinylestradiol-3-O-glucuronide[side 2]
show the reaction diagram
substrate for MPR2
-
-
?
ATP + H2O + etoposide/in
ADP + phosphate + etoposide/out
show the reaction diagram
ATP + H2O + etoposide[side 1]
ADP + phosphate + etoposide[side 2]
show the reaction diagram
ATP + H2O + felodipine[side 1]
ADP + phosphate + felodipine[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + fentanyl[side 1]
ADP + phosphate + fentanyl[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + fexofenadine/in
ADP + phosphate + fexofenadine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + fexofenadine[side 1]
ADP + phosphate + fexofenadine[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + FK-506[side 1]
ADP + phosphate + FK-506[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + FK506[side 1]
ADP + phosphate + FK506[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + fluoxetine/in
ADP + phosphate + fluoxetine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + fluvoxamine/in
ADP + phosphate + fluvoxamine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + folic acid/in
ADP + phosphate + folic acid/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + folic acid[side 1]
ADP + phosphate + folic acid[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + furosemide/in
ADP + phosphate + furosemide/out
show the reaction diagram
ATP + H2O + gefitinib[side 1]
ADP + phosphate + gefitinib[side 2]
show the reaction diagram
ATP + H2O + gemcitabine/in
ADP + phosphate + gemcitabine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + genistein-7-glucoside[side 1]
ADP + phosphate + genistein-7-glucoside[side 2]
show the reaction diagram
substrate for MPR2
-
-
?
ATP + H2O + genistein[side 1]
ADP + phosphate + genistein[side 2]
show the reaction diagram
ATP + H2O + glaucine/in
ADP + phosphate + glaucine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + glutathione disulfide[side 1]
ADP + phosphate + glutathione disulfide[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + glutathione/in
ADP + phosphate + glutathione/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + gramicidin A[side 1]
ADP + phosphate + gramicidin A[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + gramicidin D[side 1]
ADP + phosphate + gramicidin D[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + grepafloxacine[side 1]
ADP + phosphate + grepafloxacine[side 2]
show the reaction diagram
substrate for MPR2
-
-
?
ATP + H2O + grepafloxacin[side 1]
ADP + phosphate + grepafloxacin[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + GSH-conjugated 4-hydroxy-2-nonenal/in
ADP + phosphate + GSH-conjugated 4-hydroxy-2-nonenal/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + GSH-conjugated prostaglandin A2/in
ADP + phosphate + GSH-conjugated prostaglandin A2/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + hematoporphyrin[side 1]
ADP + phosphate + hematoporphyrin[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + Hoechst 33342/in
ADP + phosphate + Hoechst 33342/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + Hoechst 33342[side 1]
ADP + phosphate + Hoechst 33342[side 2]
show the reaction diagram
ATP + H2O + Hoechst33342[side 1]
ADP + phosphate + Hoechst33342[side 2]
show the reaction diagram
ATP + H2O + hydrochlorothiazide/in
ADP + phosphate + hydrochlorothiazide/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + hydroxyurea[side 1]
ADP + phosphate + hydroxyurea[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + hydroxyzine/in
ADP + phosphate + hydroxyzine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + imatinib[side 1]
ADP + phosphate + imatinib[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + indinavir[side 1]
ADP + phosphate + indinavir[side 2]
show the reaction diagram
ATP + H2O + indomethacin/in
ADP + phosphate + indomethacin/out
show the reaction diagram
ATP + H2O + iodoarylazidoprazosin[side 1]
ADP + phosphate + iodoarylazidoprazosin[side 2]
show the reaction diagram
ATP + H2O + irinotecan[side 1]
ADP + phosphate + irinotecan[side 2]
show the reaction diagram
substrate for P-glycoprotein, BCRP, and MPR2
-
-
?
ATP + H2O + itraconazole[side 1]
ADP + phosphate + itraconazole[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + ketoconazole[side 1]
ADP + phosphate + ketoconazole[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + lamivudine[side 1]
ADP + phosphate + lamivudine[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + leucovorin/in
ADP + phosphate + leucovorin/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + leucovorin[side 1]
ADP + phosphate + leucovorin[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + leukotriene B4/in
ADP + phosphate + leukotriene B4/out
show the reaction diagram
-
MRP4 only transports leukotriene B4 in the presence of glutathione
-
-
?
ATP + H2O + leukotriene C4/in
ADP + phosphate + leukotriene C4/out
show the reaction diagram
ATP + H2O + leukotriene C4[side 1]
ADP + phosphate + leukotriene C4[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + leukotriene D4[side 1]
ADP + phosphate + leukotriene D4[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + leukotriene E4/in
ADP + phosphate + leukotriene E4/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + leupeptin[side 1]
ADP + phosphate + leupeptin[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + levofloxacin[side 1]
ADP + phosphate + levofloxacin[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + lidocaine[side 1]
ADP + phosphate + lidocaine[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + loperamide/in
ADP + phosphate + loperamide/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + lopinavir[side 1]
ADP + phosphate + lopinavir[side 2]
show the reaction diagram
ATP + H2O + loratadine/in
ADP + phosphate + loratadine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + lovastatin[side 1]
ADP + phosphate + lovastatin[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + lyso-tracker green[side 1]
ADP + phosphate + lyso-tracker green[side 2]
show the reaction diagram
-
-
-
?
ATP + H2O + lysophosphatidylinositol/in
ADP + phosphate + lysophosphatidylinositol/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + melphalan[side 1]
ADP + phosphate + melphalan[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + methotrexate/in
ADP + phosphate + methotrexate/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + methotrexate[side 1]
ADP + phosphate + methotrexate[side 2]
show the reaction diagram
ATP + H2O + methyl parathion[side 1]
ADP + phosphate + methyl parathion[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + midazolam/in
ADP + phosphate + midazolam/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + misoprostol/in
ADP + phosphate + misoprostol/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + mitomycin C[side 1]
ADP + phosphate + mitomycin C[side 2]
show the reaction diagram
ATP + H2O + mitoxantrone[side 1]
ADP + phosphate + mitoxantrone[side 2]
show the reaction diagram
ATP + H2O + monensin/in
ADP + phosphate + monensin/out
show the reaction diagram
-
affinity of verapamil to MDR1 is not affected by pH value. Protein concentration is inversely related to the maximum activation of ATPase activity achieved
-
-
?
ATP + H2O + monoglucuronosyl bilirubin/in
ADP + phosphate + monoglucuronosyl bilirubin/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + morphine[side 1]
ADP + phosphate + morphine[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + MTS-rhodamine [side 1]
ADP + phosphate + MTS-rhodamine [side 2]
show the reaction diagram
the binding site in transmembrane segment 5 is F343C for rhodamine
-
-
?
ATP + H2O + N-(1-phenylcyclohexyl)-3-ethoxypropanamine/in
ADP + phosphate + N-(1-phenylcyclohexyl)-3-ethoxypropanamine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + N-(2'-deoxy-beta-D-ribofuranosyl)-5-cyclohexyl-1H-indole/in
?
show the reaction diagram
-
nontransported substrate of P-glycoprotein
-
-
?
ATP + H2O + N-ethylmaleimide S-glutathione/in
ADP + phosphate + N-ethylmaleimide S-glutathione/out
show the reaction diagram
ATP + H2O + N-isopropyl-1,2-diphenylethylamine/in
ADP + phosphate + N-isopropyl-1,2-diphenylethylamine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + nelfinavir[side 1]
ADP + phosphate + nelfinavir[side 2]
show the reaction diagram
ATP + H2O + nicardipine/in
ADP + phosphate + nicardipine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + nicardipine[side 1]
ADP + phosphate + nicardipine[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + nifedipine/in
ADP + phosphate + nifedipine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + nifedipine[side 1]
ADP + phosphate + nifedipine[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + nisoldipine[side 1]
ADP + phosphate + nisoldipine[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + nitrendipine[side 1]
ADP + phosphate + nitrendipine[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + norfloxacin[side 1]
ADP + phosphate + norfloxacin[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + nortryptiline/in
ADP + phosphate + nortryptiline/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + ochratoxin A[side 1]
ADP + phosphate + ochratoxin A[side 2]
show the reaction diagram
-
-
-
?
ATP + H2O + ofloxacin[side 1]
ADP + phosphate + ofloxacin[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + olmesartan/in
ADP + phosphate + olmesartan/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + olmesartan[side 1]
ADP + phosphate + olmesartan[side 2]
show the reaction diagram
substrate for MPR2
-
-
?
ATP + H2O + ortataxel[side 1]
ADP + phosphate + ortataxel[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + p-methoxy-ethylamphetamine/in
ADP + phosphate + p-methoxy-ethylamphetamine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + paclitaxel/in
ADP + phosphate + paclitaxel/out
show the reaction diagram
ATP + H2O + para-methoxy-ethylamphetamine/in
ADP + phosphate + para-methoxy-ethylamphetamine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + paraquat[side 1]
ADP + phosphate + paraquat[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + paroxetine/in
ADP + phosphate + paroxetine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + pentazocine[side 1]
ADP + phosphate + pentazocine[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + pepstatin A[side 1]
ADP + phosphate + pepstatin A[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + phenothiazine[side 1]
ADP + phosphate + phenothiazine[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + pheophorbide A[side 1]
ADP + phosphate + pheophorbide A[side 2]
show the reaction diagram
-
-
-
?
ATP + H2O + phloridzin[side 1]
ADP + phosphate + phloridzin[side 2]
show the reaction diagram
substrate for MPR2
-
-
?
ATP + H2O + pirarubicin/in
ADP + phosphate + pirarubicin/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + pravastatin[side 1]
ADP + phosphate + pravastatin[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + prazosin/in
ADP + phosphate + prazosin/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + prazosin[side 1]
ADP + phosphate + prazosin[side 2]
show the reaction diagram
-
-
-
?
ATP + H2O + prednisone/in
ADP + phosphate + prednisone/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + probenecid/in
ADP + phosphate + probenecid/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + progesterone/in
ADP + phosphate + progesterone/out
show the reaction diagram
ATP + H2O + progesterone[side 1]
ADP + phosphate + progesterone[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + propafenone[side 1]
ADP + phosphate + propafenone[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + propoxyphene/in
ADP + phosphate + propoxyphene/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + prostaglandin A2/in
ADP + phosphate + prostaglandin A2/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + prostaglandin E1/in
ADP + phosphate + prostaglandin E1/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + prostaglandin E2/in
ADP + phosphate + prostaglandin E2/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + prostaglandin E2[side 1]
ADP + phosphate + prostaglandin E2[side 2]
show the reaction diagram
substrate for MRP1
-
-
?
ATP + H2O + prostaglandin F2alpha/in
ADP + phosphate + prostaglandin F2alpha/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + PSC-833[side 1]
ADP + phosphate + PSC-833[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + puromycin/in
ADP + phosphate + puromycin/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + quercetin 4'-beta-glucoside[side 1]
ADP + phosphate + quercetin 4'-beta-glucoside[side 2]
show the reaction diagram
substrate for MPR2
-
-
?
ATP + H2O + quercetin[side 1]
ADP + phosphate + quercetin[side 2]
show the reaction diagram
ATP + H2O + quinidine/in
ADP + phosphate + quinidine/out
show the reaction diagram
ATP + H2O + quinidine[side 1]
ADP + phosphate + quinidine[side 2]
show the reaction diagram
ATP + H2O + ranitidine[side 1]
ADP + phosphate + ranitidine[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + rapamycin[side 1]
ADP + phosphate + rapamycin[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + repaglinide/in
ADP + phosphate + repaglinide/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + reserpine[side 1]
ADP + phosphate + reserpine[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + rhodamine 123 /in
ADP + phosphate + rhodamine 123 /out
show the reaction diagram
-
-
-
-
?
ATP + H2O + rhodamine 123/in
ADP + phosphate + rhodamine 123/out
show the reaction diagram
ATP + H2O + rhodamine 123[side 1]
ADP + phosphate + rhodamine 123[side 2]
show the reaction diagram
ATP + H2O + rhodamine 6G[side 1]
ADP + phosphate + rhodamine 6G[side 2]
show the reaction diagram
-
-
-
?
ATP + H2O + rhodamine B/in
ADP + phosphate + rhodamine B/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + rhodamine-123[side 1]
ADP + phosphate + rhodamine-123[side 2]
show the reaction diagram
-
-
-
-
?
ATP + H2O + riboflavin[side 1]
ADP + phosphate + riboflavin[side 2]
show the reaction diagram
ATP + H2O + rifampicin[side 1]
ADP + phosphate + rifampicin[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + risperidone/in
ADP + phosphate + risperidone/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + ritonavir/in
ADP + phosphate + ritonavir/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + ritonavir[side 1]
ADP + phosphate + ritonavir[side 2]
show the reaction diagram
ATP + H2O + rosuvastatin[side 1]
ADP + phosphate + rosuvastatin[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + S-2,4-dinitrophenylglutathione/in
ADP + phosphate + S-2,4-dinitrophenylglutathione/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + salmeterol/in
ADP + phosphate + salmeterol/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + saquinavir/in
ADP + phosphate + saquinavir/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + saquinavir[side 1]
ADP + phosphate + saquinavir[side 2]
show the reaction diagram
ATP + H2O + sertraline/in
ADP + phosphate + sertraline/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + simvastatin[side 1]
ADP + phosphate + simvastatin[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + sirolimus[side 1]
ADP + phosphate + sirolimus[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + SN-38/in
ADP + phosphate + SN-38/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + SN-38[side 1]
ADP + phosphate + SN-38[side 2]
show the reaction diagram
ATP + H2O + sparfloxacin[side 1]
ADP + phosphate + sparfloxacin[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + sphingosine-1-phosphate/in
ADP + phosphate + sphingosine-1-phosphate/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + staurosporine[side 1]
ADP + phosphate + staurosporine[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + tacrolimus[side 1]
ADP + phosphate + tacrolimus[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + talinolol/in
ADP + phosphate + talinolol/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + tamoxifen[side 1]
ADP + phosphate + tamoxifen[side 2]
show the reaction diagram
ATP + H2O + tariquidar [side 1]
ADP + phosphate + tariquidar [side 2]
show the reaction diagram
-
-
-
?
ATP + H2O + taurocholate/in
ADP + phosphate + taurocholate/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + taxol[side 1]
ADP + phosphate + taxol[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + telmisartan/in
ADP + phosphate + telmisartan/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + temocaprilate[side 1]
ADP + phosphate + temocaprilate[side 2]
show the reaction diagram
substrate for MPR2
-
-
?
ATP + H2O + temozolomide[side 1]
ADP + phosphate + temozolomide[side 2]
show the reaction diagram
substrate for ABCB1
-
-
?
ATP + H2O + teniposide[side 1]
ADP + phosphate + teniposide[side 2]
show the reaction diagram
ATP + H2O + tenofovir/in
ADP + phosphate + tenofovir/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + terfenadine[side 1]
ADP + phosphate + terfenadine[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + tetracycline[side 1]
ADP + phosphate + tetracycline[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + thromboxane B2/in
ADP + phosphate + thromboxane B2/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + tiapamil[side 1]
ADP + phosphate + tiapamil[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + topotecan/in
ADP + phosphate + topotecan/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + topotecan[side 1]
ADP + phosphate + topotecan[side 2]
show the reaction diagram
ATP + H2O + trans-flupentixol[side 1]
ADP + phosphate + trans-flupentixol[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + trans-resveratrol[side 1]
ADP + phosphate + trans-resveratrol[side 2]
show the reaction diagram
-
-
-
?
ATP + H2O + trazodone/in
ADP + phosphate + trazodone/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + trifluoperazine[side 1]
ADP + phosphate + trifluoperazine[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + Triton X-100/in
ADP + phosphate + Triton X-100/out
show the reaction diagram
above the critical micellar concentration, Triton X-100 leads to a rapid and irreversible decrease in extracellular acidification rate in both, wild-type and transfected cells which is due to cell lysis
-
-
?
ATP + H2O + Tween 80/in
ADP + phosphate + Tween 80/out
show the reaction diagram
-
-
-
?
ATP + H2O + urate/in
ADP + phosphate + urate/out
show the reaction diagram
ATP + H2O + ursodeoxycholylglycine/in
ADP + phosphate + ursodeoxycholylglycine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + ursodeoxycholyltaurine/in
ADP + phosphate + ursodeoxycholyltaurine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + valinomycin/in
ADP + phosphate + valinomycin/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + valinomycin[side 1]
ADP + phosphate + valinomycin[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + valspodar[side 1]
ADP + phosphate + valspodar[side 2]
show the reaction diagram
substrate for P-glycoprotein
-
-
?
ATP + H2O + verapamil [side 1]
ADP + phosphate + verapamil [side 2]
show the reaction diagram
the binding site in transmembrane segment 5 is I306C for verapamil
-
-
?
ATP + H2O + verapamil/in
ADP + phosphate + verapamil/out
show the reaction diagram
ATP + H2O + verapamil[side 1]
ADP + phosphate + verapamil[side 2]
show the reaction diagram
ATP + H2O + vinblastine sulfate/in
ADP + phosphate + vinblastine sulfate/out
show the reaction diagram
-
-
-
?
ATP + H2O + vinblastine/in
ADP + phosphate + vinblastine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + vinblastine[side 1]
ADP + phosphate + vinblastine[side 2]
show the reaction diagram
ATP + H2O + vincristine sulfate/in
ADP + phosphate + vincristine sulfate/out
show the reaction diagram
-
-
-
?
ATP + H2O + vincristine/in
ADP + phosphate + vincristine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + vincristine[side 1]
ADP + phosphate + vincristine[side 2]
show the reaction diagram
ATP + H2O + VP-16/in
ADP + phosphate + VP-16/out
show the reaction diagram
ATP + H2O + xenobiotic/in
ADP + phosphate + xenobiotic/out
show the reaction diagram
ATP + H2O + xenobiotic[side 1]
ADP + phosphate + xenobiotic[side 2]
show the reaction diagram
ATP + H2O + zidovudine[side 1]
ADP + phosphate + zidovudine[side 2]
show the reaction diagram
substrate for BCRP
-
-
?
ATP + H2O + zolpidem/in
ADP + phosphate + zolpidem/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + [1,2,6,7-3H(N)]dehydroepiandrosterone-3-sulfate/in
ADP + phosphate + [1,2,6,7-3H(N)]dehydroepiandrosterone-3-sulfate/out
show the reaction diagram
-
-
-
-
?
colchicine/in + ATP + H2O
colchicine/out + ADP + phosphate
show the reaction diagram
-
-
-
?
cysteinyl leukotriene C4/in + ATP + H2O
cysteinyl leukotriene C4/out + ADP + phosphate
show the reaction diagram
-
-
-
?
daunorubicin/in + ATP + H2O
daunorubicin/out + ADP + phosphate
show the reaction diagram
-
-
-
-
?
dexamethasone/in + ATP + H2O
dexamethasone/out + ADP + phosphate
show the reaction diagram
-
-
-
-
?
digoxin/in + ATP + H2O
digoxin/out + ADP + phosphate
show the reaction diagram
-
-
-
-
?
doxorubicin/in + ATP + H2O
doxorubicin/out + ADP + phosphate
show the reaction diagram
estradiol 17-beta-D-glucuronide/in + ATP + H2O
estradiol 17-beta-D-glucuronide/out + ADP + phosphate
show the reaction diagram
etoposide/in + ATP + H2O
etoposide/out + ADP + phosphate
show the reaction diagram
-
-
-
?
glycocholate/in + ATP + H2O
glycocholate/out + ADP + phosphate
show the reaction diagram
-
-
-
?
leukotriene C4/in + ATP + H2O
leukotriene C4/out + ADP + phosphate
show the reaction diagram
leukotriene D4/in + ATP + H2O
leukotriene D4/out + ADP + phosphate
show the reaction diagram
-
-
-
-
?
leukotriene E4/in + ATP + H2O
leukotriene E4/out + ADP + phosphate
show the reaction diagram
-
-
-
?
methotrexate/in + ATP + H2O
methotrexate/out + ADP + phosphate
show the reaction diagram
-
-
-
?
nicardipine/in + ATP + H2O
nicardipine/out + ADP + phosphate
show the reaction diagram
-
-
-
-
?
paclitaxel/in + ATP + H2O
paclitaxel/out + ADP + phosphate
show the reaction diagram
-
-
-
-
?
rhodamine 123/in + ATP + H2O
rhodamine 123/out + ADP + phosphate
show the reaction diagram
-
-
-
-
?
rhodamine B/in + ATP + H2O
rhodamine B/out + ADP + phosphate
show the reaction diagram
-
-
-
-
?
S-(2,4-dinitrophenyl)glutathione/in + ATP + H2O
S-(2,4-dinitrophenyl)glutathione/out + ADP + phosphate
show the reaction diagram
-
-
-
-
?
valinomycin/in + ATP + H2O
valinomycin/out + ADP + phosphate
show the reaction diagram
-
-
-
-
?
verapamil/in + ATP + H2O
verapamil/out + ADP + phosphate
show the reaction diagram
-
-
-
-
?
vinblastine/in + ATP + H2O
vinblastine/out + ADP + phosphate
show the reaction diagram
-
-
-
-
?
vincristine/in + ATP + H2O
vincristine/out + ADP + phosphate
show the reaction diagram
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
ATP + H2O + xenobiotic[side 1]
ADP + phosphate + xenobiotic[side 2]
show the reaction diagram
-
-
-
?
ATP + H2O + 17beta-estradiol 17-(beta-D-glucuronide)/in
ADP + phosphate + 17beta-estradiol 17-(beta-D-glucuronide)/out
show the reaction diagram
ATP + H2O + 4-(2-aminoethyl)benzenesulfonylfluoride/in
ADP + phosphate + 4-(2-aminoethyl)benzenesulfonylfluoride/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + 4-aminohippuric acid/in
ADP + phosphate + 4-aminohippuric acid/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + 5-(glutathione-S-yl)-N-methyl-alpha-methyldopamine/in
ADP + phosphate + 5-(glutathione-S-yl)-N-methyl-alpha-methyldopamine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + adefovir/in
ADP + phosphate + adefovir/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + allopurinol/in
ADP + phosphate + allopurinol/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + calcein/in
ADP + phosphate + calcein/out
show the reaction diagram
-
fluorescent substrate of MRP1
-
-
?
ATP + H2O + cAMP/in
ADP + phosphate + cAMP/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cefazolin/in
ADP + phosphate + cefazolin/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cefmetazole/in
ADP + phosphate + cefmetazole/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cefotaxime/in
ADP + phosphate + cefotaxime/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + ceftizoxime/in
ADP + phosphate + ceftizoxime/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + celecoxib/in
ADP + phosphate + celecoxib/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cGMP/in
ADP + phosphate + cGMP/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + chenodeoxycholylglycine/in
ADP + phosphate + chenodeoxycholylglycine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + chenodeoxycholyltaurine/in
ADP + phosphate + chenodeoxycholyltaurine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cholate/in
ADP + phosphate + cholate/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cholesterol/in
ADP + phosphate + cholesterol/out
show the reaction diagram
-
P-gp may actively mediate cholesterol redistribution in the cell membrane, P-gp mediates the ATP-dependent relocation of cholesterol from the cytosolic leaflet to the exoplasmic leaflet of the plasma membrane, P-gp likely contributes in stabilizing the cholesterol-rich microdomains, rafts and caveolae, and is involved in the regulation of cholesterol trafficking in cells
-
-
?
ATP + H2O + cholesterol[side 1]
ADP + phosphate + cholesterol[side 2]
show the reaction diagram
the enzyme does not catalyze significant cholesterol transport in vivo
-
-
?
ATP + H2O + cholylglycine/in
ADP + phosphate + cholylglycine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cholytaurine/in
ADP + phosphate + cholytaurine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + cyclosporine A[side 1]
ADP + phosphate + cyclosporine A [side 2]
show the reaction diagram
-
-
-
?
ATP + H2O + daunorubicin/in
ADP + phosphate + daunorubicin/out
show the reaction diagram
-
fluorescent substrate of P-glycoprotein
-
-
?
ATP + H2O + dehydroepiandrosterone sulfate/in
ADP + phosphate + dehydroepiandrosterone sulfate/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + deoxycholylglycine/in
ADP + phosphate + deoxycholylglycine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + dipyridamole/in
ADP + phosphate + dipyridamole/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + doxorubicin/in
ADP + phosphate + doxorubicin/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + edaravone glucuronide/in
ADP + phosphate + edaravone glucuronide/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + estrone-3-sulfate/in
ADP + phosphate + estrone-3-sulfate/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + furosemide/in
ADP + phosphate + furosemide/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + GSH-conjugated 4-hydroxy-2-nonenal/in
ADP + phosphate + GSH-conjugated 4-hydroxy-2-nonenal/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + GSH-conjugated prostaglandin A2/in
ADP + phosphate + GSH-conjugated prostaglandin A2/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + hydrochlorothiazide/in
ADP + phosphate + hydrochlorothiazide/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + indomethacin/in
ADP + phosphate + indomethacin/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + leucovorin/in
ADP + phosphate + leucovorin/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + leukotriene B4/in
ADP + phosphate + leukotriene B4/out
show the reaction diagram
-
MRP4 only transports leukotriene B4 in the presence of glutathione
-
-
?
ATP + H2O + leukotriene C4/in
ADP + phosphate + leukotriene C4/out
show the reaction diagram
ATP + H2O + leukotriene E4/in
ADP + phosphate + leukotriene E4/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + lysophosphatidylinositol/in
ADP + phosphate + lysophosphatidylinositol/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + methotrexate/in
ADP + phosphate + methotrexate/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + MTS-rhodamine [side 1]
ADP + phosphate + MTS-rhodamine [side 2]
show the reaction diagram
the binding site in transmembrane segment 5 is F343C for rhodamine
-
-
?
ATP + H2O + olmesartan/in
ADP + phosphate + olmesartan/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + p-methoxy-ethylamphetamine/in
ADP + phosphate + p-methoxy-ethylamphetamine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + paclitaxel/in
ADP + phosphate + paclitaxel/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + probenecid/in
ADP + phosphate + probenecid/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + prostaglandin A2/in
ADP + phosphate + prostaglandin A2/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + prostaglandin E1/in
ADP + phosphate + prostaglandin E1/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + prostaglandin E2/in
ADP + phosphate + prostaglandin E2/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + prostaglandin F2alpha/in
ADP + phosphate + prostaglandin F2alpha/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + rhodamine 123/in
ADP + phosphate + rhodamine 123/out
show the reaction diagram
ATP + H2O + sphingosine-1-phosphate/in
ADP + phosphate + sphingosine-1-phosphate/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + tariquidar [side 1]
ADP + phosphate + tariquidar [side 2]
show the reaction diagram
-
-
-
?
ATP + H2O + taurocholate/in
ADP + phosphate + taurocholate/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + tenofovir/in
ADP + phosphate + tenofovir/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + thromboxane B2/in
ADP + phosphate + thromboxane B2/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + topotecan/in
ADP + phosphate + topotecan/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + urate/in
ADP + phosphate + urate/out
show the reaction diagram
-
MRP4 is the first secretory transporter identified in the bidirectional renal handling of urate and could be a potential drug target in the treatment of hyperuricaemia, regulation, overview
-
-
?
ATP + H2O + ursodeoxycholylglycine/in
ADP + phosphate + ursodeoxycholylglycine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + ursodeoxycholyltaurine/in
ADP + phosphate + ursodeoxycholyltaurine/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + verapamil [side 1]
ADP + phosphate + verapamil [side 2]
show the reaction diagram
the binding site in transmembrane segment 5 is I306C for verapamil
-
-
?
ATP + H2O + verapamil/in
ADP + phosphate + verapamil/out
show the reaction diagram
-
-
-
-
?
ATP + H2O + xenobiotic/in
ADP + phosphate + xenobiotic/out
show the reaction diagram
ATP + H2O + xenobiotic[side 1]
ADP + phosphate + xenobiotic[side 2]
show the reaction diagram
additional information
?
-
COFACTOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(17beta)-N-([trans-4-[(6-amino-9H-purin-9-yl)methyl]cyclohexyl]methyl)-3-oxoandrost-4-ene-17-carboxamide
-
daunorubicin accumulation is 99% of the accumulation in presence of 0.01 mM progesterone
(17beta)-N-[(2E)-4-(6-amino-9H-purin-9-yl)but-2-en-1-yl]-3-oxoandrost-4-ene-17-carboxamide
-
daunorubicin accumulation is 72% of the accumulation in presence of 0.01 mM progesterone
(17beta)-N-[(2Z)-4-(6-amino-9H-purin-9-yl)but-2-en-1-yl]-3-oxoandrost-4-ene-17-carboxamide
-
daunorubicin accumulation is 86% of the accumulation in presence of 0.01 mM progesterone
(17beta)-N-[4-(6-amino-9H-purin-9-yl)but-2-yn-1-yl]-3-oxoandrost-4-ene-17-carboxamide
-
daunorubicin accumulation is 61% of the accumulation in presence of 0.01 mM progesterone
(17beta)-N-[4-(6-amino-9H-purin-9-yl)butyl]-3-oxoandrost-4-ene-17-carboxamide
-
daunorubicin accumulation is 78% of the accumulation in presence of 0.01 mM progesterone
(17beta)-N-[4-[(6-amino-9H-purin-9-yl)methyl]benzyl]-3-oxoandrost-4-ene-17-carboxamide
-
daunorubicin accumulation is 98% of the accumulation in presence of 0.01 mM progesterone
(17beta)-N-[6-(6-amino-9H-purin-9-yl)hexyl]-3-oxoandrost-4-ene-17-carboxamide
-
daunorubicin accumulation is 111% of the accumulation in presence of 0.01 mM progesterone
(1beta,1'beta)-5-bromo-6,6',7,12-tetramethoxy-2-methylberbaman
-
is an effectively and potential agent in reversing Pgp-mediated multidrug resistance by inhibiting the transport function and expression of Pgp
(1E)-1,5-bis[3,5-bis(methoxymethoxy)phenyl]-4,4-dibromopent-1-en-3-one
58.7% inhibition at 0.01 mM
(1E)-1,5-bis[3,5-bis(methoxymethoxy)phenyl]-4,4-dichloropent-1-en-3-one
51.5% inhibition at 0.01 mM
(1E)-1,5-bis[3,5-bis(methoxymethoxy)phenyl]-4,4-difluoropent-1-en-3-one
44.4% inhibition at 0.01 mM
(1E)-1-[3,5-bis(methoxymethoxy)phenyl]-4,4-dimethylpent-1-en-3-one
14.9% inhibition at 0.01 mM
(1E,4E)-1,5-bis(4-hydroxy-3-methoxyphenyl)penta-1,4-dien-3-one
51.8% inhibition at 0.01 mM
(1E,4E)-1,5-bis[3,4-bis(methoxymethoxy)phenyl]penta-1,4-dien-3-one
84.3% inhibition at 0.01 mM
(1E,4E)-1-(2H-1,3-benzodioxol-5-yl)-5-[3,5-bis(methoxymethoxy)phenyl]penta-1,4-dien-3-one
57.4% inhibition at 0.01 mM
(1E,4E)-1-(4-hydroxy-3,5-dimethoxyphenyl)-5-(3,4,5-trimethoxyphenyl)penta-1,4-dien-3-one
82.9% inhibition at 0.01 mM
(1Z,4E)-1,5-bis[3,5-bis(methoxymethoxy)phenyl]-2-chloropenta-1,4-dien-3-one
83.2% inhibition at 0.01 mM
(1Z,4E)-5-[3,5-bis(methoxymethoxy)phenyl]-2-bromo-1-[2-bromo-3,5-bis(methoxymethoxy)phenyl]penta-1,4-dien-3-one
77.4% inhibition at 0.01 mM
(2aR,6aR,12bS,14bS)-10,17-dimethoxy-3,3,6,6-tetramethyl-2a,3,6a,7,12b,14b-hexahydro-2H,6H-chromeno[3,4-c]chromeno[4',3':4,5]pyrano[3,2-h]chromene-13,14-dione
-
inhibits Pgp- and MDR1-mediated daunorubicin transport in NIH-3T3 MDR1 cells
(2aR,6aS,12bR,14bS)-10,17-dimethoxy-3,3,6,6-tetramethyl-2a,3,6a,7,12b,14b-hexahydro-2H,6H-chromeno[3,4-c]chromeno[4',3':4,5]pyrano[3,2-h]chromene-13,14-dione
-
inhibits Pgp- and MDR1-mediated daunorubicin transport in NIH-3T3 MDR1 cells
(2E)-3-[3,5-bis(methoxymethoxy)phenyl]-N-methylprop-2-enamide
6.1% inhibition at 0.01 mM
(2E)-3-[3,5-bis(methoxymethoxy)phenyl]prop-2-enal
9.2% inhibition at 0.01 mM
(2E)-3-[3,5-bis(methoxymethoxy)phenyl]prop-2-enoic acid
0.3% inhibition at 0.01 mM
(2E,4E)-8-methyl-2,4-bis[(pyridin-3-yl)methylidene]-8-azabicyclo[3.2.1]octan-3-one
-
-
(2E,4E)-8-methyl-2,4-bis[(pyridin-4-yl)methylidene]-8-azabicyclo[3.2.1]octan-3-one
-
-
(2E,5E)-2,5-bis[(pyridin-3-yl)methylidene]cyclopentan-1-one
-
-
(2E,6E)-2,6-bis[(1-methyl-1H-imidazol-2-yl)methylidene]cyclohexan-1-one
-
-
(2E,6E)-2,6-bis[(1-methyl-1H-imidazol-5-yl)methylidene]cyclohexan-1-one
-
-
(2E,6E)-2,6-bis[(1-methyl-1H-indol-2-yl)methylidene]cyclohexan-1-one
-
-
(2E,6E)-2,6-bis[(1-methyl-1H-pyrrol-2-yl)methylidene]cyclohexan-1-one
-
-
(2E,6E)-2,6-bis[(2,5-dimethoxyphenyl)methylidene]cyclohexan-1-one
-
-
(2E,6E)-2,6-bis[(2-fluoro-4,5-dimethoxyphenyl)methylidene]cyclohexan-1-one
-
-
(2E,6E)-2,6-bis[(2-fluorophenyl)methylidene]cyclohexan-1-one
30.5% inhibition at 0.01 mM
(2E,6E)-2,6-bis[(2-fluoropyridin-3-yl)methylidene]cyclohexan-1-one
-
-
(2E,6E)-2,6-bis[(2-fluoropyridin-4-yl)methylidene]cyclohexan-1-one
-
-
(2E,6E)-2,6-bis[(3,4,5-trimethoxyphenyl)methylidene]cyclohexan-1-one
-
-
(2E,6E)-2,6-bis[(4-hydroxy-3-methoxyphenyl)methylidene]cyclohexan-1-one
-
-
(2E,6E)-2,6-bis[(pyridin-3-yl)methylidene]cyclohexan-1-one
-
-
(2E,6E)-2,6-bis[(pyridin-4-yl)methylidene]cyclohexan-1-one
-
-
(2E,6E)-2,6-bis[(thiophen-2-yl)methylidene]cyclohexan-1-one
-
-
(2E,6E)-2,6-bis[[3,5-bis(methoxymethoxy)phenyl]methylidene]cyclohexan-1-one
69.8% inhibition at 0.01 mM
(2R,4aR,7bR,9R,11aR,14bR)-2,5,5,9,12,12-hexamethyl-1,3,4,4a,5,8,9,10,11,11a,12,14b-dodecahydrobenzo[c]isochromeno[3,4-g]chromene-7,14(2H,7bH)-dione
-
inhibits Pgp- and MDR1-mediated daunorubicin transport in NIH-3T3 MDR1 cells
(3E,5E)-1-methyl-3,5-bis[(1-methyl-1H-imidazol-2-yl)methylidene]piperidin-4-one
-
-
(3E,5E)-1-methyl-3,5-bis[(3,4,5-trimethoxyphenyl)methylidene]piperidin-4-one
-
-
(3E,5E)-1-methyl-3,5-bis[(pyridin-3-yl)methylidene]piperidin-4-one
-
-
(3E,5E)-1-methyl-3,5-bis[(pyridin-4-yl)methylidene]piperidin-4-one
-
-
-
(3E,5E)-1-methyl-3,5-bis[(thiophen-2-yl)methylidene]piperidin-4-one
-
-
(3E,5E)-3,5-bis[(2,5-dimethoxyphenyl)methylidene]-1-methylpiperidin-4-one
-
-
(3E,5E)-3,5-bis[(2-fluoro-4,5-dimethoxyphenyl)methylidene]-1-methylpiperidin-4-one
-
-
(3E,5E)-3,5-bis[[3,5-bis(methoxymethoxy)phenyl]methylidene]-1-methylpiperidin-4-one
52% inhibition at 0.01 mM
(4E)-5-[3,5-bis(methoxymethoxy)phenyl]-2-[[3,4-bis(methoxymethoxy)phenyl]methyl]-3-oxopent-4-enenitrile
29.9% inhibition at 0.01 mM
(6aS,9bR,15aS,18bR)-2,4,11,13-tetrabromo-7,7,16,16-tetramethyl-6a,15a,16,18b-tetrahydro-6H,15H-chromeno[3,4-c]chromeno[4',3':4,5]pyrano[2,3-g]chromene-9,18(7H,9bH)-dione
-
inhibits Pgp- and MDR1-mediated daunorubicin transport in NIH-3T3 MDR1 cells
(6aS,9bR,15aS,18bR)-3,12-dimethoxy-7,7,16,16-tetramethyl-6a,15a,16,18b-tetrahydro-6H,15H-chromeno[3,4-c]chromeno[4',3':4,5]pyrano[2,3-g]chromene-9,18(7H,9bH)-dione
-
inhibits Pgp- and MDR1-mediated daunorubicin transport in NIH-3T3 MDR1 cells
(R)-4-[(1a,6,10b)-1,1-dichloro-1,1a,6,10b-tetrahydrodibenzo[a,e]cyclopropa[c]cyclohepten-6-yl]-[(5-quinolinyloxy)methyl]-1-piperazineethanol
-
complete inhibition of P-glycoprotein at 0.005 mM
(R)-4-[(1a,6,10b)-1,1-difluoro-1,1a,6,10btetrahydrodibenzo[a,e]cyclopropa[c]cyclohepten-6-yl]-[(5-quin-olinyloxy)methyl]-1-piperazineethanol
-
LSN 335979, P-glycoprotein-specific inhibitor
1,13-bis[4'-(4H-chromen-4-on-2-yl)phenyl]-N-(benzyl)-1,4,10,13-tetraoxa-7-azatridecane
-
competitive inhibitor to doxorubicin binding by P-glycoprotein
1,5-bis[3,4-bis(methoxymethoxy)phenyl]-1,5-bis(phenylsulfanyl)pentan-3-one
26.6% inhibition at 0.01 mM
1,5-bis[3,4-bis(methoxymethoxy)phenyl]-1,5-bis[(2,3-dihydroxypropyl)sulfanyl]pentan-3-one
1.6% inhibition at 0.01 mM
1,5-bis[3,5-bis(methoxymethoxy)phenyl]-1,5-bis(ethylsulfanyl)pentan-3-one
37.1% inhibition at 0.01 mM
1-(4-acetylpiperazin-1-yl)-4-propoxy-9H-thioxanthen-9-one
-
uncompetitive, approximately 1.5fold more potent than verapamil in decreasing the doxorubicin GI50 on K-562 Dox cell line
1-isatin-4-(40-methoxyphenyl)-3-thiosemicarbazone
-
IC50 against KB-3-1 cells 0.0142 mM, against KB-VI cells 0.0033 mM. Displays MDR1-selectivity against all P-glycoprotein expressing cell lines examined, and cross-resistance is no observed. Selectivity is reversed by inhibitors of P-glycoprotein ATPase activity. Compound also shows selectivity for cells expressing mouse and hamster MDR1
1-isatin-4-(40-nitrophenyl)-3-thiosemicarbazone
-
IC50 against KB-3-1 cells 0.0171 mM, against KB-VI cells 0.0021 mM
1-isatin-4-(40-tert-butyl phenyl)-3-thiosemicarbazone
-
IC50 against KB-3-1 cells 0.0159 mM, against KB-VI cells 0.0148 mM
1-[[2-(4-nitrophenyl)ethyl]amino]-4-propoxy-9H-thioxanthen-9-one
-
uncompetitive, approximately 1.5fold more potent than verapamil in decreasing the doxorubicin GI50 on K-562 Dox cell line
10-(3-(dimethylamino)propyl)-2-(trifluoromethyl)phenothiazine
-
-
16alpha-17beta-estradiol 17-(beta-D-glucuronide)
-
transport of aflatoxin B1-epoxide-GSH conjugate
17-beta-estradiol 17-beta-(D-glucuronide)
17beta-estradiol 16-(beta-D-glucuronide)
-
transport of aflatoxin B1-epoxide-GSH conjugate
17beta-estradiol 3-sulfato-17-(beta-D-glucuronide)
-
transport of aflatoxin B1-epoxide-GSH conjugate
2,6-bis(4-(dimethylamino)phenyl)-4-(5-(piperidine-1-carbonothioyl)thien-2-yl)thiopyrylium chloride
-
81% inhibition of MRP1 at 0.01 mM
2,6-bis(4-(dimethylamino)phenyl)-4-(5-(piperidine-1-carbonyl)thien-2-yl)thiopyrylium hexafluorophosphate
-
78% inhibition of MRP1 at 0.01 mM
2,6-di-tert-butyl-4-(5-(piperidine-1-carbonothioyl)thien-2-yl)thiopyrylium hexafluorophosphate
-
11% inhibition of MRP1 at 0.01 mM
2,6-di-tert-butyl-4-(5-(piperidine-1-carbonothioyl)thiophen-2-yl)thiopyrylium chloride
-
32% inhibition of MRP1 at 0.01 mM
2-(4-maleimidoanilino)-naphthalene-6-sulfonic acid
-
-
2-tert-butyl-6-(4-(dimethylamino)phenyl)-4-(5-(piperidine-1-carbonothioyl)thiophen-2-yl)thiopyrylium chloride
-
93% inhibition of MRP1 at 0.01 mM
2-tert-butyl-6-(4-(dimethylamino)phenyl)-4-(5-(piperidine-1-carbonyl)thien-2-yl)thiopyrylium hexafluorophosphate
-
59% inhibition of MRP1 at 0.01 mM
2-[4-(3-ethoxy-1-propenyl)phenyl]-4,5-bis-[4-(2-propylamino)phenyl]-1H-imidazole
-
i.e. OC144-093. Coadministration of OC144-093 with docetaxel enhances the oral bioavailability of docetaxel to a limited extent (8-26%) in humans, and has a good safety profile as well
3-[(3-[[(1,3-dioxo-8-phenyl-3,3a,3b,8,8a,8b-hexahydroindeno[1',2':3,4]cyclobuta[1,2-c]pyrrol-2(1H)-yl)acetyl]oxy]propyl)(methyl)amino]propyl (2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate
-
-
3-[(3-[[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy]propyl)amino]propyl (2E)-3-(anthracen-9-yl)prop-2-enoate
-
-
3-[(3-[[(2E)-3-(3,4-dimethoxyphenyl)prop-2-enoyl]oxy]propyl)(methyl)amino]propyl 10-chloroanthracene-9-carboxylate
-
-
3-[(3-[[(2E)-3-(3,4-dimethoxyphenyl)prop-2-enoyl]oxy]propyl)(methyl)amino]propyl 3,4,5-trimethoxybenzoate
-
-
3-[(3-[[(2E)-3-(3,4-dimethoxyphenyl)prop-2-enoyl]oxy]propyl)(methyl)amino]propyl anthracene-9-carboxylate
-
-
3-[(3-[[3-(1,3-dioxo-8-phenyl-3,3a,3b,8,8a,8b-hexahydroindeno[1',2':3,4]cyclobuta[1,2-c]pyrrol-2(1H)-yl)propanoyl]oxy]propyl)(methyl)amino]propyl (2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate
-
-
3-[(3-[[3-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)propanoyl]oxy]propyl)(methyl)amino]propyl (2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate
-
-
3-[(3-[[bis(4-methoxyphenyl)acetyl]oxy]propyl)(methyl)amino]propyl (2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate
-
-
3-[methyl(3-[[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy]propyl)amino]propyl (2E)-3-(3,4-dimethoxyphenyl)prop-2-enoate
-
-
3-[methyl(3-[[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy]propyl)amino]propyl (2E)-3-(anthracen-9-yl)prop-2-enoate
-
-
3-[methyl(3-[[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy]propyl)amino]propyl (2E)-3-(biphenyl-4-yl)prop-2-enoate
-
-
3-[methyl(3-[[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy]propyl)amino]propyl 3,3-diphenylprop-2-enoate
-
-
3-[methyl(3-[[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy]propyl)amino]propyl 3,4,5-trimethoxybenzoate
-
-
3-[methyl(3-[[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy]propyl)amino]propyl anthracene-9-carboxylate
-
-
3-[methyl(3-[[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy]propyl)amino]propyl biphenyl-4-carboxylate
-
-
3-[[3-[(diphenylacetyl)oxy]propyl](methyl)amino]propyl (2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate
-
-
4-(2-aminoethyl)benzenesulfonylfluoride
-
-
4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide
-
i.e. SC236. The direct inhibitory effects of indomethacin and SC236 on P-gp may contribute to their ability to increase the intracellular retention of doxorubicin and thus enhance its cytotoxicity
5'-O-[4-(fluorosulfonyl)benzoyl]adenosine
-
incubation inhibits ATP hydrolysis and the binding of 8-azido-ATP. 5'-Fluorosulfonylbenzoyl 5'-adenosine is an ATP analog that interacts with both the drug-binding and ATP-binding sites of P-gp, but fluorosulfonyl-mediated crosslinking is observed only at the nucleotide-binding domains
5-[(5-[[(2E)-3-(3,4-dimethoxyphenyl)prop-2-enoyl]oxy]pentyl)(methyl)amino]pentyl 3,4,5-trimethoxybenzoate
-
-
5-[(5-[[(2E)-3-(3,4-dimethoxyphenyl)prop-2-enoyl]oxy]pentyl)(methyl)amino]pentyl anthracene-9-carboxylate
-
-
5-[(5-[[bis(4-methoxyphenyl)acetyl]oxy]pentyl)(methyl)amino]pentyl (2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate
-
-
5-[methyl(5-[[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy]pentyl)amino]pentyl (2E)-3-(biphenyl-4-yl)prop-2-enoate
-
-
5-[methyl(5-[[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy]pentyl)amino]pentyl 3,3-diphenylprop-2-enoate
-
-
8-prenylnaringenin
-
-
9,10-dihydro-5-methoxy-9-oxo-N-{4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]phenyl}-4-acridine
-
i.e. GF120918. A good and safe P-gp inhibitor alternative for cyclosporin A in enhancing the oral bioavailability of paclitaxel
abamectin
-
-
acacetin
-
-
acitretin
-
-
alpha-mangostin
effectively and selectively inhibits enzyme-mediated drug transport and reverses multidrug resistance in ABCG2-overexpressing cancer cells
antibody 5D3
-
-
apigenin
-
-
arsenate
-
competitive inhibitor of daunorubicin transport
auraptene
-
stimulates the ATPase activity of MRP1. No inhibition of MRP1-mediated efflux by auraptene, but auraptene increases the accumulation of daunorubicin in KB-C2 cells
azido-ATP
-
competitive, binding activity of wild-type and mutant enzymes, overview
azidophenacylglutathione
-
competitive inhibitor of daunorubicin transport
benzbromarone
beta-sitosterol-O-glucoside
-
inhibits the efflux of the P-gp substrate rhodamine 123 in a concentration-dependent manner. Good candidates for the development of novel P-gp/MDR1 reversal agents which may enhance the accumulation and efficacy of chemotherapy agents
bisoprolol
-
-
bis[(4aS,6R,8aS)-3-methoxy-11-methyl-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-yl] decanedioate
-
galactamine dimer. the inhibitory activity of the inhibitor on P-gp transport of substrate is evaluated in cells that over-express P-gp
buprenorphine
-
inhibits paclitaxel transport, placental brush border membrane vesicles
byakangelicol
-
shows strong P-gp inhibition from the screening of P-gp inhibitor evaluated by quinidine permeation through the Caco-2 monolayer
carnosic acid
-
increases the accumulation of daunorubicin or rhodamine 123 in KB-C2 cells. The ATPase activity of P-glycoprotein is stimulated
carnosol
-
increases the accumulation of daunorubicin or rhodamine 123 in KB-C2 cells. The ATPase activity of P-glycoprotein is stimulated
carvedilol
-
-
celecoxib
-
-
chenodeoxycholic acid
-
cholecalciferol
-
-
cholesterol
-
presence of cholesterol in liposomes increases the binding affinity of small drug substrates with molecular masses below 500 Da, does not affect that of drugs with molecular mass of between 800 and 900 Da, and suppresses that of valinomycin with a molecular mass greater than 1000
cis-(Z)-flupentixol
-
is a non-competitive inhibitor that interacts with the substrate site but is not transported
curcumin
cyclosporin A
cyclosporine A
-
-
D-alpha-tocopheryl polyethylene glycol 1000 succinate
-
i.e. TPGS 1000, water-soluble Vitamin E derivative. Inhibits substrate-induced ATPase activity without inducing significant ATPase activity on its own. Modulation of ATPase activity correlates with inhibitory potential for P-glycoprotein-mediated efflux
-
deacetylnomilin
-
inhibits the efflux of the P-gp substrate rhodamine 123 in a concentration-dependent manner. Good candidates for the development of novel P-gp/MDR1 reversal agents which may enhance the accumulation and efficacy of chemotherapy agents. Good candidates for the development of novel P-gp/MDR1 reversal agents which may enhance the accumulation and efficacy of chemotherapy agents
deoxycholic acid
-
desloratadine
-
weakly inhibits daunorubicin transport, 19% of the inhibition caused by vanadate, IC50: 0.043 nM, desloratadine is no significant inhibitor of P-gp and should not cause clinical drug interactions with agents that are P-gp substrates
diclofenac
-
inhibits MRP2-mediated drug transport
Digitonin
-
inhibits ATPase activity of P-gp
dipyridamole
doxorubicin
-
cis-inhibition without trans-inhibition on MDR1-mediated vinblastine efflux of Xenopus laevis oocytes expressing human P-glycoprotein
elacridar
flavonoids
-
useful inhibitors for clinical application to multidrug resistance
flurazepam
-
inhibits daunorubicin efflux up to 80%, partially inhibits ATPase activity
genistein
glibenclamide
glyceollins
-
-
gomisin A
-
strongly inhibits P-glycoprotein ATPase activity in cells overexpressing the enzyme. Alters substrate interaction of P-glycoprotein but itself is neither a substrate nor a competitive inhibitor
HEPES
-
uptake of P-glycoprotein substrates is substantially diminished when the HEPES concentration is raised to 25 mM. Addition of 15 or 25 mM HEPES in the uptake buffer results in significant reduction in the accumulation of P-glycoprotein substrates cyclosporine-A, ritonavir, and lopinavir. Bidirectional A-B and B-A transport studies show that permeability ratio in the presence of 25 mM HEPES is significantly higher than control. HEPES stimulates the production of ATP and modulates the energy dependent efflux and uptake processes
hesperidin
-
inhibits the efflux of the P-gp substrate rhodamine 123 in a concentration-dependent manner. Good candidates for the development of novel P-gp/MDR1 reversal agents which may enhance the accumulation and efficacy of chemotherapy agents
indomethacin
Ko143
KR30031
-
-
laniquidar
-
R101933
leukotriene D4
-
transport of aflatoxin B1-epoxide-GSH conjugate
limonin
-
inhibits the efflux of the P-gp substrate rhodamine 123 in a concentration-dependent manner. Good candidates for the development of novel P-gp/MDR1 reversal agents which may enhance the accumulation and efficacy of chemotherapy agents
loratadine
-
inhibits daunorubicin transport, IC50: 0.011 nM, much less inhibitory than cyclosporin A or verapamil, 43% of the inhibition caused by vanadate
losartan
-
-
lovastatin
-
increases the absorption of verapamil (used as an antiarrhythmic agent to control supraventricular tachyarrhythmias) by inhibiting P-glycoprotein
methadone
-
inhibits paclitaxel transport, placental brush border membrane vesicles
methoxypolyethylene17 glycol-beta-caprolactone5
-
amphiphilic diblock copolymer, decreases membrane fluidity and inhibits enzyme-mediated efflux while stimulating the enzyme's ATPase activity up to 3fold
methyl (2E)-3-[3,5-bis(methoxymethoxy)phenyl]prop-2-enoate
8.6% inhibition at 0.01 mM
methyl-beta-cyclodextrin
-
inhibits ATPase activity of P-gp, 5-10 mM, total inhibition
miconazole
-
-
misoprostol
-
-
MK-571
MK571
monoclonal antibiodies
-
morin
-
-
myricetin
-
-
N,N'-[[1,5-bis[3,4-bis(methoxymethoxy)phenyl]-3-oxopentane-1,5-diyl]bis(sulfanediylethane-2,1-diyl)]diacetamide
15.2% inhibition at 0.01 mM
N-(2'-deoxy-beta-D-ribofuranosyl)-5-cyclohexyl-1H-indole
-
nontransported substrate of P-glycoprotein
N-methyl-N-(9-phenyl-2,3,6,7-tetrahydro-1H,5H,12H-pyrido[3,2,1-ij]selenochromeno[2,3-f]quinolin-12-ylidene)methanaminium hexafluorophosphate
-
-
N-[5-[1-(4-[2-[6-methoxy-7-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]-3,4-dihydroisoquinolin-2(1H)-yl]ethyl]phenyl)-1H-1,2,3-triazol-4-yl]-2-propanoylphenyl]quinoline-2-carboxamide
-
N-[6-(dimethylamino)-9-[5-(piperidin-1-ylcarbonyl)thiophen-2-yl]-3H-selenoxanthen-3-ylidene]-N-methylmethanaminium hexafluorophosphate
-
-
N-[6-(dimethylamino)-9-[5-(piperidin-1-ylcarbonyl)thiophen-2-yl]-3H-telluroxanthen-3-ylidene]-N-methylmethanaminium hexafluorophosphate
-
-
N-[6-(dimethylamino)-9-[5-(piperidin-1-ylcarbonyl)thiophen-2-yl]-3H-thioxanthen-3-ylidene]-N-methylmethanaminium hexafluorophosphate
-
-
N-[9-[3-(dimethylamino)phenyl]-2,3,6,7-tetrahydro-1H,5H,12H-pyrido[3,2,1-ij]selenochromeno[2,3-f]quinolin-12-ylidene]-N-methylmethanaminium bromide
-
-
N-[9-[4-(dimethylamino)phenyl]-2,3,6,7-tetrahydro-1H,5H,12H-pyrido[3,2,1-ij]selenochromeno[2,3-f]quinolin-12-ylidene]-N-methylmethanaminium bromide
-
-
nafcillin
-
-
nanoparticles
-
doxorubicin and paclitaxel nanoparticles inhibit P-glycoprotein and transiently deplete ATP, while cyclosporine A and polystyrene nanoparticles do not, overview
-
naringin
-
i.e. 7-[[2-O-(6-deoxy-alpha-L-mannopyra nosyl)-beta-D-glucopyranosyl]oxy]-2,3-dihydro-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzo pyran-4-one. Pre-treatment with naringin prior to doxorubicin treatment increases the sensitivity of the enzyme to doxorubicin, naringin inhibits the doxorubicin-stimulated ATPase activity and may interact directly with the transporter. Naringin seems to modulate the in vivo expression of P-gp
neohesperidin
-
inhibits the efflux of the P-gp substrate rhodamine 123 in a concentration-dependent manner. Good candidates for the development of novel P-gp/MDR1 reversal agents which may enhance the accumulation and efficacy of chemotherapy agents
nigericin
-
-
nobiletin
-
a chemopreventive citrus phytochemical from orange, stimulates the ATPase activity of MRP1. Nobiletin also increases the accumulation of calcein, a fluorescent substrate of MRP1, in KB/MRP cells, and of P-glycoprotein substrate daunorubicin in KB-C2 cells
ortho-vanadate
-
specific inhibitor
orthovanadate
-
non-covalent inhibitor of ABC ATPases catalyzing a photo-oxidative cleavage, characterization of three cleavage sites within MRP1, influence of nucleotides and transported substrates on the cleavage reaction, mechanism
poly(acrylic acid)cysteine
-
-
praeruptorin A
-
modulates Pgp expression
probenecid
progesterone
Promethazine
-
-
propranolol
-
-
PSC833
quercetin
-
-
quinidine
repaglinide
-
-
rivulobirin A
-
shows strong P-gp inhibition from the screening of P-gp inhibitor evaluated by quinidine permeation through the Caco-2 monolayer
S-butyl glutathione
-
transport of aflatoxin B1-epoxide-GSH conjugate
S-decyl-glutathione
S-hexyl glutathione
-
transport of aflatoxin B1-epoxide-GSH conjugate
S-octyl glutathione
-
transport of aflatoxin B1-epoxide-GSH conjugate
S-propyl (2E)-3-[3,5-bis(methoxymethoxy)phenyl]prop-2-enethioate
28.2% inhibition at 0.01 mM
salinomycin
-
treatment of the multidrug resistant cell lines with salinomycin restores a normal drug sensitivity of these cells
salmeterol
-
-
semi-beta-carotene-epoxide
-
-
sildenafil
stigmasterol
-
inhibits the efflux of the P-gp substrate rhodamine 123 in a concentration-dependent manner. Good candidates for the development of novel P-gp/MDR1 reversal agents which may enhance the accumulation and efficacy of chemotherapy agents
sulfinpyrazone
-
-
sulindac
-
-
tariquidar
taurochenodeoxycholic acid
-
taurodeoxycholic acid
-
telmisartan
-
-
tert-butyl (3E,5E)-3,5-bis[(2,5-dimethoxyphenyl)methylidene]-4-oxopiperidine-1-carboxylate
-
-
tert-butyl (4R)-4-(benzyloxy)-1-(tert-butoxycarbonyl)-L-prolyl-N6-[(benzyloxy)carbonyl]-L-lysinate
-
noncompetitive inhibitor towards daunorubicin and Hoechst 33342
tert-butyl 3-[(3S,6S,12aS)-6-(2-methylpropyl)-1,4-dioxo-9-[(prop-2-en-1-yl)oxy]-1,2,3,4,6,7,12,12a-octahydropyrazino[1',2':1,6]pyrido[3,4-b]indol-3-yl]propanoate
-
tert-butyl 3-[(3S,6S,12aS)-9-(cyclopentyloxy)-6-(2-methylpropyl)-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1',2':1,6]pyrido[3,4-b]indol-3-yl]propanoate
-
tert-butyl [(3S,6S,12aS)-9-methoxy-6-(2-methylpropyl)-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1',2':1,6]pyrido[3,4-b]indol-3-yl]acetate
-
tert-butyl [4-[(3S,6S,12aS)-9-methoxy-6-(2-methylpropyl)-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1',2':1,6]pyrido[3,4-b]indol-3-yl]butyl]carbamate
-
tetrahydrocurcumin
-
inhibitory to P-glycoprotein as well as to mitoxantrone resistance protein and multidrug resistance protein1. Inhibition of transport function with concomitant stimulation of ATPase activity
tetrandrine
tomato lectin
-
-
-
trans,trans-4,17(20)-pregnadiene-3,16-dione
-
i.e. Z-guggulsterone. In presence of guggulsterone, fluorescent substrates daunorubicin or rhodamine 123 accumulate in KB-C2 cells. Efflux of rhodamine 123 is inhibited and the accumulation of substrate calcein is increased. ATPase activities of both isoforms ABCB1 And ABCC1 are stimulated
tryptanthrin
-
ursolic acid
-
increases the accumulation of daunorubicin or rhodamine 123 in KB-C2 cells. The ATPase activity of P-glycoprotein is stimulated
valspodar
-
-
vanadate
verapamil
vinblastine
-
-
vincristine
-
alone is a very poor inhibitor of transport of leukotriene C4, together with GSH acts as relatively potent competitive inhibitor
wogonin
-
impairs the function of P-glycoprotein and increases cellular content of etoposide in HL-60 cells. Wogonin may be used to reduce the excretion of anticancer agents via P-glycoprotein and to increase the pharmacological action in cancer cells. Wogonin may play a role in overcoming multidrug resistance
XR9576
-
is a non-competitive inhibitor that interacts with the substrate site but is not transported
zosuquidar
[2-(1H-benzimidazol-2-yl)ethanamine]-4-propoxy-9H-thioxanthen-9-one
-
uncompetitive, causes an accumulation rate of rhodamine-123 similar to that caused by verapamil in the K-562 Dox resistant cell line, and a decrease in ATP consumption by P-gp. At 10 mM, 12.5fold decrease in the GI50 value of doxorubicin in the K-562 Dox resistant cell line, being 2fold more potent than verapamil
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1,13-bis[4'-(4H-chromen-4-on-2-yl)phenyl]-N-(benzyl)-1,4,10,13-tetraoxa-7-azatridecane
-
stimulates ATPase activity by 2.7-fold
2,5-dimethoxy-4-iodoamphetamine
-
-
3,4-methylenedioxy-alpha-ethylphenethylamine
-
-
3-doxyl-17beta-hydroxy-5alpha-androstane
-
stimulation of ATPase-activity arising from co-expression of isoforms ABCG5 and ABCG8
4-androstene-3,17-dione
-
stimulation of ATPase-activity arising from co-expression of isoforms ABCG5 and ABCG8
5-androsten-3beta-ol-17-one
-
stimulation of ATPase-activity arising from co-expression of isoforms ABCG5 and ABCG8
auraptene
-
stimulates the ATPase activity of MRP1. No inhibition of MRP1-mediated efflux by auraptene, but auraptene increases the accumulation of daunorubicin in KB-C2 cells
benzbromarone
Berberine
-
about 4fold stimulation of ATPase activity
bromazepam
-
stimulation of ATPase activity, no effect on daunorubicin efflux
campesterol
-
enhances paclitaxel-stimulated ATPase activity of enzyme
carbamazepine
-
Chlordiazepoxide
-
stimulation of ATPase activity, no effect on daunorubicin efflux
cholesterol
-
presence of cholesterol in liposomes increases the binding affinity of small drug substrates with molecular masses below 500 Da, does not affect that of drugs with molecular mass of between 800 and 900 Da, and suppresses that of valinomycin with a molecular mass greater than 1000. Cholesterol enhances paclitaxel-stimulated ATPase activity of enzyme
Colchicine
-
450 microM, 50% stimulation
diazepam
-
stimulation of ATPase activity, no effect on daunorubicin efflux
diclofenac
-
MRP2-mediated transport of amphipathic lipophilic drugs, stimulates paclitaxel, docetaxel, and saquinavir transport
doxorubicin
-
activates and induces the enzyme
ginsenoside Rh1
-
-
glaucine
-
-
glutathione
hydrastine
-
about 2.5fold stimulation of ATPase activity
L-gamma-glutamyl-S-methyl-L-cysteinylglycine
-
supports transport of vincristine
methoxypolyethylene17 glycol-beta-caprolactone5
-
amphiphilic diblock copolymer, decreases membrane fluidity and inhibits enzyme-mediated efflux while stimulating the enzyme's ATPase activity up to 3fold
MK571
-
slightly activates E217betaG activated ATPase activity of MRP3 at 0.01-0.05 mM and N-ethylmaleimide S-glutathione activated ATPase activity of MRP1 at 500-2000 nM, but inhibits MRP1 activity half-maximally at 0.01 mM, MK571 may be a potential transported substrate for MRP3, 20% stimulation of E217betaG uptake by MRP1 at 500-1000 nM, but inhibits this activity at 0.01-0.05 mM, stimulates E217betaG uptake by MRP3 at 0.002-0.005 mM, but inhibits this activity at 0.05-0.1 mM
monensin
-
protein concentration of enzyme is inversely related to the maximum activation of ATPase activity achieved
N-(1-phenylcyclohexyl)-3-ethoxypropanamine
-
-
N-isopropyl-1,2-diphenylethylamine
-
-
nicardipine
-
-
nobiletin
-
a chemopreventive citrus phytochemical from orange, stimulates the ATPase activity of MRP1. Nobiletin also increases the accumulation of calcein, a fluorescent substrate of MRP1, in KB/MRP cells
Phenobarbital
-
quinidine
-
protein concentration of enzyme is inversely related to the maximum activation of ATPase activity achieved
rhodamine B
-
44 microM, 50% stimulation
rhodamine derivatives
-
enhancement of calcein uptake into MDCK-MDR1 cells by diverse rhodamine analogues, detailed overview
-
rifampicin
-
rosamine derivatives
-
enhancement of calcein uptake into MDCK-MDR1 cells by diverse rosamine analogues, detailed overview
-
S-butyl-GSH
-
supports transport of vincristine
S-ethyl-GSH
-
supports transport of vincristine
schisandrol A
-
isolated from fruit of Schisandra chinensis. Increases cellular retention of P-glycoprotein substrates such as rhodamine 123. Schisandrol A stimulates basal P-glycoprotein ATPase activity, is not competitive to verapamil or progesterone and decreases their Km value without changing Vmax values
sertraline
-
-
sitosterol
-
enhances paclitaxel-stimulated ATPase activity of enzyme
spironolactone
-
stigmasterol
-
enhances paclitaxel-stimulated ATPase activity of enzyme
tariquidar
the substrate inhibits P-gp ATPase activity in membranes, but stimulates ATPase activity when purified P-gp is assayed in the presence of n-dodecyl-beta-D-maltoside/sheep brain lipids. Tariquidar activates the enzyme in presence of lipids, overview
tetrahydrocurcumin
-
inhibitory to P-glycoprotein as well as to mitoxantrone resistance protein and multidrug resistance protein1. Inhibition of transport function with concomitant up to 2.6fold stimulation of ATPase activity
trans,trans-4,17(20)-pregnadiene-3,16-dione
-
i.e. z-guggulsterone, stimulation of ATPase activity, inhibitory to substrate transport
verapamil
vinblastine
vincristine
-
stimulates transport of GSH
additional information
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.195
17beta-estradiol 17-(beta-D-glucuronide)
-
pH 7.0, 37°C, recombinant MRP2
0.016 - 0.0242
17beta-glucuronosyl [6,7-3H]oestradiol
0.0057
2,4-dinitrophenyl S-glutathione/in
-
-
0.108
2,4-dinitrophenyl-S-glutathione
-
pH 7.0, 37°C, recombinant MRP2
0.0027
2,5-dimethoxy-4-iodoamphetamine/in
-
at pH 6.8 and 37°C
0.0046
3,4-methylenedioxy-alpha-ethylphenethylamine/in
-
at pH 6.8 and 37°C
0.000189
aflatoxin B1-epoxide-GSH conjugate/in
-
-
0.0009 - 2.37
ATP
0.0031
calcein/in
-
37°C, pH not specified in the publication
0.037 - 0.72
colchicine/in
0.36 - 2
cyclic guanosine monophosphate/in
0.0004
cyclosporine A/in
-
37°C, pH not specified in the publication
0.0061
daunorubicin/in
-
-
0.394 - 0.826
dexamethasone
0.076 - 0.181
digoxin
0.101 - 0.187
digoxin/in
0.00085
doxorubicin/in
-
37°C, pH not specified in the publication
0.008 - 0.035
E217betaG
0.013 - 0.17
estradiol 17-beta-D-glucuronide/in
0.134
Estrone 3-sulfate
-
pH 7.0, 37°C, recombinant MRP2
0.0057
etoposide/in
-
-
0.13 - 0.26
folic acid/in
0.0071
glaucine/in
-
at pH 6.8 and 37°C
0.248
glycocholate/in
-
-
0.000036 - 0.0109
leukotriene C4/in
4.522
methotrexate
-
pH 7.0, 37°C, recombinant MRP2
0.24 - 0.776
methotrexate/in
0.0037
N-(1-phenylcyclohexyl)-3-ethoxypropanamine/in
-
at pH 6.8 and 37°C
0.00006
N-(2'-deoxy-beta-D-ribofuranosyl)-5-cyclohexyl-1H-indole/in
-
37°C, pH not specified in the publication
0.3
N-ethylmaleimide S-glutathione/in
-
pH 7, 37°C, MRP1
0.0046
N-isopropyl-1,2-diphenylethylamine/in
-
at pH 6.8 and 37°C
0.000383 - 0.0026
nicardipine/in
0.0013 - 0.0016
paclitaxel
0.000665 - 0.0009
paclitaxel/in
0.351
probenecid
-
pH 7.0, 37°C, recombinant MRP2
0.00377 - 0.0207
progesterone/in
0.00788
quinidine
-
pH 6.8, 37°C
0.01 - 0.021
rhodamine 123
0.0118 - 0.0354
rhodamine 123/in
0.007 - 0.014
rhodamine B
0.0109 - 0.0298
rhodamine B/in
0.006
sertraline/in
-
at pH 6.8 and 37°C
0.0022 - 0.0035
valinomycin/in
0.0022 - 0.0115
verapamil
0.000614 - 0.00579
verapamil/in
0.0002 - 0.1455
vinblastine/in
0.0027 - 0.0039
vincristine
0.0055
vincristine/in
-
-
0.0346 - 0.0463
[1,2,6,7-3H(N)]dehydroepiandrosterone-3-sulfate/in
-
additional information
additional information
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.189 - 2.95
ATP
1.25 - 7.81
colchicine/in
0.791 - 5.99
digoxin/in
3.48 - 8.44
nicardipine/in
1.3 - 2.2
paclitaxel/in
1.84 - 8.56
rhodamine 123/in
2.23 - 7.22
rhodamine B/in
5.8
verapamil
-
pH 7.4, 37°C, EPR spin-labeled verapamil
3.28 - 8.27
verapamil/in
1.9 - 6.54
vinblastine/in
additional information
additional information
-
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1.66 - 28.2
colchicine/in
4.23 - 59.2
digoxin/in
1820 - 20400
nicardipine/in
469 - 5630
paclitaxel/in
52 - 692
rhodamine 123/in
74.9 - 641
rhodamine B/in
775 - 13500
verapamil/in
1560 - 3170
vinblastine/in
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.001
(2aR,6aR,12bS,14bS)-10,17-dimethoxy-3,3,6,6-tetramethyl-2a,3,6a,7,12b,14b-hexahydro-2H,6H-chromeno[3,4-c]chromeno[4',3':4,5]pyrano[3,2-h]chromene-13,14-dione
-
recombinant MDR1in NIH-3T3 cells
0.00042
(2aR,6aS,12bR,14bS)-10,17-dimethoxy-3,3,6,6-tetramethyl-2a,3,6a,7,12b,14b-hexahydro-2H,6H-chromeno[3,4-c]chromeno[4',3':4,5]pyrano[3,2-h]chromene-13,14-dione
-
recombinant MDR1in NIH-3T3 cells
0.00077
(2R,4aR,7bR,9R,11aR,14bR)-2,5,5,9,12,12-hexamethyl-1,3,4,4a,5,8,9,10,11,11a,12,14b-dodecahydrobenzo[c]isochromeno[3,4-g]chromene-7,14(2H,7bH)-dione
-
recombinant MDR1in NIH-3T3 cells
0.001
(6aS,9bR,15aS,18bR)-2,4,11,13-tetrabromo-7,7,16,16-tetramethyl-6a,15a,16,18b-tetrahydro-6H,15H-chromeno[3,4-c]chromeno[4',3':4,5]pyrano[2,3-g]chromene-9,18(7H,9bH)-dione
-
recombinant MDR1in NIH-3T3 cells
0.00051
(6aS,9bR,15aS,18bR)-3,12-dimethoxy-7,7,16,16-tetramethyl-6a,15a,16,18b-tetrahydro-6H,15H-chromeno[3,4-c]chromeno[4',3':4,5]pyrano[2,3-g]chromene-9,18(7H,9bH)-dione
-
recombinant MDR1in NIH-3T3 cells
0.00028 - 0.00034
1,13-bis[4'-(4H-chromen-4-on-2-yl)phenyl]-N-(benzyl)-1,4,10,13-tetraoxa-7-azatridecane
-
at 37°C, pH not specified in the publication
0.044 - 0.09
buprenorphine
0.002
cyclosporine A
-
pH and temperature not specified in the publication
0.018
methadone
-
22°C, pH 7.4, inhibition of paclitaxel transport
additional information
additional information
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.00051
(1E,4E)-1,5-bis[3,4-bis(methoxymethoxy)phenyl]penta-1,4-dien-3-one
Homo sapiens
at 37°C, pH not specified in the publication
0.00031
(1E,4E)-1-(4-hydroxy-3,5-dimethoxyphenyl)-5-(3,4,5-trimethoxyphenyl)penta-1,4-dien-3-one
Homo sapiens
at 37°C, pH not specified in the publication
0.00025
(1Z,4E)-1,5-bis[3,5-bis(methoxymethoxy)phenyl]-2-chloropenta-1,4-dien-3-one
Homo sapiens
at 37°C, pH not specified in the publication
0.00037
(1Z,4E)-5-[3,5-bis(methoxymethoxy)phenyl]-2-bromo-1-[2-bromo-3,5-bis(methoxymethoxy)phenyl]penta-1,4-dien-3-one
Homo sapiens
at 37°C, pH not specified in the publication
0.0028
(2E,4E)-8-methyl-2,4-bis[(pyridin-4-yl)methylidene]-8-azabicyclo[3.2.1]octan-3-one
Homo sapiens
-
pH and temperature not specified in the publication
0.16
2-[4-(3-ethoxy-1-propenyl)phenyl]-4,5-bis-[4-(2-propylamino)phenyl]-1H-imidazole
Homo sapiens
-
pH and temperature not specified in the publication
0.75
4-(2-aminoethyl)benzenesulfonylfluoride
Homo sapiens
-
-
0.21 - 0.68
5'-O-[4-(fluorosulfonyl)benzoyl]adenosine
0.0065
acacetin
Homo sapiens
-
pH 7.4, 37°C
0.04
apigenin
Homo sapiens
-
pH 7.4, 37°C
0.134 - 0.338
beta-sitosterol-O-glucoside
0.0003 - 0.0016
bis[(4aS,6R,8aS)-3-methoxy-11-methyl-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-yl] decanedioate
0.035
celecoxib
Homo sapiens
-
-
0.00062 - 0.0169
curcumin
0.000000001
cyclosporin A
Homo sapiens
-
inhibits daunorubicin transport, IC50: 0.001 nM
0.0004 - 0.00325
D-alpha-tocopheryl polyethylene glycol 1000 succinate
-
0.22 - 0.478
deacetylnomilin
0.000000043
desloratadine
Homo sapiens
-
weakly inhibits daunorubicin transport, 19% of the inhibition caused by vanadate, IC50: 0.043 nM, desloratadine is no significant inhibitor of P-gp and should not cause clinical drug interactions with agents that are P-gp substrates
0.001 - 0.012
dipyridamole
Homo sapiens
-
-
0.195 - 0.23
hesperidin
0.005 - 0.022
indomethacin
Homo sapiens
-
-
0.00019
Kol43
Homo sapiens
at 37°C, pH not specified in the publication
0.285 - 0.52
limonin
0.000000011
loratadine
Homo sapiens
-
inhibits daunorubicin transport, IC50: 0.011 nM, much less inhibitory than cyclosporin A or verapamil, 43% of the inhibition caused by vanadate
0.01
losartan
Homo sapiens
-
-
0.002 - 0.01
MK571
Homo sapiens
-
-
0.007
morin
Homo sapiens
-
pH 7.4, 37°C
0.0526
myricetin
Homo sapiens
-
pH 7.4, 37°C
0.0023
N-methyl-N-(9-phenyl-2,3,6,7-tetrahydro-1H,5H,12H-pyrido[3,2,1-ij]selenochromeno[2,3-f]quinolin-12-ylidene)methanaminium hexafluorophosphate
Homo sapiens
-
pH 7.4, 37°C, recombinant enzyme
0.0053 - 0.009
N-[6-(dimethylamino)-9-[5-(piperidin-1-ylcarbonyl)thiophen-2-yl]-3H-telluroxanthen-3-ylidene]-N-methylmethanaminium hexafluorophosphate
0.0079
N-[6-(dimethylamino)-9-[5-(piperidin-1-ylcarbonyl)thiophen-2-yl]-3H-thioxanthen-3-ylidene]-N-methylmethanaminium hexafluorophosphate
Homo sapiens
-
pH 7.4, 37°C, recombinant enzyme
0.0236
N-[9-[3-(dimethylamino)phenyl]-2,3,6,7-tetrahydro-1H,5H,12H-pyrido[3,2,1-ij]selenochromeno[2,3-f]quinolin-12-ylidene]-N-methylmethanaminium bromide
Homo sapiens
-
pH 7.4, 37°C, recombinant enzyme
0.0068
N-[9-[4-(dimethylamino)phenyl]-2,3,6,7-tetrahydro-1H,5H,12H-pyrido[3,2,1-ij]selenochromeno[2,3-f]quinolin-12-ylidene]-N-methylmethanaminium bromide
Homo sapiens
-
pH 7.4, 37°C, recombinant enzyme
0.169 - 0.174
neohesperidin
0.1
probenecid
Homo sapiens
-
-
0.001
quercetin
Homo sapiens
-
-
0.02
sildenafil
Homo sapiens
-
-
0.21 - 0.387
stigmasterol
0.002
sulindac
Homo sapiens
-
-
0.000000004
verapamil
Homo sapiens
-
inhibits daunorubicin transport, IC50: 0.004 nM
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
0.0197
-
recombinant enzyme in resence of naringin, ATPase activity
0.02
-
about, purified recombinant mutant F978C
0.0204
-
recombinant enzyme, ATPase activity
0.0265
-
recombinant enzyme in presence of verapamil and doxorubicin, ATPase activity
0.0268
-
recombinant enzyme in presence of verapamil, ATPase activity
0.0289
-
recombinant enzyme in presence of naringin and doxorubicin, ATPase activity
0.0386
-
recombinant enzyme in presence of doxorubicin, ATPase activity
0.25
-
purified recombinant wild-type enzyme
0.5
-
purified recombinant mutant A980C
1.7
-
purified recombinant wild-type MDR1, ATPase activity with substrate verapamil
270
-
wild-type, substrate methotrexate, pH 7.5, 37°C
3.5
-
with verapamil and ATP as substrates, at pH 7.4 and 37°C
3500
-
wild-type, substrate cyclic guanosine monophosphate, pH 7.5, 37°C
580
-
wild-type, substrate estradiol 17-beta-D-glucuronide, pH 7.5, 37°C
650
-
wild-type, substrate folic acid, pH 7.5, 37°C
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5.5 - 7.4
-
assay at pH 5.5 or pH 7.4
6.8
-
assay at
7
-
assay at
7.4 - 7.5
-
assay at
7.5
-
assay at
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
0 - 20
assay at
23
-
assay at, ATP-stimulated LTC4 uptake of inside-out vesicles
23 - 37
-
assay at 23°C or at 37°C dependent on the substrate
35 - 37
-
assay at
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
-
UniProt
Manually annotated by BRENDA team
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
multidrug resistant cancer cell line overexpressing P-gp
Manually annotated by BRENDA team
-
dense granules
Manually annotated by BRENDA team
-
MRP3 is the predominant MRP isoform in cholangiocellular carcinomas (57%), whereas MRP2 is undetectable in cholangiocellular carcinomas
Manually annotated by BRENDA team
-
endothelium and epithelium, immunohistochemic localization
Manually annotated by BRENDA team
-
MDR cell line overexpressing pgp1 gene
Manually annotated by BRENDA team
-
MRP3 is the predominant MRP isoform in gallbladder carcinomas (93%), whereas MRP2 expression is detected in only 29% of gallbladder carcinomas
Manually annotated by BRENDA team
-
primary cells
Manually annotated by BRENDA team
-
constitutive expression of MDR P-glycoproteins, MRP1, MRP2 and MRP3 in Mz-ChA-1 cells. MRP2 and MRP3 are expressed in the respective apical and basolateral membrane domains, isozyme expression analysis amd immunohistochemic localization analysis, overview
Manually annotated by BRENDA team
-
cell line overexpressing the cloned human MDR1 gene product
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
membrane topology of MRP1
-
Manually annotated by BRENDA team
additional information
-
recombinant P-glycoprotein, expressed in Saccharomyces cerevisiae proteoliposome
-
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
malfunction
rescue of the L1260A processing mutant by detergents, such as Triton X-100 or NP-35, but not of n-dodecyl-beta-D-maltoside. Only mutant I306C (TM5) shows highly activated ATPase activity (about 10fold greater than the untreated mutant) after treatment with MTS-verapamil while only mutant F343C shows highly activated ATPase activity (about 7fold higher than untreated) after treatment with MTS-rhodamine when labeling is performed in the presence or absence of n-dodecyl-beta-D-maltoside. All other mutants show less than a twofold activation after treatment in the presence or absence of detergent
physiological function
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
MRP7_HUMAN
1492
13
161629
Swiss-Prot
Secretory Pathway (Reliability: 4)
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
120000
-
x * 120000, SDS-PAGE
120000 - 140000
-
P-glycoprotein
144000
gel filtration
160000
170000
-
-
190000
250000
ABCG2-5D3(Fab) complex, gel filtration
290000
-
PAGE
72000
-
4 * 72000, SDS-PAGE
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
homodimer
tetramer
-
4 * 72000, SDS-PAGE
additional information
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
glycoprotein
phosphoprotein
-
MDR1, phosphorylated glycoprotein
ubiquitination
-
H1 prompts the degradation of Pgp and decreases Pgp protein half-life by enhancing the ubiquitination of Pgp
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
homology modeling with estradiol 17-beta-D-glucuronide, cyclic guanosine monophosphate, methotrextae and folic acid as substrates
-
vapor diffusion method, using 25% (w/v) PEG 2000 MME buffered with 0.1 M Tris-HCl pH 7.0
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
A481G/V482A/M483V/M485V
-
the MRP1 mutant shows altered transport activities compared to the wild-type MRP1
A493K/H494Q/S497L/N500S
-
the MRP1 mutant shows altered transport activities compared to the wild-type MRP1
A493K/H494Q/S497L/N500S/N506S
-
the MRP1 mutant shows altered transport activities compared to the wild-type MRP1
A493K/H494Q/S497L/N506S/T487M/K488R/T489A/Y490F
-
the MRP1 mutant shows altered transport activities compared to the wild-type MRP1
A80C/R741C
site-directed mutagenesis, cysteines A80C/R741C are close enough to spontaneously form a disulfide bond in the mature protein at the cell surface and trap Pgp in an inactive conformation. Tariquidar is the only P-gp drug substrate or modulator that blocks A80C/R741C crosslinking
A980C
-
site-directed mutagenesis, the mutant shows altered substrate transport activity and activation by the substrates, e.g. vinblastine and nicardipine, compared to the wild-type enzyme
C137A/C431A/C717A/C956A/C1074A/C1125A/C1227A
-
replacement of the seven endogenous cysteines to create a Cys-less P-gp. Intoduction of new cysteine residues in different domains and disulfide cross-linking with short or long cross-linkers shows that cross-linking of cysteines that lie close to the LSGGQ signature sequne, such as P517C, and Walker A, such as I1050C, sites of NBD1 and NBD2 respectively, as well as thecytoplasmic extensions of TM segments 3, D177C or L175C, and 9, N820C, with a shortcross-linker activat ATPase activity over 10fold. Cross-linking between the NBDs is not inhibited by tariquidar. Cross-linking between extracellular cysteines, mutant T333C/L975C, predicted to lock P-gp into a conformation that prevents close NBD association inhibit ATPase activity
D1179A
-
site-directed mutagenesis, the mutant shows similar or higher expression level, but about 35% reduced drug transport activity and altered substrate specificity compared to the wild-type enzyme
D1183E
-
site-directed mutagenesis, the mutant shows transport activities similar to the wild-type enzyme, but reduced expression level
E1144A
-
site-directed mutagenesis, the mutant shows similar or higher expression level, but about 50% reduced drug transport activity compared to the wild-type enzyme
E1184A
-
site-directed mutagenesis, the mutant shows similar or higher expression level, but reduced activity and altered substrate specificity compared to the wild-type enzyme
E211Q
inactive
E556Q/E1201Q
-
Walker B mutant, traps nucleotide in the absence of vandate or beryllium fluoride. Use for identification of reaction intermediates
F343C
site-directed mutagenesis, mutant F343C shows highly activated ATPase activity (about 7fold higher than untreated) after treatment with MTS-rhodamine when labeling is performed in the presence or absence of n-dodecyl-beta-D-maltoside
F368A
-
almost complete disruption of transport activity for all substrates tested
F368W
-
F368W-mediated estradiol 17-beta-D-glucuronide transport is increased to 250% of wild type MRP4, whereas cyclic guanosine monophosphate transport is decreased to 24% , and methotrextae and folic acid transport is reduced to 5580% of wild type transport activity
F368Y
-
F368Y-mediated cyclic guanosine monophosphate transport is increased to 160%, while transport of the other substrates is decreased by 2050% compared to wild type
F978C
-
site-directed mutagenesis, the mutant shows altered substrate transport activity and activation by the substrates, e.g. vinblastine and nicardipine, compared to the wild-type enzyme
F994C
-
site-directed mutagenesis, the mutant shows altered substrate transport activity and activation by the substrates, e.g. vinblastine and nicardipine, compared to the wild-type enzyme
G1433D
-
mutation in the ABC-signature region of MRP1, mutant has negligible ATPase and vesicular transport activity, but shows normal ATP-binding, no transition state formation in the ATPase catalytic cycle
G571A/G191R
a naturally occuring mutant, the genetic variation modulates cancer drug resistance and efflux transport, minimal effect on doxorubicin and daunorubicin, the MDR1-dependent resistance on vinblastine, vincristine, paclitaxel, and etoposide is reduced by approximately 5fold, overview
G771D
-
mutation in the ABC-signature region of MRP1, mutant has negligible ATPase and vesicular transport activity, but shows normal ATP-binding, no transition state formation in the ATPase catalytic cycle
G984C
-
site-directed mutagenesis, the mutant shows altered substrate transport activity and activation by the substrates, e.g. vinblastine and nicardipine, compared to the wild-type enzyme
G989C
-
site-directed mutagenesis, the mutant shows altered substrate transport activity and activation by the substrates, e.g. vinblastine and nicardipine, compared to the wild-type enzyme
I306C
site-directed mutagenesis, mutant I306C (TM5) shows highly activated ATPase activity, about 10fold greater than the untreated mutant after treatment with MTS-verapamil when labeling is performed in the presence or absence of n-dodecyl-beta-D-maltoside
I441L
-
the mutant shows reduced activity with vincristine, VP-16, and doxorubicin compared to the wild-type enzyme
K1181A
-
site-directed mutagenesis, the mutant shows similar or higher expression level compared to the wild-type enzyme
L1260A
site-directed mutagenesis, rescue of the L1260A processing mutant by detergents
L1430R
-
mutation in the ABC-signature region of MRP1, mutant has both ATPase and vesicular transport activity
L175C/N820C
-
introduction of cysteine residues into regions of TM3, residues 175-178, and TM9, residues 820–822. Treatment with 1,1-methanediyl bismethanethiosulfonate results in cross-linking of the majority of protein. Cross-linking is not increased in the presence of ATP or drug substrates. Cross-linking increases the mutant's basal ATPase activity about 3fold. Activity can be increased further by drug substrates such as verapamil and rhodamine B
L768R
-
mutation in the ABC-signature region of MRP1, mutant has both ATPase and vesicular transport activity
L976C
-
site-directed mutagenesis, the mutant shows altered substrate transport activity and activation by the substrates, e.g. vinblastine and nicardipine, compared to the wild-type enzyme
M443L
-
the mutant shows reduced activity with vincristine, VP-16, and doxorubicin compared to the wild-type enzyme
M443L/Y440F/1441L
-
the MRP1 mutant shows altered transport activities compared to the wild-type MRP1
M986C
-
site-directed mutagenesis, the mutant shows altered substrate transport activity and activation by the substrates, e.g. vinblastine and nicardipine, compared to the wild-type enzyme
P1150A
-
mutant MRP1 exhibits selectively increased estradiol glucuronide and methotrexate transport as well as altered interactions with ATP, the mutant displays very a low level of substrate-independent vanadate-induced trapping of [alphalpha32P]8N3ADP due to enhanced ADP release following ATP hydrolysis rather than a reduction in ATP hydrolysis itself. [alpha32P]8N3ADP trapping by MRP1-P1150A can be increased by using Ni2+ instead of Mg2+, and by decreasing temperature; however, the transport properties of the mutant remain unchanged
P1150G
-
mutant MRP1 exhibits selectively increased estradiol glucuronide and methotrexate transport as well as altered interactions with ATP, the mutant displays very a low level of substrate-independent vanadate-induced trapping of [alpha32P]8N3ADP due to enhanced ADP release following ATP hydrolysis rather than a reduction in ATP hydrolysis itself
P1150I
-
mutant MRP1 exhibits selectively increased estradiol glucuronide and methotrexate transport as well as altered interactions with ATP, the mutant displays very a low level of substrate-independent vanadate-induced trapping of [alpha32P]8N3ADP due to enhanced ADP release following ATP hydrolysis rather than a reduction in ATP hydrolysis itself
P1150L
-
mutant MRP1 exhibits selectively increased estradiol glucuronide and methotrexate transport as well as altered interactions with ATP, the mutant displays very a low level of substrate-independent vanadate-induced trapping of [alpha32P]8N3ADP due to enhanced ADP release following ATP hydrolysis rather than a reduction in ATP hydrolysis itself
P1150V
-
mutant MRP1 exhibits selectively increased estradiol glucuronide and methotrexate transport as well as altered interactions with ATP, the mutant displays very a low level of substrate-independent vanadate-induced trapping of [alpha32P]8N3ADP due to enhanced ADP release following ATP hydrolysis rather than a reduction in ATP hydrolysis itself
Q1118A
-
the mutant with 8.1% of wild type activity accumulates low levels of Bodipy-verapamil
Q141K
the mutation is associated with hyperuricemia and gout. It results in decreased expression or degradation of the protein
Q475A
-
the mutant with 9.5% of wild type activity accumulates low levels of Bodipy-verapamil
Q475A/Q1118A
-
the mutant accumulates more levels of Bodipy-verapamil compared to the wild type enzyme
Q990C
-
site-directed mutagenesis, the mutant shows altered substrate transport activity and activation by the substrates, e.g. vinblastine and nicardipine, compared to the wild-type enzyme
R1166K
-
site-directed mutagenesis, the mutant shows transport activities similar to the wild-type enzyme, but reduced expression level
R1173A
-
site-directed mutagenesis, the mutant shows similar or higher expression level, but increased activity and altered substrate specificity compared to the wild-type enzyme
R1297H
-
the naturally occuring mutant protein MRP3-Arg1297His is correctly localized to the basolateral membrane and shows no significant differences in the transport of several organic anions compared to MRP3. Based on the membrane vesicle transport assays, individuals with the MRP3-Arg 1297 His variant are not expected to be affected in their ability to export MRP3 substrates into blood
R998K
-
almost complete disruption of transport activity for all substrates tested
R998L
-
almost complete disruption of transport activity for all substrates tested
R998S
-
almost complete disruption of transport activity for all substrates tested
R998Y
-
almost complete disruption of transport activity for all substrates tested
S992C
-
site-directed mutagenesis, the mutant shows altered substrate transport activity and activation by the substrates, e.g. vinblastine and nicardipine, compared to the wild-type enzyme
T2D
-
mutation of two tyrosine residues in MRP1 cannot alter the sensitivity to glibenclamide
V479L/A481G/V482A/M483V/M485V
-
the MRP1 mutant shows altered transport activities compared to the wild-type MRP1
V479L/A481G/V482A/M483V/N500S
-
the MRP1 mutant shows altered transport activities compared to the wild-type MRP1
V982C
-
site-directed mutagenesis, the mutant shows altered substrate transport activity and activation by the substrates, e.g. vinblastine and nicardipine, compared to the wild-type enzyme
V988C
-
site-directed mutagenesis, the mutant shows altered substrate transport activity and activation by the substrates, e.g. vinblastine and nicardipine, compared to the wild-type enzyme
W995A
-
almost complete disruption of transport activity for all substrates tested
W995F
-
significantly decreased transport of all substrates
W995Y
-
significantly decreased transport of all substrates
Y432A
the mutation disrupts in vivo cholesterol transport
Y440F
Y440F/1441L
-
the mutant shows reduced activity with vincristine, VP-16, and doxorubicin compared to the wild-type enzyme
additional information
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
6.5
-
optimal pH for stabilizing the recombinant enzyme protein during purification is pH 6.5. hMDR1 remains monodispersed at a pH range of pH 5.5-pH 7.5. In contrast, at a lower pH such as pH 4.5, the protein is precipitated
701069
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
10 - 37
-
the specific ATPase activity is completely diminished after 2 h at 37°C, but 75% of the ATPase activity remains after 24 h at 10°C
40
-
20 min, about 30% loss of activity
45
-
5 min, about 40% loss of activity
50
-
5 min, 5 min, about 90% of activity
additional information
-
no effect of trypsin cleavage on the thermostability of P-gp
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
cholesterol hemisuccinate alters the thermal unfolding of the enzyme and greatly stabilizes its basal ATPase activity
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
most suitable component for maintaining hMDR1 activity is PIPES, rather than citric acid, imidazole, MES, or MOPS. Optimal pH for stabilizing the recombinant enzyme protein during purification is pH 6.5. Addition of CHS preserves 90% of the activity at 25°C after 1 day, whereas little or no activity remains without CHS. The specific ATPase activity is completely diminished after 2 h at 37°C, but 75% of the ATPase activity remains after 24 h at 10°C
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
anti-Flag M2 affinity agarose gel chromatography and Superdex 200 gel filtration
approach involving its specific recognition onto a functionalized lipid layer containing a Ni-NTA lipidand allowing the purification of His-ABCG2 in presence of all solubilized membrane components that might be involved in the stabilisation of native oligomers and without requiring any additional washing or concentration passages
-
native enzyme from liver partially by mitochondria, plasma, endoplasmic reticulum and nuclear membrane fragment preparation
-
Ni-NTA resin column chromatography
-
Ni-NTA resin column chromatography and Superdex 200 gel filtration
-
Ni-NTA resin column chromatography and Superose 6B column chromatography
-
recombinant His-tagged ABCB1 from Trichoplusia ni high-five cells by metal affinity chromatography
-
recombinant His10-tagged MDR1 249fold by metal chelate affinity chromatography and gel filtration, method optimization and evaluation
-
recombinant His10-tagged P-gp from BHK cells by nickel affinity chromatography
-
recombinant Pgp
-
recombinant protein, reconstitution in proteoliposomes containing varying concentrations of cholesterol
-
recombinant wild-type and mutant enzymes from HEK-293 cells partially by membrane preparation
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
co-expression of isoforms ABCG5 and ABCG8 in insect cells
-
enzyme expression in MDCK II cells
-
expressed in HEK293-EBNA cells
expressed in High Five insect cells
expressed in High Five insect cells and HEK-293T cells
-
expressed in High-five insect cells
-
expressed in Saccharomyces cerevisiae JPY201 cells
-
expressed in Sf9 insect cells
expression in HEK-293 cell
-
expression in HEK-293 cell, using baculoviral system
-
expression in High Five insect cells
-
expression in insect cell
-
expression in insect cells
-
expression in KB-3-1 cell, KB-V-1 and MCF-7 cell
-
expression in MDCK cell
-
expression in mouse embryo fibroblast
expression in Saccharomyces cerevisiae
-
expression in Sf9 cell
-
expression in Sf9 cells
-
expression in Xenopus laevis oocytes
-
expression in Xenopus oocytes
-
expression of gene MDR1 in MDCK II cells, expression of His10-tagged P-gp in BHK cells
-
expression of His-tagged ABCB1 in Trichoplusia ni high-five cells using the baculovirus expression system
-
expression of His6-ABCG2 in Sf9 insect cells and in human Flp-In-293/ABCG2 cells
-
expression of P-glycoprotein or MRP1 in membranes from Trichoplusia ni High Five cells using the baculovirus transfection system, overexpression of P-glycoprotein in human carcinoma KB-C2 cells, overexpression of MRP1 in human KB/MRP cells
-
expression of the enzyme in L5178Y mouse T lymphoma parent cell line using the pHa MDR1/A retrovirus
-
expression of wild-type an dmutant enzymes in HEK-293 cells
-
expression of wild-type and mutant enzymes in HEK-293 cell membranes
-
gene ABCB1 maps to chromosome 7q21.1, expression of MDR1 in L5178 mouse T-cell lymphoma cells
-
gene MDR1, expression of wild-type and mutant MDR1571A enzymes in HEK-293 cells. MDR1 571 genotypes in leukemia patients, overview
gene MRP4, located on chromosome 13q32.1
-
MDR1 gene expression in Sf9 cells, pgp1 gene overexpression in DC-3F/ADX cells
-
MDR1 gene, expression in Saccharomyces cerevisiae
-
MDR1, large-scale expression of His10-tagged human MDR1 using a baculovirus/insect expressSF+ cell system
-
MRP1 and MRP3, expression in Sf9 cells
-
MRP1, expression in Sf9 cells
-
MRP1/ABCC1, DNA and amino acid sequence determination and analysis
-
MRP7 expression in HEK-293 cells, ectopic expression of MRP7 in mouse embryonic fibroblast deficient in P-glycoprotein and MRP1
-
overexpression in Hep-G2 cell
-
overexpression of both isoforms ABCB1 and ABCC1 in KB-C2 and KB/MRP cells
-
overexpression of P-glycoprotein, MRP1, or BCRP in NIH-3T3 cells and in Leishmania tropica
-
P-glycoprotein overexpressionin NCI/ADR-RES and OVCAR-8 ovarian carcinoma cells
-
recombinant expression of His-tagged mutant enzymes in HEK 293 cells, recombinant expression of wild-type enzyme in Spodoptera frugiperda Sf9 cells
stable transfected into MDCKII cells
-
wild-type and mutant MRP1, expression in Sf9 cells
-
wild-type human P-gp is expressed using the baculovirus/expressSF+ insect cell system
-
wild-type MRP1 and mutant hybrid MRP1/MRP3 are expressed in Sf21 insect cells as two half-molecules, comprising amino acids 1 to 932 and 932 to 1531, respectively, using the baculovirus expression vector, expression of wild-type and mutant MRP1 in HEK-293 cell membranes
-
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
enzyme mRNA expression is decreased by transforming growth factor beta
-
erucin, glyceollins, soybean extract, sulforaphane, 5'-fluorouracil, bortezomib, bosentan, carbamazepine, cimetidine, cisplatin A, efavirenz, mitotane, obatoclax, pregnenolone-16alpha-carbonitrile, quinidine, saquinavirm spironolactone, vincristine, rifampicin, and tripanocide benznidazole induce enzyme mRNA expression
hepatocyte growth factor treatment increases the amount of enzyme on the cell surface in parallel with an increased transcription. Enzyme mRNA expression is also increased by epidermal growth factor, oxidative stress, phorbol ester, or activation of the aryl hydrocarbon receptor
-
P-gp down-regulation by cyclooxygenase-2 inhibitors (indomethacin heptyl ester and nimesulide) can confer the diminution of drugs resistance, and consequently ameliorate the response to medical therapy in inflammatory bowel disease
-
resveratrol, 8-hydroxydaidzein. atorvastatin, epirubicin, ethanol, irinotecan, isopentanol, and topotecan downregulate enzyme mRNA expression
RENATURED/Commentary
ORGANISM
UNIPROT
LITERATURE
reconstitution of purified recombinant protein in proteoliposomes containing varying concentrations of cholesterol
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
analysis
diagnostics
-
in patients with neuroblastoma, increased MRP4 expression has prognostic value
drug development
-
MRP4 is a potential target for drug development, e.g. in the treatment of hyperuricaemia
medicine
pharmacology
-
the investigation of the substrate interactions and modulation of multidrug transporters may pave the way for predictive toxicology and pharmacogenomics
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Sharom, F.J.; Liu, R.; Romsicki, Y.; Lu, P.
Insight into the structure and substrate interactions of the P-glycoprotein multidrug transporter from spectroscopic studies
Biochim. Biophys. Acta
1461
327-345
1999
Homo sapiens, Mus musculus, Rattus norvegicus
Manually annotated by BRENDA team
Van Veen, H.W.; Konings, W.N.
The ABC family of multidrug transporters in microorganisms
Biochim. Biophys. Acta
1365
31-36
1998
Bacillus subtilis, Saccharomyces cerevisiae, Caenorhabditis elegans, Candida albicans, Cricetulus griseus, Escherichia coli, Entamoeba histolytica, Haemophilus influenzae, Helicobacter pylori, Homo sapiens, Levilactobacillus brevis, Lactococcus lactis, Leishmania donovani, Leishmania tarentolae, Staphylococcus aureus, Mycoplasma genitalium, Plasmodium falciparum
Manually annotated by BRENDA team
Cole, S.P.C.; Deeley, R.G.
Multidrug resistance mediated by the ATP-binding cassette transporter protein MRP
Bioessays
20
931-940
1998
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Frijters, C.M.G.; Ottenhoff, R.; van Wijland, M.J.A.; van Nieuwkerk, C.; Groen, A.K.; Oude Elferink, R.P.J.
Influence of bile salts on hepatic mdr2 P-glycoprotein expression
Adv. Enzyme Regul.
36
351-363
1996
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Keppler, D.; Knig, J.; Buchler, M.
The canalicular multidrug resistance protein, cMRP/MRP2, a novel conjugate export pump expressed in the apical membrane of hepatocytes
Adv. Enzyme Regul.
37
321-333
1997
Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Bellamy, W.T.
P-glycoproteins and multidrug resistance
Annu. Rev. Pharmacol. Toxicol.
36
161-183
1996
Cricetinae, Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Loe, D.W.; Deeley, R.G.; Cole, S.P.C.
Characterization of vincristine transport by the Mr 190000 multidrug resistance protein (MRP): evidence for cotransport with reduced glutathione
Cancer Res.
58
5130-5136
1998
Homo sapiens
Manually annotated by BRENDA team
Zeng, H.; Liu, G.; Rea, P.A.; Kruh, G.D.
Transport of amphipathic anions by human multidrug resistance protein 3
Cancer Res.
60
4779-4784
2000
Homo sapiens
Manually annotated by BRENDA team
Fernandez-Moreno, M.A.; Carbo, L.; Cuesta, T.; Vallin, C.; Malpartida, F.
A silent ABC transporter isolated from Streptomyces rochei F20 induces multidrug resistance
J. Bacteriol.
180
4017-4023
1998
Homo sapiens, Streptomyces rochei, Streptomyces rochei F20
Manually annotated by BRENDA team
Wijnholds, J.; Mol, C.A.A.M.; van Deemter, L.; de Haas, M.; Scheffer, G.L.; Baas, F.; Beijnen, J.H.; Scheper, R.J.; Hatse, S.; de Clercq, E.; Balzarini, J.; Borst, P.
Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs
Proc. Natl. Acad. Sci. USA
97
7476-7481
2000
Homo sapiens
Manually annotated by BRENDA team
Mao, Q.; Deeley, R.G.; Vole, S.P.C.
Functional reconstitution of substrate transport by purified multidrug resistance protein MRP1 (ABCC1) in phospholipid vesicles
J. Biol. Chem.
275
34166-34172
2000
Homo sapiens
Manually annotated by BRENDA team
Hipfner, D.R.; Mao, Q.; Qi, W.; Leslie, E.M.; Gao, M.; Deeley, R.G.; Cole, S.P.C.
Monoclonal antibodies that inhibit the transport function of the 190-kDa multidrug resistance protein, MRP
J. Biol. Chem.
274
15420-15426
1999
Homo sapiens
Manually annotated by BRENDA team
Loe, D.W.; Stewart, R.K.; Massey, T.E.; Deeley, R.G.; Cole, S.P.C.
ATP-dependent transport of aflatoxin B1 and its glutathione conjugate by the product of the multidrug resistance protein (MRP) gene
Mol. Pharmacol.
51
1034-1041
1997
Homo sapiens
Manually annotated by BRENDA team
Paul, S.; Breuninger, L.M.; Kruh, G.D.
ATP-dependent transport of lipophilic cytotoxic drugs by membrane vesicles prepared from MRP-overexpressing HL60/ADR cells
Biochemistry
35
14003-14011
1996
Homo sapiens
Manually annotated by BRENDA team
Szentpetery, Z.; Sarkadi, B.; Bakos, E.; Varadi, A.
Functional studies on the MRP1 multidrug transporter: characterization of ABC-signature mutant variants
Anticancer Res.
24
449-456
2004
Homo sapiens
Manually annotated by BRENDA team
Kern, A.; Szentpetery, Z.; Liliom, K.; Bakos, E.; Sarkadi, B.; Varadi, A.
Nucleotides and transported substrates modulate different steps of the ATPase catalytic cycle of MRP1 multidrug transporter
Biochem. J.
380
549-560
2004
Homo sapiens
Manually annotated by BRENDA team
Wang, E.J.; Casciano, C.N.; Clement, R.P.; Johnson, W.W.
Evaluation of the interaction of loratadine and desloratadine with P-glycoprotein
Drug Metab. Dispos.
29
1080-1083
2001
Homo sapiens
Manually annotated by BRENDA team
Omote, H.; Al-Shawi, M.K.
A novel electron paramagnetic resonance approach to determine the mechanism of drug transport by P-glycoprotein
J. Biol. Chem.
277
45688-45694
2002
Homo sapiens
Manually annotated by BRENDA team
Al-Shawi, M.K.; Polar, M.K.; Omote, H.; Figler, R.A.
Transition state analysis of the coupling of drug transport to ATP hydrolysis by P-glycoprotein
J. Biol. Chem.
278
52629-52640
2003
Cricetulus griseus, Homo sapiens
Manually annotated by BRENDA team
Garrigues, A.; Escargueil, A.E.; Orlowski, S.
The multidrug transporter, P-glycoprotein, actively mediates cholesterol redistribution in the cell membrane
Proc. Natl. Acad. Sci. USA
99
10347-10352
2002
Homo sapiens
Manually annotated by BRENDA team
Bodo, A.; Bakos, E.; Szeri, F.; Varadi, A.; Sarkadi, B.
The role of multidrug transporters in drug availability, metabolism and toxicity
Toxicol. Lett.
140-141
133-143
2003
Homo sapiens
Manually annotated by BRENDA team
Gatlik-Landwojtowicz, E.; Aaenismaa, P.; Seelig, A.
Quantification and characterization of P-glycoprotein-substrate interactions
Biochemistry
45
3020-3032
2006
Homo sapiens
Manually annotated by BRENDA team
Wang, Y.; Hao, D.; Stein, W.D.; Yang, L.
A kinetic study of rhodamine123 pumping by P-glycoprotein
Biochim. Biophys. Acta
1758
1671-1676
2006
Homo sapiens
Manually annotated by BRENDA team
Bachmakov, I.; Werner, U.; Endress, B.; Auge, D.; Fromm, M.F.
Characterization of beta-adrenoceptor antagonists as substrates and inhibitors of the drug transporter P-glycoprotein
Fundam. Clin. Pharmacol.
20
273-282
2006
Homo sapiens
Manually annotated by BRENDA team
Katoh, M.; Suzuyama, N.; Takeuchi, T.; Yoshitomi, S.; Asahi, S.; Yokoi, T.
Kinetic analyses for species differences in P-glycoprotein-mediated drug transport
J. Pharm. Sci.
95
2673-2683
2006
Canis lupus familiaris, Homo sapiens, Mus musculus, Rattus norvegicus
Manually annotated by BRENDA team
Lee, Y.M.; Cui, Y.; Koenig, J.; Risch, A.; Jaeger, B.; Drings, P.; Bartsch, H.; Keppler, D.; Nies, A.T.
Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3 (MRP3/ABCC3)
Pharmacogenetics
14
213-223
2004
Homo sapiens
Manually annotated by BRENDA team
Nabekura, T.; Yamaki, T.; Ueno, K.; Kitagawa, S.
Effects of plant sterols on human multidrug transporters ABCB1 and ABCC1
Biochem. Biophys. Res. Commun.
369
363-368
2008
Homo sapiens
Manually annotated by BRENDA team
Kimura, Y.; Kioka, N.; Kato, H.; Matsuo, M.; Ueda, K.
Modulation of drug-stimulated ATPase activity of human MDR1/P-glycoprotein by cholesterol
Biochem. J.
401
597-605
2007
Homo sapiens
Manually annotated by BRENDA team
Wan, C.K.; Zhu, G.Y.; Shen, X.L.; Chattopadhyay, A.; Dey, S.; Fong, W.F.
Gomisin A alters substrate interaction and reverses P-glycoprotein-mediated multidrug resistance in HepG2-DR cells
Biochem. Pharmacol.
72
824-837
2006
Homo sapiens
Manually annotated by BRENDA team
Shirasaka, Y.; Onishi, Y.; Sakurai, A.; Nakagawa, H.; Ishikawa, T.; Yamashita, S.
Evaluation of human P-glycoprotein (MDR1/ABCB1) ATPase activity assay method by comparing with in vitro transport measurements: Michaelis-Menten kinetic analysis to estimate the affinity of P-glycoprotein to drugs
Biol. Pharm. Bull.
29
2465-2471
2006
Homo sapiens
Manually annotated by BRENDA team
Chang, C.; Bahadduri, P.M.; Polli, J.E.; Swaan, P.W.; Ekins, S.
Rapid identification of P-glycoprotein substrates and inhibitors
Drug Metab. Dispos.
34
1976-1984
2006
Homo sapiens
Manually annotated by BRENDA team
Feng, B.; Mills, J.B.; Davidson, R.E.; Mireles, R.J.; Janiszewski, J.S.; Troutman, M.D.; de Morais, S.M.
In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system
Drug Metab. Dispos.
36
268-275
2008
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Lima, S.A.; Tavares, J.; Gameiro, P.; de Castro, B.; Cordeiro-da-Silva, A.
Flurazepam inhibits the P-glycoprotein transport function: an insight to revert multidrug-resistance phenotype
Eur. J. Pharmacol.
581
30-36
2008
Homo sapiens
Manually annotated by BRENDA team
Mueller, M.; Klein, I.; Kopacsi, S.; Remaley, A.T.; Rajnavoelgyi, E.; Sarkadi, B.; Varadi, A.
Co-expression of human ABCG5 and ABCG8 in insect cells generates an androstane stimulated membrane ATPase activity
FEBS Lett.
580
6139-6144
2006
Homo sapiens
Manually annotated by BRENDA team
Heikkinen, A.T.; Moenkkoenen, J.
Protein concentration and pH affect the apparent P-glycoprotein-ATPase activation kinetics
Int. J. Pharm.
346
169-172
2008
Homo sapiens
Manually annotated by BRENDA team
Sauna, Z.E.; Nandigama, K.; Ambudkar, S.V.
Exploiting reaction intermediates of the ATPase reaction to elucidate the mechanism of transport by P-glycoprotein (ABCB1)
J. Biol. Chem.
281
26501-26511
2006
Homo sapiens
Manually annotated by BRENDA team
Zastre, J.; Jackson, J.K.; Wong, W.; Burt, H.M.
Methoxypolyethylene glycol-block-polycaprolactone diblock copolymers reduce P-glycoprotein efflux in the absence of a membrane fluidization effect while stimulating P-glycoprotein ATPase activity
J. Pharm. Sci.
96
864-875
2007
Homo sapiens
Manually annotated by BRENDA team
Limtrakul, P.; Chearwae, W.; Shukla, S.; Phisalphong, C.; Ambudkar, S.V.
Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin
Mol. Cell. Biochem.
296
85-95
2007
Homo sapiens
Manually annotated by BRENDA team
Collnot, E.M.; Baldes, C.; Wempe, M.F.; Kappl, R.; Huettermann, J.; Hyatt, J.A.; Edgar, K.J.; Schaefer, U.F.; Lehr, C.M.
Mechanism of inhibition of P-glycoprotein mediated efflux by vitamin E TPGS: influence on ATPase activity and membrane fluidity
Mol. Pharmacol.
4(3)
465-474
2007
Homo sapiens
Manually annotated by BRENDA team
Fong, W.F.; Wan, C.K.; Zhu, G.Y.; Chattopadhyay, A.; Dey, S.; Zhao, Z.; Shen, X.L.
Schisandrol A from Schisandra chinensis reverses P-glycoprotein-mediated multidrug resistance by affecting Pgp-substrate complexes
Planta Med.
73
212-220
2007
Homo sapiens
Manually annotated by BRENDA team
Etheridge, A.S.; Black, S.R.; Patel, P.R.; So, J.; Mathews, J.M.
An in vitro evaluation of cytochrome P450 inhibition and P-glycoprotein interaction with goldenseal, Ginkgo biloba, grape seed, milk thistle, and ginseng extracts and their constituents
Planta Med.
73
731-741
2007
Homo sapiens
Manually annotated by BRENDA team
Molnar, J.; Kars, M.D.; Guenduez, U.; Engi, H.; Schumacher, U.; Van Damme, E.J.; Peumans, W.J.; Makovitzky, J.; Gyemant, N.; Molnar, P.
Interaction of tomato lectin with ABC transporter in cancer cells: Glycosylation confers functional conformation of P-gp
Acta Histochem.
111
329-333
2009
Homo sapiens
Manually annotated by BRENDA team
Letourneau, I.J.; Nakajima, A.; Deeley, R.G.; Cole, S.P.
Role of proline 1150 in functional interactions between the membrane spanning domains and nucleotide binding domains of the MRP1 (ABCC1) transporter
Biochem. Pharmacol.
75
1659-1669
2008
Homo sapiens
Manually annotated by BRENDA team
Crowley, E.; OMara, M.L.; Reynolds, C.; Tieleman, D.P.; Storm, J.; Kerr, I.D.; Callaghan, R.
Transmembrane helix 12 modulates progression of the ATP catalytic cycle in ABCB1
Biochemistry
48
6249-6254
2009
Homo sapiens
Manually annotated by BRENDA team
Fong, W.F.; Shen, X.L.; Globisch, C.; Wiese, M.; Chen, G.Y.; Zhu, G.Y.; Yu, Z.L.; Tse, A.K.; Hu, Y.J.
Methoxylation of 3,4-aromatic side chains improves P-glycoprotein inhibitory and multidrug resistance reversal activities of 7,8-pyranocoumarin against cancer cells
Bioorg. Med. Chem.
16
3694-3703
2008
Homo sapiens
Manually annotated by BRENDA team
Becker, J.P.; Depret, G.; Van Bambeke, F.; Tulkens, P.M.; Prevost, M.
Molecular models of human P-glycoprotein in two different catalytic states
BMC Struct. Biol.
9
3
2009
Homo sapiens
Manually annotated by BRENDA team
Hopper-Borge, E.; Xu, X.; Shen, T.; Shi, Z.; Chen, Z.S.; Kruh, G.D.
Human multidrug resistance protein 7 (ABCC10) is a resistance factor for nucleoside analogues and epothilone B
Cancer Res.
69
178-184
2009
Homo sapiens
Manually annotated by BRENDA team
Dong, X.; Mattingly, C.A.; Tseng, M.T.; Cho, M.J.; Liu, Y.; Adams, V.R.; Mumper, R.J.
Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP
Cancer Res.
69
3918-3926
2009
Homo sapiens
Manually annotated by BRENDA team
Wesolowska, O.; Hendrich, A.B.; Laniapietrzak, B.; Wisniewski, J.; Molnar, J.; Ocsovszki, I.; Michalak, K.
Perturbation of the lipid phase of a membrane is not involved in the modulation of MRP1 transport activity by flavonoids
Cell. Mol. Biol. Lett.
14
199-221
2009
Homo sapiens
Manually annotated by BRENDA team
Grant, C.E.; Gao, M.; DeGorter, M.K.; Cole, S.P.; Deeley, R.G.
Structural determinants of substrate specificity differences between human multidrug resistance protein (MRP) 1 (ABCC1) and MRP3 (ABCC3)
Drug Metab. Dispos.
36
2571-2581
2008
Homo sapiens
Manually annotated by BRENDA team
Lagas, J.S.; van der Kruijssen, C.M.; van de Wetering, K.; Beijnen, J.H.; Schinkel, A.H.
Transport of diclofenac by breast cancer resistance protein (ABCG2) and stimulation of multidrug resistance protein 2 (ABCC2)-mediated drug transport by diclofenac and benzbromarone
Drug Metab. Dispos.
37
129-136
2009
Canis lupus familiaris, Homo sapiens
Manually annotated by BRENDA team
Rau, S.; Autschbach, F.; Riedel, H.D.; Konig, J.; Kulaksiz, H.; Stiehl, A.; Riemann, J.F.; Rost, D.
Expression of the multidrug resistance proteins MRP2 and MRP3 in human cholangiocellular carcinomas
Eur. J. Clin. Invest.
38
134-142
2008
Homo sapiens
Manually annotated by BRENDA team
Yasunaga, M.; Takemura, M.; Fujita, K.; Yabuuchi, H.; Wada, M.
Molecular cloning and functional characterization of cynomolgus monkey multidrug resistance-associated protein 2 (MRP2)
Eur. J. Pharm. Sci.
35
326-334
2008
Macaca fascicularis, Homo sapiens
Manually annotated by BRENDA team
Nabekura, T.; Yamaki, T.; Kitagawa, S.
Effects of chemopreventive citrus phytochemicals on human P-glycoprotein and multidrug resistance protein 1
Eur. J. Pharmacol.
600
45-49
2008
Homo sapiens
Manually annotated by BRENDA team
Koehn, J.; Fountoulakis, M.; Krapfenbauer, K.
Multiple drug resistance associated with function of ABC-transporters in diabetes mellitus: molecular mechanism and clinical relevance
Infect. Disord. Drug Targets
8
109-118
2008
Homo sapiens
Manually annotated by BRENDA team
Jimenez-Alonso, S.; Perez-Lomas, A.L.; Estevez-Braun, A.; Munoz Martinez, F.; Chavez Orellana, H.; Ravelo, A.G.; Gamarro, F.; Castanys, S.; Lopez, M.
Bis-pyranobenzoquinones as a new family of reversal agents of the multidrug resistance phenotype mediated by P-glycoprotein in mammalian cells and the protozoan parasite Leishmania
J. Med. Chem.
51
7132-7143
2008
Homo sapiens
Manually annotated by BRENDA team
Gannon, M.K.; Holt, J.J.; Bennett, S.M.; Wetzel, B.R.; Loo, T.W.; Bartlett, M.C.; Clarke, D.M.; Sawada, G.A.; Higgins, J.W.; Tombline, G.; Raub, T.J.; Detty, M.R.
Rhodamine inhibitors of P-glycoprotein: an amide/thioamide switch for ATPase activity
J. Med. Chem.
52
3328-3341
2009
Homo sapiens
Manually annotated by BRENDA team
Karla, P.K.; Quinn, T.L.; Herndon, B.L.; Thomas, P.; Pal, D.; Mitra, A.
Expression of multidrug resistance associated protein 5 (MRP5) on cornea and its role in drug efflux
J. Ocul. Pharmacol. Ther.
25
121-132
2009
Oryctolagus cuniculus, Homo sapiens
Manually annotated by BRENDA team
Yang, Z.; Wu, D.; Bui, T.; Ho, R.J.
A novel human multidrug resistance gene MDR1 variant G571A (G191R) modulates cancer drug resistance and efflux transport
J. Pharmacol. Exp. Ther.
327
474-481
2008
Homo sapiens (P08183), Homo sapiens
Manually annotated by BRENDA team
Conseil, G.; Rothnie, A.J.; Deeley, R.G.; Cole, S.P.
Multiple roles of charged amino acids in cytoplasmic loop 7 for expression and function of the multidrug and organic anion transporter MRP1 (ABCC1)
Mol. Pharmacol.
75
397-406
2009
Homo sapiens
Manually annotated by BRENDA team
Kodan, A.; Shibata, H.; Matsumoto, T.; Terakado, K.; Sakiyama, K.; Matsuo, M.; Ueda, K.; Kato, H.
Improved expression and purification of human multidrug resistance protein MDR1 from baculovirus-infected insect cells
Protein Expr. Purif.
66
7-14
2009
Homo sapiens
Manually annotated by BRENDA team
Russel, F.G.; Koenderink, J.B.; Masereeuw, R.
Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules
Trends Pharmacol. Sci.
29
200-207
2008
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Ali, M.M.; Agha, F.G.; El-Sammad, N.M.; Hassan, S.K.
Modulation of anticancer drug-induced P-glycoprotein expression by naringin
Z. Naturforsch. C
64
109-116
2009
Homo sapiens
Manually annotated by BRENDA team
Lee, E.; Enomoto, R.; Koshiba, C.; Hirano, H.
Inhibition of P-glycoprotein by wogonin is involved with the potentiation of etoposide-induced apoptosis in cancer cells
Ann. N. Y. Acad. Sci.
1171
132-136
2009
Homo sapiens
Manually annotated by BRENDA team
Namanja, H.A.; Emmert, D.; Pires, M.M.; Hrycyna, C.A.; Chmielewski, J.
Inhibition of human P-glycoprotein transport and substrate binding using a galantamine dimer
Biochem. Biophys. Res. Commun.
388
672-676
2009
Homo sapiens
Manually annotated by BRENDA team
Hemauer, S.J.; Patrikeeva, S.L.; Nanovskaya, T.N.; Hankins, G.D.; Ahmed, M.S.
Opiates inhibit paclitaxel uptake by P-glycoprotein in preparations of human placental inside-out vesicles
Biochem. Pharmacol.
78
1272-1278
2009
Homo sapiens
Manually annotated by BRENDA team
Zeinyeh, W.; Alameh, G.; Radix, S.; Grenot, C.; Dumontet, C.; Walchshofer, N.
Design, synthesis and evaluation of progesterone-adenine hybrids as bivalent inhibitors of P-glycoprotein-mediated multidrug efflux
Bioorg. Med. Chem. Lett.
20
3165-3168
2010
Homo sapiens
Manually annotated by BRENDA team
Riccioni, R.; Dupuis, M.L.; Bernabei, M.; Petrucci, E.; Pasquini, L.; Mariani, G.; Cianfriglia, M.; Testa, U.
The cancer stem cell selective inhibitor salinomycin is a p-glycoprotein inhibitor
Blood Cells Mol. Dis.
45
86-92
2010
Homo sapiens
Manually annotated by BRENDA team
Wei, N.; Sun, H.; Wang, F.; Liu, G.
H1, a novel derivative of tetrandrine reverse P-glycoprotein-mediated multidrug resistance by inhibiting transport function and expression of P-glycoprotein
Cancer Chemother. Pharmacol.
67
1017-1025
2011
Homo sapiens
Manually annotated by BRENDA team
Zhang, L.; Ma, S.
Efflux pump inhibitors: a strategy to combat P-glycoprotein and the NorA multidrug resistance pump
ChemMedChem
5
811-822
2010
Homo sapiens
Manually annotated by BRENDA team
Iwanaga, K.; Hayashi, M.; Hamahata, Y.; Miyazaki, M.; Shibano, M.; Taniguchi, M.; Baba, K.; Kakemi, M.
Furanocoumarin derivatives in Kampo extract medicines inhibit cytochrome P450 3A4 and P-glycoprotein
Drug Metab. Dispos.
38
1286-1294
2010
Homo sapiens
Manually annotated by BRENDA team
Hulgan, T.; Donahue, J.P.; Smeaton, L.; Pu, M.; Wang, H.; Lederman, M.M.; Smith, K.; Valdez, H.; Pilcher, C.; Haas, D.W.; Haas, D.W.
Oral cyclosporin A inhibits CD4 T cell P-glycoprotein activity in HIV-infected adults initiating treatment with nucleoside reverse transcriptase inhibitors
Eur. J. Clin. Pharmacol.
65
1081-1088
2009
Homo sapiens
Manually annotated by BRENDA team
Choi, D.H.; Chung, J.H.; Choi, J.S.
Pharmacokinetic interaction between oral lovastatin and verapamil in healthy subjects: role of P-glycoprotein inhibition by lovastatin
Eur. J. Clin. Pharmacol.
66
285-290
2010
Homo sapiens
Manually annotated by BRENDA team
El-Readi, M.Z.; Hamdan, D.; Farrag, N.; El-Shazly, A.; Wink, M.
Inhibition of P-glycoprotein activity by limonin and other secondary metabolites from Citrus species in human colon and leukaemia cell lines
Eur. J. Pharmacol.
626
139-145
2010
Homo sapiens
Manually annotated by BRENDA team
Zrieki, A.; Farinotti, R.; Buyse, M.
Cyclooxygenase-2 inhibitors prevent trinitrobenzene sulfonic acid-induced P-glycoprotein up-regulation in vitro and in vivo
Eur. J. Pharmacol.
636
189-197
2010
Homo sapiens
Manually annotated by BRENDA team
Wesolowska, O.; Wisniewski, J.; Sroda, K.; Krawczenko, A.; Bielawska-Pohl, A.; Paprocka, M.; Dus, D.; Michalak, K.
8-Prenylnaringenin is an inhibitor of multidrug resistance-associated transporters, P-glycoprotein and MRP1
Eur. J. Pharmacol.
644
32-40
2010
Homo sapiens
Manually annotated by BRENDA team
Sato, T.; Kodan, A.; Kimura, Y.; Ueda, K.; Nakatsu, T.; Kato, H.
Functional role of the linker region in purified human P-glycoprotein
FEBS J.
276
3504-3516
2009
Homo sapiens
Manually annotated by BRENDA team
Martelli, C.; Coronnello, M.; Dei, S.; Manetti, D.; Orlandi, F.; Scapecchi, S.; Novella Romanelli, M.; Salerno, M.; Mini, E.; Teodori, E.
Structure-activity relationships studies in a series of N,N-bis(alkanol)amine aryl esters as P-glycoprotein (Pgp) dependent multidrug resistance (MDR) inhibitors
J. Med. Chem.
53
1755-1762
2010
Homo sapiens
Manually annotated by BRENDA team
Arnaud, O.; Koubeissi, A.; Ettouati, L.; Terreux, R.; Alame?, G.; Grenot, C.; Dumontet, C.; Di Pietro, A.; Paris, J.; Falson, P.
Potent and Fully Noncompetitive Peptidomimetic Inhibitor of Multidrug Resistance P-Glycoprotein
J. Med. Chem.
53
6720-6729
2010
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Collnot, E.M.; Baldes, C.; Schaefer, U.F.; Edgar, K.J.; Wempe, M.F.; Lehr, C.M.
Vitamin E TPGS P-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access
Mol. Pharm.
7
642-651
2010
Homo sapiens
Manually annotated by BRENDA team
Yu, L.; Wu, W.K.; Li, Z.J.; Liu, Q.C.; Li, H.T.; Wu, Y.C.; Cho, C.H.
Enhancement of doxorubicin cytotoxicity on human esophageal squamous cell carcinoma cells by indomethacin and 4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC236) via inhibiting P-glycoprotein activity
Mol. Pharmacol.
75
1364-1373
2009
Homo sapiens
Manually annotated by BRENDA team
Nabekura, T.; Yamaki, T.; Hiroi, T.; Ueno, K.; Kitagawa, S.
Inhibition of anticancer drug efflux transporter P-glycoprotein by rosemary phytochemicals
Pharmacol. Res.
61
259-263
2010
Homo sapiens
Manually annotated by BRENDA team
Jutabha, P.; Wempe, M.F.; Anzai, N.; Otomo, J.; Kadota, T.; Endou, H.
Xenopus laevis oocytes expressing human P-glycoprotein: probing trans- and cis-inhibitory effects on [3H]vinblastine and [3H]digoxin efflux
Pharmacol. Res.
61
76-84
2010
Homo sapiens
Manually annotated by BRENDA team
Tachibana, T.; Kato, M.; Watanabe, T.; Mitsui, T.; Sugiyama, Y.
Method for predicting the risk of drug-drug interactions involving inhibition of intestinal CYP3A4 and P-glycoprotein
Xenobiotica
39
430-443
2009
Homo sapiens
Manually annotated by BRENDA team
Loo, T.W.; Bartlett, M.C.; Clarke, D.M.
Human P-glycoprotein is active when the two halves are clamped together in the closed conformation
Biochem. Biophys. Res. Commun.
395
436-440
2010
Homo sapiens
Manually annotated by BRENDA team
Palmeira, A.; Vasconcelos, M.H.; Paiva, A.; Fernandes, M.X.; Pinto, M.; Sousa, E.
Dual inhibitors of P-glycoprotein and tumor cell growth: (re)discovering thioxanthones
Biochem. Pharmacol.
83
57-68
2012
Homo sapiens
Manually annotated by BRENDA team
Wittgen, H.G.; van den Heuvel, J.J.; Krieger, E.; Schaftenaar, G.; Russel, F.G.; Koenderink, J.B.
Phenylalanine 368 of multidrug resistance-associated protein 4 (MRP4/ABCC4) plays a crucial role in substrate-specific transport activity
Biochem. Pharmacol.
84
366-373
2012
Homo sapiens
Manually annotated by BRENDA team
Eng, K.T.; Berdis, A.J.
A novel non-natural nucleoside that influences P-glycoprotein activity and mediates drug resistance
Biochemistry
49
1640-1648
2010
Homo sapiens
Manually annotated by BRENDA team
Ohnuma, S.; Chufan, E.; Nandigama, K.; Jenkins, L.M.; Durell, S.R.; Appella, E.; Sauna, Z.E.; Ambudkar, S.V.
Inhibition of multidrug resistance-linked P-glycoprotein (ABCB1) function by 5-fluorosulfonylbenzoyl 5-adenosine: evidence for an ATP analogue that interacts with both drug-substrate-and nucleotide-binding sites
Biochemistry
50
3724-3735
2011
Homo sapiens
Manually annotated by BRENDA team
Dezi, M.; Fribourg, P.F.; Di Cicco, A.; Arnaud, O.; Marco, S.; Falson, P.; Di Pietro, A.; Levy, D.
The multidrug resistance half-transporter ABCG2 is purified as a tetramer upon selective extraction from membranes
Biochim. Biophys. Acta
1798
2094-2101
2010
Homo sapiens
Manually annotated by BRENDA team
Nervi, P.; Li-Blatter, X.; Aanismaa, P.; Seelig, A.
P-glycoprotein substrate transport assessed by comparing cellular and vesicular ATPase activity
Biochim. Biophys. Acta
1798
515-525
2010
Homo sapiens (P08183)
Manually annotated by BRENDA team
Loo, T.W.; Bartlett, M.C.; Detty, M.R.; Clarke, D.M.
The ATPase activity of the P-glycoprotein drug pump is highly activated when the N-terminal and central regions of the nucleotide-binding domains are linked closely together
J. Biol. Chem.
287
26806-26816
2012
Homo sapiens
Manually annotated by BRENDA team
Hall, M.D.; Brimacombe, K.R.; Varonka, M.S.; Pluchino, K.M.; Monda, J.K.; Li, J.; Walsh, M.J.; Boxer, M.B.; Warren, T.H.; Fales, H.M.; Gottesman, M.M.
Synthesis and structure-activity evaluation of isatin-beta-thiosemicarbazones with improved selective activity toward multidrug-resistant cells expressing P-glycoprotein
J. Med. Chem.
54
5878-5889
2011
Homo sapiens
Manually annotated by BRENDA team
Luo, S.; Pal, D.; Shah, S.J.; Kwatra, D.; Paturi, K.D.; Mitra, A.K.
Effect of HEPES buffer on the uptake and transport of P-glycoprotein substrates and large neutral amino acids
Mol. Pharm.
7
412-420
2010
Homo sapiens
Manually annotated by BRENDA team
de Boussac, H.; Orban, T.I.; Varady, G.; Tihanyi, B.; Bacquet, C.; Brozik, A.; Varadi, A.; Sarkadi, B.; Aranyi, T.
Stimulus-induced expression of the ABCG2 multidrug transporter in HepG2 hepatocarcinoma model cells involves the ERK1/2 cascade and alternative promoters
Biochem. Biophys. Res. Commun.
426
172-176
2012
Homo sapiens
Manually annotated by BRENDA team
Wise, J.G.
Catalytic transitions in the human MDR1 P-glycoprotein drug binding sites
Biochemistry
51
5125-5141
2012
Homo sapiens
Manually annotated by BRENDA team
Swartz, D.J.; Mok, L.; Botta, S.K.; Singh, A.; Altenberg, G.A.; Urbatsch, I.L.
Directed evolution of P-glycoprotein cysteines reveals site-specific, non-conservative substitutions that preserve multidrug resistance
Biosci. Rep.
34
e00116
2014
Homo sapiens
Manually annotated by BRENDA team
Zolnerciks, J.K.; Akkaya, B.G.; Snippe, M.; Chiba, P.; Seelig, A.; Linton, K.J.
The Q loops of the human multidrug resistance transporter ABCB1 are necessary to couple drug binding to the ATP catalytic cycle
FASEB J.
28
4335-4346
2014
Homo sapiens
Manually annotated by BRENDA team
Cole, S.P.
Multidrug resistance protein 1 (MRP1, ABCC1), a multitasking ATP-binding cassette (ABC) transporter
J. Biol. Chem.
289
30880-30888
2014
Homo sapiens
Manually annotated by BRENDA team
Chan, K.F.; Wong, I.L.; Kan, J.W.; Yan, C.S.; Chow, L.M.; Chan, T.H.
Amine linked flavonoid dimers as modulators for P-glycoprotein-based multidrug resistance: structure-activity relationship and mechanism of modulation
J. Med. Chem.
55
1999-2014
2012
Homo sapiens
Manually annotated by BRENDA team
Ebert, S.P.; Wetzel, B.; Myette, R.L.; Conseil, G.; Cole, S.P.; Sawada, G.A.; Loo, T.W.; Bartlett, M.C.; Clarke, D.M.; Detty, M.R.
Chalcogenopyrylium compounds as modulators of the ATP-binding cassette transporters P-glycoprotein (P-gp/ABCB1) and multidrug resistance protein 1 (MRP1/ABCC1)
J. Med. Chem.
55
4683-4699
2012
Homo sapiens
Manually annotated by BRENDA team
Meyer, M.R.; Orschiedt, T.; Maurer, H.H.
Michaelis-Menten kinetic analysis of drugs of abuse to estimate their affinity to human P-glycoprotein
Toxicol. Lett.
217
137-142
2013
Homo sapiens
Manually annotated by BRENDA team
Esser, L.; Shukla, S.; Zhou, F.; Ambudkar, S.V.; Xia, D.
Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein
Acta Crystallogr. Sect. F
72
636-641
2016
Homo sapiens
Manually annotated by BRENDA team
Revalde, J.; Li, Y.; Hawkins, B.; Rosengren, R.; Paxton, J.
Heterocyclic cyclohexanone monocarbonyl analogs of curcumin can inhibit the activity of ATP-binding cassette transporters in cancer multidrug resistance
Biochem. Pharmacol.
93
305-317
2015
Homo sapiens
Manually annotated by BRENDA team
Horsey, A.J.; Cox, M.H.; Sarwat, S.; Kerr, I.D.
The multidrug transporter ABCG2 still more questions than answers
Biochem. Soc. Trans.
44
824-830
2016
Homo sapiens (Q9UNQ0), Homo sapiens
Manually annotated by BRENDA team
Clay, A.T.; Lu, P.; Sharom, F.J.
Interaction of the P-glycoprotein multidrug transporter with sterols
Biochemistry
54
6586-6597
2015
Homo sapiens (P08183)
Manually annotated by BRENDA team
Chen, Z.; Shi, T.; Zhang, L.; Zhu, P.; Deng, M.; Huang, C.; Hu, T.; Jiang, L.; Li, J.
Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance A review of the past decade
Cancer Lett.
370
153-164
2016
Homo sapiens, Homo sapiens (P08183), Homo sapiens (Q2M3G0), Homo sapiens (Q92887), Homo sapiens (Q9UNQ0)
Manually annotated by BRENDA team
Arana, M.R.; Altenberg, G.
ATP-binding cassette exporters structure and mechanism with a focus on P-glycoprotein and MRP1
Curr. Med. Chem.
25
1-17
2017
Homo sapiens (Q2M3G0), Homo sapiens (Q8HXQ5), Homo sapiens (Q9UNQ0)
Manually annotated by BRENDA team
Murakami, M.; Ohnuma, S.; Fukuda, M.; Chufan, E.E.; Kudoh, K.; Kanehara, K.; Sugisawa, N.; Ishida, M.; Naitoh, T.; Shibata, H.; Iwabuchi, Y.; Ambudkar, S.V.; Unno, M.
Synthetic analogs of curcumin modulate the function of multidrug resistance-linked ATP-binding cassette transporter ABCG2
Drug Metab. Dispos.
45
1166-1177
2017
Homo sapiens (Q9UNQ0)
Manually annotated by BRENDA team
Beretta, G.L.; Cassinelli, G.; Pennati, M.; Zuco, V.; Gatti, L.
Overcoming ABC transporter-mediated multidrug resistance The dual role of tyrosine kinase inhibitors as multitargeting agents
Eur. J. Med. Chem.
142
271-289
2017
Homo sapiens (O15439), Homo sapiens (P08183), Homo sapiens (P33527), Homo sapiens (Q5T3U5), Homo sapiens (Q92887), Homo sapiens (Q9UNQ0)
Manually annotated by BRENDA team
Pan, X.; Mei, H.; Qu, S.; Huang, S.; Sun, J.; Yang, L.; Chen, H.
Prediction and characterization of P-glycoprotein substrates potentially bound to different sites by emerging chemical pattern and hierarchical cluster analysis
Int. J. Pharm.
502
61-69
2016
Homo sapiens (P08183)
Manually annotated by BRENDA team
Wu, C.P.; Hsiao, S.H.; Murakami, M.; Lu, Y.J.; Li, Y.Q.; Huang, Y.H.; Hung, T.H.; Ambudkar, S.V.; Wu, Y.S.
alpha-Mangostin reverses multidrug resistance by attenuating the function of the multidrug resistance-linked ABCG2 transporter
Mol. Pharm.
14
2805-2814
2017
Homo sapiens (Q9UNQ0), Homo sapiens
Manually annotated by BRENDA team
Enright, E.F.; Govindarajan, K.; Darrer, R.; MacSharry, J.; Joyce, S.A.; Gahan, C.G.M.
Gut microbiota-mediated bile acid transformations alter the cellular response to multidrug resistant transporter substrates in vitro focus on P-glycoprotein
Mol. Pharm.
15
5711-5727
2018
Homo sapiens (P08183), Homo sapiens
Manually annotated by BRENDA team
Jackson, S.M.; Manolaridis, I.; Kowal, J.; Zechner, M.; Taylor, N.M.I.; Bause, M.; Bauer, S.; Bartholomaeus, R.; Bernhardt, G.; Koenig, B.; Buschauer, A.; Stahlberg, H.; Altmann, K.H.; Locher, K.P.
Structural basis of small-molecule inhibition of human multidrug transporter ABCG2
Nat. Struct. Mol. Biol.
25
333-340
2018
Homo sapiens (Q9UNQ0), Homo sapiens
Manually annotated by BRENDA team
Taylor, N.M.I.; Manolaridis, I.; Jackson, S.M.; Kowal, J.; Stahlberg, H.; Locher, K.P.
Structure of the human multidrug transporter ABCG2
Nature
546
504-509
2017
Homo sapiens (Q9UNQ0), Homo sapiens
Manually annotated by BRENDA team
Guan, G.F.; Zhang, D.J.; Zheng, Y.; Wen, L.J.; Yu, D.J.; Lu, Y.Q.; Zhao, Y.
Significance of ATP-binding cassette transporter proteins in multidrug resistance of head and neck squamous cell carcinoma
Oncol. Lett.
10
631-636
2015
Homo sapiens (Q9UNQ0), Homo sapiens
Manually annotated by BRENDA team
Tocchetti, G.N.; Rigalli, J.P.; Arana, M.R.; Villanueva, S.S.M.; Mottino, A.D.
Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics
Toxicol. Appl. Pharmacol.
303
45-57
2016
Homo sapiens (Q92887), Rattus norvegicus (Q92887)
Manually annotated by BRENDA team
Loo, T.W.; Clarke, D.M.
Thiol-reactive drug substrates of human P-glycoprotein label the same sites to activate ATPase activity in membranes or dodecyl maltoside detergent micelles
Biochem. Biophys. Res. Commun.
488
573-577
2017
Homo sapiens (P08183), Homo sapiens
Manually annotated by BRENDA team