Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
subunits H, I and D from bchH, bchI and bchD genes combine to form the enzyme complex, the complex is active only when the three proteins are present
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
subunits H, I and D from bchH, bchI and bchD genes combine to form the enzyme complex, the complex is active only when the three proteins are present
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
subunits H, I and D from bchH, bchI and bchD genes combine to form the enzyme complex, the complex is active only when the three proteins are present
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
subunits H, I and D from bchH, bchI and bchD genes combine to form the enzyme complex, the complex is active only when the three proteins are present
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
subunits H, I and D from bchH, bchI and bchD genes combine to form the enzyme complex, the complex is active only when the three proteins are present
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
complex three-subunit enzyme
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
complex three-subunit enzyme
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
complex three-subunit enzyme
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
complex three-subunit enzyme
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
complex three-subunit enzyme
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
complex three-subunit enzyme
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
complex three-subunit enzyme
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
complex three-subunit enzyme
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
complex three-subunit enzyme
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
complex three-subunit enzyme
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
this is the first committed step of chlorophyll biosynthesis and is a branchpoint of two major routes in the tetrapyrrole pathway
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
this is the first committed step of chlorophyll biosynthesis and is a branchpoint of two major routes in the tetrapyrrole pathway
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
this is the first committed step of chlorophyll biosynthesis and is a branchpoint of two major routes in the tetrapyrrole pathway
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
this is the first committed step of chlorophyll biosynthesis and is a branchpoint of two major routes in the tetrapyrrole pathway
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
this is the first committed step of chlorophyll biosynthesis and is a branchpoint of two major routes in the tetrapyrrole pathway
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
this is the first committed step of chlorophyll biosynthesis and is a branchpoint of two major routes in the tetrapyrrole pathway
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
this is the first committed step of chlorophyll biosynthesis and is a branchpoint of two major routes in the tetrapyrrole pathway
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
this is the first committed step of chlorophyll biosynthesis and is a branchpoint of two major routes in the tetrapyrrole pathway
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
this is the first committed step of chlorophyll biosynthesis and is a branchpoint of two major routes in the tetrapyrrole pathway
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
this is the first committed step of chlorophyll biosynthesis and is a branchpoint of two major routes in the tetrapyrrole pathway
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
this is the first committed step of chlorophyll biosynthesis and is a branchpoint of two major routes in the tetrapyrrole pathway
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
this is the first committed step of chlorophyll biosynthesis and is a branchpoint of two major routes in the tetrapyrrole pathway
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
linear reaction for at least 60 min under standard incubation
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
complex three-subunit enzyme
-
-
ATP + protoporphyrin IX + Mg2+ + H2O = ADP + phosphate + Mg-protoporphyrin IX + 2 H+
-
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
ATP + deuteroporphyrin + Mg2+ + H2O
ADP + phosphate + Mg-deuteroporphyrin + H+
-
Substrates: -
Products: -
?
ATP + deuteroporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-deuteroporphyrin IX + H+
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
additional information
?
-
ATP + deuteroporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-deuteroporphyrin IX + H+
Substrates: -
Products: -
?
ATP + deuteroporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-deuteroporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + deuteroporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-deuteroporphyrin IX + H+
-
Substrates: ATP utilization by magnesium chelatase is solely connected to the I-subunit
Products: -
?
ATP + deuteroporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-deuteroporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + deuteroporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-deuteroporphyrin IX + H+
-
Substrates: magnesium chelatase catalyzes the first committed step in chlorophyll biosynthesis
Products: -
?
ATP + deuteroporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-deuteroporphyrin IX + H+
-
Substrates: MgATP2- binding occurs after the rate-determining step, nucleotide binding acts to clamp the chelatase in a product complex
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
Thermosynechococcus vestitus
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: insertion of magnesium into protoporphyrin IX by magnesium chelatase is a key step in the chlorophyll biosynthetic pathway
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: optimum activity at 11.5 mM Mg2+
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: the enzyme catalyzes the insertion of magnesium into protoporphyrin IX, the first unique step of the chlorophyll biosynthetic pathway
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: omission of any of the substrates results in complete loss of activity. Optimum concentration of Mg2+ is lower for intact than broken and reconstituted chloroplasts
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: optimum activity at 11.5 mM Mg2+
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: magnesium chelatase H subunit markedly enhances magnesium protoporphyrin methyltransferase catalysis by accelerating the formation and breakdown of the catalytic intermediate, providing a kinetic link between the first two reactions of chlorophyll biosynthesis with the signalling molecule magnesium protoporphyrin as the common factor
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
Thermosynechococcus vestitus
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: Mg chelatase is a multi-subunit enzyme that catalyses the first committed step of chlorophyll biosynthesis. The Mg chelatase reaction product, Mg-protoporphyrin IX plays an essential role in nuclear-plastid interactions
Products: -
?
additional information
?
-
-
Substrates: subunit isoform ChlI2 shows ATPase activity, but with lower Vmax and higher Km value than isoform ChlI1. Although it plays a limited role in chlorophyll biosynthesis, it certainly contributes to the assembly of the Mg-chelatase complex
Products: -
?
additional information
?
-
-
Substrates: ABAR interacts with the transcription factors WRKY40, WRKY18, and WRKY60
Products: -
?
additional information
?
-
-
Substrates: CHLH does not bind abscisic acid
Products: -
?
additional information
?
-
-
Substrates: using a surface plasmon resonance system, it is shown that abscisic acid binds to CHLH, but not to the other Mg-chelatase components/subunits CHLI, CHLD (D subunit) and GUN4
Products: -
?
additional information
?
-
-
Substrates: mutant with a non-functional magnesium chelatase subunit D assembles a Zn-BChl photosystem
Products: -
?
additional information
?
-
-
Substrates: the pattern of changes in RNA transcript levels of the magnesium chelatase genes, chlH, chlD and chlI of Chlamydomonas reinhardtii grown under synchronous culture conditions in light/dark cycles are similar. Light is involved in regulation
Products: -
?
additional information
?
-
Substrates: BchH is the rate-limiting component of Mg chelatase in cell extracts, and its slective inactivation during adaption to aerobic growth may account for the rapid inactivation of Mg chelatase in vivo when anaerobically growing cells are exposed to O2 in the light
Products: -
?
additional information
?
-
-
Substrates: BchH is the rate-limiting component of Mg chelatase in cell extracts, and its slective inactivation during adaption to aerobic growth may account for the rapid inactivation of Mg chelatase in vivo when anaerobically growing cells are exposed to O2 in the light
Products: -
?
additional information
?
-
-
Substrates: enzyme is composed of subunits BchI, BchD, BchH. The BchIBchD complex has intrinsic ATPase activity, and addition of BchH greatly increased ATPase activity. This is concentration-dependent and gives sigmoidal kinetics. ATPase activity is about 40fold higher than magnesium chelatase activity and continues despite cessation of magnesium chelation, implying secondary roles for ATP hydrolysis. Porphyrin binding is the rate limiting step in catalysis
Products: -
?
additional information
?
-
Substrates: BchJ may serve as an Mg-protoporphyrin carrier between the BchH Mg-protoporphyrin and BchM
Products: -
?
additional information
?
-
-
Substrates: BchJ may serve as an Mg-protoporphyrin carrier between the BchH Mg-protoporphyrin and BchM
Products: -
?
additional information
?
-
Substrates: BchH is the rate-limiting component of Mg chelatase in cell extracts, and its slective inactivation during adaption to aerobic growth may account for the rapid inactivation of Mg chelatase in vivo when anaerobically growing cells are exposed to O2 in the light
Products: -
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
ATP + deuteroporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-deuteroporphyrin IX + H+
-
Substrates: magnesium chelatase catalyzes the first committed step in chlorophyll biosynthesis
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
additional information
?
-
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + 2 H+
Thermosynechococcus vestitus
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: insertion of magnesium into protoporphyrin IX by magnesium chelatase is a key step in the chlorophyll biosynthetic pathway
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: the enzyme catalyzes the insertion of magnesium into protoporphyrin IX, the first unique step of the chlorophyll biosynthetic pathway
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
Substrates: -
Products: -
?
ATP + protoporphyrin IX + Mg2+ + H2O
ADP + phosphate + Mg-protoporphyrin IX + H+
-
Substrates: magnesium chelatase H subunit markedly enhances magnesium protoporphyrin methyltransferase catalysis by accelerating the formation and breakdown of the catalytic intermediate, providing a kinetic link between the first two reactions of chlorophyll biosynthesis with the signalling molecule magnesium protoporphyrin as the common factor
Products: -
?
additional information
?
-
-
Substrates: subunit isoform ChlI2 shows ATPase activity, but with lower Vmax and higher Km value than isoform ChlI1. Although it plays a limited role in chlorophyll biosynthesis, it certainly contributes to the assembly of the Mg-chelatase complex
Products: -
?
additional information
?
-
-
Substrates: using a surface plasmon resonance system, it is shown that abscisic acid binds to CHLH, but not to the other Mg-chelatase components/subunits CHLI, CHLD (D subunit) and GUN4
Products: -
?
additional information
?
-
-
Substrates: mutant with a non-functional magnesium chelatase subunit D assembles a Zn-BChl photosystem
Products: -
?
additional information
?
-
-
Substrates: the pattern of changes in RNA transcript levels of the magnesium chelatase genes, chlH, chlD and chlI of Chlamydomonas reinhardtii grown under synchronous culture conditions in light/dark cycles are similar. Light is involved in regulation
Products: -
?
additional information
?
-
Substrates: BchH is the rate-limiting component of Mg chelatase in cell extracts, and its slective inactivation during adaption to aerobic growth may account for the rapid inactivation of Mg chelatase in vivo when anaerobically growing cells are exposed to O2 in the light
Products: -
?
additional information
?
-
-
Substrates: BchH is the rate-limiting component of Mg chelatase in cell extracts, and its slective inactivation during adaption to aerobic growth may account for the rapid inactivation of Mg chelatase in vivo when anaerobically growing cells are exposed to O2 in the light
Products: -
?
additional information
?
-
Substrates: BchH is the rate-limiting component of Mg chelatase in cell extracts, and its slective inactivation during adaption to aerobic growth may account for the rapid inactivation of Mg chelatase in vivo when anaerobically growing cells are exposed to O2 in the light
Products: -
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
dimer
-
2 * 40000, BchI subunit
homodimer
-
2 * 150000, subunit ChlH, SDS-PAGE
octamer
-
8 * 70000, D subunit, the molecular mass of the polymeric protein is approximately 550000 Da
trimer
-
1 * 40000 (I-subunit) + 1 * 70000 (D-subunit) + 1 * 140000 (H-subunit)
?
-
x * 44000, SDS-PAGE, ChlI subunit
?
-
x * 46000, calculation from sequence of cDNA, I subunit
?
-
x * 87000, calculation from sequence of cDNA, D subunit
?
x * 150000, subunit ChlH, SDS-PAGE
?
-
x * 150000, subunit ChlH, SDS-PAGE
-
?
-
x * 153491, calculation from sequence of cDNA, ChlH subunit
?
-
x * 46000, calculation from sequence of cDNA, I subunit
?
-
x * 40000, SDS-PAGE, I subunit
?
-
x * 90000-130000, gel filtration, BchI subunit
?
-
x * 40000 + x * 70000 + x * 140000
?
-
x * 150000, subunit ChlH, SDS-PAGE
?
x * 82900, calculation from sequence of cDNA, D subunit
?
-
x * 150000, subunit ChlH, SDS-PAGE
?
-
x * 38000, SDS-PAGE, a construct expressing I subunit
?
-
x * 42000, SDS-PAGE, a construct expressing I subunit
?
-
x * 73000, calculation from sequence of cDNA, D subunit
?
x * 60000, calculation from sequence of cDNA, D subunit
heterotrimer
-
1 * 148000 + 1 * 39000 + 1 * 73000, subunits ChlH, ChlI and ChlD
heterotrimer
Thermosynechococcus vestitus
-
1 * 150000 + 1 * 70000 + 1 * 40000, SDS-PAGE
additional information
-
1 * 110000, gel filtration, BchH subunit
additional information
-
1 * 140000, BchH subunit
additional information
-
the enzyme has three subunits, BchI, BchH and BchD
additional information
-
the enzyme has three subunits, BchI, BchH and BchD
additional information
enzyme interacts with the next enzyme in the pathway, magnesium protoporphyrine IX methyltransferase BchM. Activitiy of BchM in presence of isoform BchH1 is 132% of the activity of BchM alone
additional information
enzyme interacts with the next enzyme in the pathway, magnesium protoporphyrine IX methyltransferase BchM. Activitiy of BchM in presence of isoform BchH1 is 132% of the activity of BchM alone
additional information
enzyme interacts with the next enzyme in the pathway, magnesium protoporphyrine IX methyltransferase BchM. Activitiy of BchM in presence of isoform BchH1 is 132% of the activity of BchM alone
additional information
-
enzyme interacts with the next enzyme in the pathway, magnesium protoporphyrine IX methyltransferase BchM. Activitiy of BchM in presence of isoform BchH1 is 132% of the activity of BchM alone
additional information
enzyme interacts with the next enzyme in the pathway, magnesium protoporphyrine IX methyltransferase BchM. Activitiy of BchM in presence of isoform BchH2 is 157% of the activity of BchM alone
additional information
enzyme interacts with the next enzyme in the pathway, magnesium protoporphyrine IX methyltransferase BchM. Activitiy of BchM in presence of isoform BchH2 is 157% of the activity of BchM alone
additional information
enzyme interacts with the next enzyme in the pathway, magnesium protoporphyrine IX methyltransferase BchM. Activitiy of BchM in presence of isoform BchH2 is 157% of the activity of BchM alone
additional information
-
enzyme interacts with the next enzyme in the pathway, magnesium protoporphyrine IX methyltransferase BchM. Activitiy of BchM in presence of isoform BchH2 is 157% of the activity of BchM alone
additional information
enzyme interacts with the next enzyme in the pathway, magnesium protoporphyrine IX methyltransferase BchM. Activitiy of BchM in presence of isoform BchH3 is 68% of the activity of BchM alone
additional information
enzyme interacts with the next enzyme in the pathway, magnesium protoporphyrine IX methyltransferase BchM. Activitiy of BchM in presence of isoform BchH3 is 68% of the activity of BchM alone
additional information
enzyme interacts with the next enzyme in the pathway, magnesium protoporphyrine IX methyltransferase BchM. Activitiy of BchM in presence of isoform BchH3 is 68% of the activity of BchM alone
additional information
-
enzyme interacts with the next enzyme in the pathway, magnesium protoporphyrine IX methyltransferase BchM. Activitiy of BchM in presence of isoform BchH3 is 68% of the activity of BchM alone
additional information
-
the enzyme has three subunits, ChlI, ChlH and ChlD
additional information
-
the enzyme has three subunits, ChlI, ChlH and ChlD
additional information
-
the 40000 Da subunit functions as a chaperon that is esential for the survival of the 70000 Da subunit. The ATPase activity of the 40000 Da subunit is essential for this function. Binding between the two subunits is not sufficient to maintain the 70000 Da subunit in the cell
additional information
-
M1 and M2 domains of ChlD subunit participate in homodimerization and interaction between ChlI and ChlD
additional information
the enzyme has three subunits, ChlI, ChlH and ChlD
additional information
-
the enzyme has three subunits, ChlI, ChlH and ChlD
additional information
-
H subunit is a monomer and I subunit is a dimer, determined by dynamic-light-scattering studies
additional information
-
the enzyme has three subunits, ChlI, ChlH and ChlD
additional information
-
the enzyme has three subunits, BchI, BchH and BchD
additional information
-
the enzyme has three subunits, BchI, BchH and BchD
additional information
-
the enzyme has three subunits, BchI, BchH and BchD
additional information
-
I subunit is hexameric
additional information
-
enzyme is composed of subunits BchI, BchD, BchH. The BchIBchD complex has intrinsic ATPase activity, and addition of BchH greatly increased ATPase activity. This is concentration-dependent and gives sigmoidal kinetics. ATPase activity is about 40fold higher than magnesium chelatase activity and continues despite cessation of magnesium chelation, implying secondary roles for ATP hydrolysis
additional information
-
1 * 148000, gel filtration, ChlH subunit
additional information
-
ChlI subunit forms high-molecular-mass aggregates
additional information
-
ChlH forms high-molecular aggregates when preincubated with ATP and Mg2+
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Walker, C.J.; Weinstein, J.D.
In vitro assay of the chlorophyll biosynthetic enzyme Mg-chelatase: resolution of the activity into soluble and membrane-bound fractions
Proc. Natl. Acad. Sci. USA
88
5789-5793
1991
Cucumis sativus, Pisum sativum
brenda
Walker, C.J.; Willows, R.D.
Mechanism and regulation of Mg-chelatase
Biochem. J.
327
321-333
1997
Arabidopsis thaliana, Cucumis sativus, Hordeum vulgare, Pisum sativum, Rhodobacter capsulatus, Cereibacter sphaeroides, Synechocystis sp. (P51634)
brenda
Fodje, M.N.; Hansson, A.; Hansson, M.; Olsen, J.G.; Gough, S.; Willows, R.D.; Al-Karadaghi, S.
Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase
J. Mol. Biol.
311
111-122
2001
Rhodobacter capsulatus
brenda
Nakayama, M.; Masuda, T.; Sato, N.; Yamagata, H.; Bowler, C.; Ohta, H.; Shioi, Y.; Takamiya, K.
Cloning, subcellular localization and expression of CHL1, a subunit of magnesium-chelatase in soybean
Biochem. Biophys. Res. Commun.
215
422-428
1995
Glycine max
brenda
Gorchein, A.
Cell-free activity of magnesium chelatase in Rhodobacter spheroides and Rhodobacter capsulatus
Biochem. Soc. Trans.
25
82S
1997
Rhodobacter capsulatus, Cereibacter sphaeroides
brenda
Reid, J.D.; Hunter, C.N.
Current understanding of the function of magnesium chelatase
Biochem. Soc. Trans.
30
643-645
2002
Synechocystis sp., Arabidopsis thaliana
brenda
Papenbrock, J.; Mock, H.P.; Kruse, E.; Grimm, B.
Expression studies in tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods
Planta
208
264-273
1999
Nicotiana tabacum
-
brenda
Grafe, S.; Saluz, H.P.; Grimm, B.; Hanel, F.
Mg-chelatase of tobacco: the role of the subunit CHL D in the chelation step of protoporphyrin IX
Proc. Natl. Acad. Sci. USA
96
1941-1946
1999
Nicotiana tabacum
brenda
Hansson, A.; Willows, R.D.; Roberts, T.H.; Hansson, M.
Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers
Proc. Natl. Acad. Sci. USA
99
13944-13949
2002
Hordeum vulgare
brenda
Willows, R.D.; Lake, V.; Roberts, T.H.; Beale, S.I.
Inactivation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus
J. Bacteriol.
185
3249-3258
2003
Rhodobacter capsulatus (P26162), Rhodobacter capsulatus, Rhodobacter capsulatus SB1003 (P26162)
brenda
Yaronskaya, E.B.; Rassadina, V.V.; Averina, N.G.
Regulation of magnesium chelatase activity during excessive accumulation of porphyrins in green barley leaves
Russ. J. Plant Physiol.
49
771-775
2002
Hordeum vulgare
-
brenda
Petersen, B.L.; Jensen, P.E.; Gibson, L.C.D.; Stummann, B.M.; Hunter, C.N.; Henningsen, K.W.
Reconstitution of an active magnesium chelatase enzyme complex from the bchI, -D, and -H gene products of the green sulfur bacterium Chlorobium vibrioforme expressed in Escherichia coli
J. Bacteriol.
180
699-704
1998
Prosthecochloris vibrioformis
brenda
Karger, G.A.; Reid, J.D.; Hunter, C.N.
Characterization of the binding of deuteroporphyrin IX to the magnesium chelatase H subunit and spectroscopic properties of the complex
Biochemistry
40
9291-9299
2001
Synechocystis sp., Cereibacter sphaeroides
brenda
Jensen, P.E.; Reid, J.D.; Hunter, C.N.
Modification of cysteine residues in the ChlI and ChlH subunits of magnesium chelatase results in enzyme inactivation
Biochem. J.
352
435-441
2000
Synechocystis sp.
brenda
Willows, R.D.; Beale, S.I.
Heterologous expression of the Rhodobacter capsulatus BchI, -D, and -H genes that encode magnesium chelatase subunits and characterization of the reconstituted enzyme
J. Biol. Chem.
273
34206-34213
1998
Rhodobacter capsulatus
brenda
Fuesler, T.P.; Wright, L.A., Jr.; Castelfranco, P.A.
Properties of magnesium chelatase in greening etioplasts. Metal ion specificity and effect of substrate concentrations
Plant Physiol.
67
246-249
1981
Cucumis sativus
brenda
Nakayama, M.; Masuda, T.; Bando, T.; Yamagata, H.; Ohta, H.; Takamiya, K.
Cloning and expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localization of the Mg2+ concentration-dependent ChlH protein within the chloroplast
Plant Cell Physiol.
39
275-284
1998
Glycine max
brenda
Rissler, H.M.; Collakova, E.; DellaPenna, D.; Whelan, J.; Pogson, B.J.
Chlorophyll biosynthesis. Expression of a second Chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis
Plant Physiol.
128
770-779
2002
Arabidopsis thaliana
brenda
Papenbrock, J.; Mock, H.P.; Tanaka, R.; Kruse, E.; Grimm, B.
Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway
Plant Physiol.
122
1161-1169
2000
Nicotiana tabacum, Rhodobacter capsulatus
brenda
Luo, M.; Weinstein, J.D.; Walker, C.J.
Magnesium chelatase subunit D from pea: characterization of the cDNA, heterologous expression of an enzymatically active protein and immunoassay of the native protein
Plant Mol. Biol.
41
721-731
1999
Pisum sativum (O22437), Pisum sativum
brenda
Papenbrock, J.; Pfundel, E.; Mock, H.P.; Grimm, B.
Decreased and increased expression of the subunit CHL I diminishes Mg chelatase activity and reduces chlorophyll synthesis in transgenic tobacco plants
Plant J.
22
155-164
2000
Nicotiana tabacum
brenda
Papenbrock, J.; Grafe, S.; Kruse, E.; Hanel, F.; Grimm, B.
Mg-chelatase of tobacco: identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by co-expression of recombinant CHL D, CHL H and CHL I
Plant J.
12
981-990
1997
Nicotiana tabacum (O24133), Nicotiana tabacum
brenda
Willows, R.D.; Gibson, L.C.; Kanangara, C.G.; Hunter, C.N.; von Wettstein, D.
Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides
Eur. J. Biochem.
235
438-443
1996
Cereibacter sphaeroides
brenda
Lake, V.; Olsson, U.; Willows, R.D.; Hansson, M.
ATPase activity of magnesium chelatase subunit I is required to maintain subunit D in vivo
Eur. J. Biochem.
271
2182-2188
2004
Hordeum vulgare
brenda
Shepherd, M.; McLean, S.; Hunter, C.N.
Kinetic basis for linking the first two enzymes of chlorophyll biosynthesis
FEBS J.
272
4532-4539
2005
Synechocystis sp.
brenda
Reid, J.D.; Hunter, C.N.
Magnesium-dependent ATPase activity and cooperativity of magnesium chelatase from Synechocystis sp. PCC6803
J. Biol. Chem.
279
26893-26899
2004
Synechocystis sp.
brenda
Willows, R.D.; Hansson, A.; Birch, D.; Al-Karadaghi, S.; Hansson, M.
EM single particle analysis of the ATP-dependent BchI complex of magnesium chelatase: an AAA+ hexamer
J. Struct. Biol.
146
227-233
2004
Rhodobacter capsulatus
brenda
Lake, V.; Willows, R.D.
Rapid extraction of RNA and analysis of transcript levels in Chlamydomonas reinhardtii using real-time RT-PCR: Magnesium chelatase chlH, chlD and chlI gene expression
Photosynth. Res.
77
69-76
2003
Chlamydomonas reinhardtii
brenda
Olsson, U.; Sirijovski, N.; Hansson, M.
Characterization of eight barley xantha-f mutants deficient in magnesium chelatase
Plant Physiol. Biochem.
42
557-564
2004
Hordeum vulgare
brenda
Sirijovski, N.; Olsson, U.; Lundqvist, J.; Al-Karadaghi, S.; Willows, R.D.; Hansson, M.
ATPase activity associated with the magnesium chelatase H-subunit of the chlorophyll biosynthetic pathway is an artefact
Biochem. J.
400
477-484
2006
Rhodobacter capsulatus
brenda
Jaschke, P.R.; Beatty, J.T.
The photosystem of Rhodobacter sphaeroides assembles with zinc bacteriochlorophyll in a bchD (magnesium chelatase) mutant
Biochemistry
46
12491-12500
2007
Cereibacter sphaeroides
brenda
Viney, J.; Davison, P.A.; Hunter, C.N.; Reid, J.D.
Direct measurement of metal-ion chelation in the active site of the AAA(+) ATPase magnesium chelatase
Biochemistry
46
12788-12794
2007
Synechocystis sp.
brenda
Ikegami, A.; Yoshimura, N.; Motohashi, K.; Takahashi, S.; Romano, P.G.; Hisabori, T.; Takamiya, K.; Masuda, T.
The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin
J. Biol. Chem.
282
19282-19291
2007
Arabidopsis thaliana
brenda
Sawers, R.J.; Farmer, P.R.; Moffett, P.; Brutnell, T.P.
In planta transient expression as a system for genetic and biochemical analyses of chlorophyll biosynthesis
Plant Methods
2
15
2006
Zea mays
brenda
Sawers, R.J.; Viney, J.; Farmer, P.R.; Bussey, R.R.; Olsefski, G.; Anufrikova, K.; Hunter, C.N.; Brutnell, T.P.
The maize Oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase
Plant Mol. Biol.
60
95-106
2006
Zea mays (Q4FE78), Zea mays
brenda
Hedtke, B.; Alawady, A.; Chen, S.; Boernke, F.; Grimm, B.
HEMA RNAi silencing reveals a control mechanism of ALA biosynthesis on Mg chelatase and Fe chelatase
Plant Mol. Biol.
64
733-742
2007
Nicotiana tabacum
brenda
Johnson, E.T.; Schmidt-Dannert, C.
Characterization of three homologs of the large subunit of the magnesium chelatase from Chlorobaculum tepidum and interaction with the magnesium protoporphyrin IX methyltransferase
J. Biol. Chem.
283
27776-27784
2008
Chlorobaculum tepidum (Q8KB39), Chlorobaculum tepidum (Q93SV6), Chlorobaculum tepidum (Q93SV9), Chlorobaculum tepidum
brenda
Sirijovski, N.; Lundqvist, J.; Rosenbaeck, M.; Elmlund, H.; Al-Karadaghi, S.; Willows, R.D.; Hansson, M.
Substrate-binding model of the chlorophyll biosynthetic magnesium chelatase BchH subunit
J. Biol. Chem.
283
11652-11660
2008
Rhodobacter capsulatus
brenda
Sawicki, A.; Willows, R.D.
Kinetic analyses of the magnesium chelatase provide insights into the mechanism, structure, and formation of the complex
J. Biol. Chem.
283
31294-31302
2008
Rhodobacter capsulatus
brenda
Kobayashi, K.; Mochizuki, N.; Yoshimura, N.; Motohashi, K.; Hisabori, T.; Masuda, T.
Functional analysis of Arabidopsis thaliana isoforms of the Mg-chelatase CHLI subunit
Photochem. Photobiol. Sci.
7
1188-1195
2008
Arabidopsis thaliana
brenda
Stephenson, P.G.; Terry, M.J.
Light signalling pathways regulating the Mg-chelatase branchpoint of chlorophyll synthesis during de-etiolation in Arabidopsis thaliana
Photochem. Photobiol. Sci.
7
1243-1252
2008
Arabidopsis thaliana
brenda
von Gromoff, E.D.; Alawady, A.; Meinecke, L.; Grimm, B.; Beck, C.F.
Heme, a plastid-derived regulator of nuclear gene expression in Chlamydomonas
Plant Cell
20
552-567
2008
Chlamydomonas reinhardtii (Q94FT3), Chlamydomonas reinhardtii
brenda
Tuttle, J.R.; Idris, A.M.; Brown, J.K.; Haigler, C.H.; Robertson, D.
Geminivirus-mediated gene silencing from Cotton leaf crumple virus is enhanced by low temperature in cotton
Plant Physiol.
148
41-50
2008
Gossypium hirsutum
brenda
Adhikari, N.D.; Orler, R.; Chory, J.; Froehlich, J.E.; Larkin, R.M.
Porphyrins promote the association of GENOMES UNCOUPLED 4 and a Mg-chelatase subunit with chloroplast membranes
J. Biol. Chem.
284
24783-24796
2009
Arabidopsis thaliana, Pisum sativum
brenda
Mueller, A.H.; Hansson, M.
The barley magnesium chelatase 150-kd subunit is not an abscisic acid receptor
Plant Physiol.
150
157-166
2009
Hordeum vulgare (Q94C01), Hordeum vulgare
brenda
Wu, F.Q.; Xin, Q.; Cao, Z.; Liu, Z.Q.; Du, S.Y.; Mei, C.; Zhao, C.X.; Wang, X.F.; Shang, Y.; Jiang, T.; Zhang, X.F.; Yan, L.; Zhao, R.; Cui, Z.N.; Liu, R.; Sun, H.L.; Yang, X.L.; Su, Z.; Zhang, D.P.
The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: new evidence in Arabidopsis
Plant Physiol.
150
1940-1954
2009
Arabidopsis thaliana
brenda
Lundqvist, J.; Elmlund, H.; Wulff, R.P.; Berglund, L.; Elmlund, D.; Emanuelsson, C.; Hebert, H.; Willows, R.D.; Hansson, M.; Lindahl, M.; Al-Karadaghi, S.
ATP-induced conformational dynamics in the AAA+ motor unit of magnesium chelatase
Structure
18
354-365
2010
Rhodobacter capsulatus (P26239), Rhodobacter capsulatus
brenda
Sawicki, A.; Willows, R.D.
BchJ and BchM interact in a 1: 1 ratio with the magnesium chelatase BchH subunit of Rhodobacter capsulatus
FEBS J.
277
4709-4721
2010
Rhodobacter capsulatus (P26162), Rhodobacter capsulatus
brenda
Davison, P.A.; Hunter, C.N.
Abolition of magnesium chelatase activity by the gun5 mutation and reversal by Gun4
FEBS Lett.
585
183-186
2011
Synechocystis sp.
brenda
Jaschke, P.R.; Hardjasa, A.; Digby, E.L.; Hunter, C.N.; Beatty, J.T.
A bchD (magnesium chelatase) mutant of Rhodobacter sphaeroides synthesizes zinc bacteriochlorophyll through novel zinc-containing intermediates
J. Biol. Chem.
286
20313-20322
2011
Cereibacter sphaeroides
brenda
Tsuzuki, T.; Takahashi, K.; Inoue, S.; Okigaki, Y.; Tomiyama, M.; Hossain, M.; Shimazaki, K.; Murata, Y.; Kinoshita, T.
Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana
J. Plant Res.
124
527-538
2011
Arabidopsis thaliana
brenda
Shang, Y.; Yan, L.; Liu, Z.Q.; Cao, Z.; Mei, C.; Xin, Q.; Wu, F.Q.; Wang, X.F.; Du, S.Y.; Jiang, T.; Zhang, X.F.; Zhao, R.; Sun, H.L.; Liu, R.; Yu, Y.T.; Zhang, D.P.
The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition
Plant Cell
22
1909-1935
2010
Arabidopsis thaliana
brenda
Adhikari, N.D.; Froehlich, J.E.; Strand, D.D.; Buck, S.M.; Kramer, D.M.; Larkin, R.M.
GUN4-porphyrin complexes bind the ChlH/GUN5 subunit of Mg-chelatase and promote chlorophyll biosynthesis in Arabidopsis
Plant Cell
23
1449-1467
2011
Arabidopsis thaliana
brenda
Ren, J.; Sun, L.; Wang, C.; Zhao, S.; Leng, P.
Expression analysis of the cDNA for magnesium chelatase H subunit (CHLH) during sweet cherry fruit ripening and under stress conditions
Plant Growth Regul.
63
301-307
2011
Prunus avium (E2D957)
-
brenda
Adams, N.B.; Marklew, C.J.; Brindley, A.A.; Hunter, C.N.; Reid, J.D.
Characterization of the magnesium chelatase from Thermosynechococcus elongatus
Biochem. J.
457
163-170
2014
Synechocystis sp., Thermosynechococcus vestitus
brenda
Qian, P.; Marklew, C.J.; Viney, J.; Davison, P.A.; Brindley, A.A.; Soederberg, C.; Al-Karadaghi, S.; Bullough, P.A.; Grossmann, J.G.; Hunter, C.N.
Structure of the cyanobacterial Magnesium Chelatase H subunit determined by single particle reconstruction and small-angle X-ray scattering
J. Biol. Chem.
287
4946-4956
2012
Thermosynechococcus vestitus
brenda
Lundqvist, J.; Braumann, I.; Kurowska, M.; Mueller, A.H.; Hansson, M.
Catalytic turnover triggers exchange of subunits of the magnesium chelatase AAA+ motor unit
J. Biol. Chem.
288
24012-24019
2013
Rhodobacter capsulatus
brenda
Adams, N.B.; Reid, J.D.
The allosteric role of the AAA+ domain of ChlD protein from the magnesium chelatase of synechocystis species PCC 6803
J. Biol. Chem.
288
28727-28732
2013
Synechocystis sp.
brenda
Du, S.Y.; Zhang, X.F.; Lu, Z.; Xin, Q.; Wu, Z.; Jiang, T.; Lu, Y.; Wang, X.F.; Zhang, D.P.
Roles of the different components of magnesium chelatase in abscisic acid signal transduction
Plant Mol. Biol.
80
519-537
2012
Arabidopsis thaliana
brenda
Luo, S.; Luo, T.; Liu, Y.; Li, Z.; Fan, S.; Wu, C.
N-terminus plus linker domain of Mg-chelatase D subunit is essential for Mg-chelatase activity in Oryza sativa
Biochem. Biophys. Res. Commun.
497
749-755
2018
Oryza sativa
brenda
Adams, N.B.; Marklew, C.J.; Qian, P.; Brindley, A.A.; Davison, P.A.; Bullough, P.A.; Hunter, C.N.
Structural and functional consequences of removing the N-terminal domain from the magnesium chelatase ChlH subunit of Thermosynechococcus elongatus
Biochem. J.
464
315-322
2014
Thermosynechococcus vestitus
brenda
Adams, N.B.; Brindley, A.A.; Hunter, C.N.; Reid, J.D.
The catalytic power of magnesium chelatase a benchmark for the AAA+ ATPases
FEBS Lett.
590
1687-1693
2016
Synechocystis sp. PCC 6803
brenda
Campbell, B.; Mani, D.; Curtin, S.; Slattery, R.; Michno, J.; Ort, D.; Schaus, P.; Palmer, R.; Orf, J.; Stupar, R.
Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants
G3 (Bethesda)
5
123-131
2015
Glycine max
brenda
Ruan, B.; Gao, Z.; Zhao, J.; Zhang, B.; Zhang, A.; Hong, K.; Yang, S.; Jiang, H.; Liu, C.; Chen, G.; Peng, Y.; Dong, G.; Guo, L.; Xu, Z.; Qian, Q.
The rice YGL gene encoding an Mg2+-chelatase ChlD subunit is affected by temperature for chlorophyll biosynthesis
J. Plant Biol.
60
314-321
2017
Oryza sativa
-
brenda
Tomiyama, M.; Inoue, S.; Tsuzuki, T.; Soda, M.; Morimoto, S.; Okigaki, Y.; Ohishi, T.; Mochizuki, N.; Takahashi, K.; Kinoshita, T.
Mg-chelatase I subunit 1 and Mg-protoporphyrin IX methyltransferase affect the stomatal aperture in Arabidopsis thaliana
J. Plant Res.
127
553-563
2014
Arabidopsis thaliana
brenda
Chen, X.; Pu, H.; Fang, Y.; Wang, X.; Zhao, S.; Lin, Y.; Zhang, M.; Dai, H.E.; Gong, W.; Liu, L.
Crystal structure of the catalytic subunit of magnesium chelatase
Nat. Plants
1
15125
2015
Synechocystis sp. PCC 6803
brenda
Braumann, I.; Stein, N.; Hansson, M.
Reduced chlorophyll biosynthesis in heterozygous barley magnesium chelatase mutants
Plant Physiol. Biochem.
78
10-14
2014
Hordeum vulgare
brenda
Mueller, A.H.; Sawicki, A.; Zhou, S.; Tabrizi, S.T.; Luo, M.; Hansson, M.; Willows, R.D.
Inducing the oxidative stress response in Escherichia coli improves the quality of a recombinant protein magnesium chelatase ChlH
Protein Expr. Purif.
101
61-67
2014
Chlamydomonas reinhardtii (A8I7P5), Chlamydomonas reinhardtii, Chlamydomonas reinhardtii CC124 (A8I7P5), Hordeum vulgare, Oryza sativa
brenda
Chekunova, E.; Yaronskaya, E.; Yartseva, N.; Averina, N.
New factors regulating magnesium chelatase in the green alga Chlamydomonas reinhardtii
Russ. J. Plant Physiol.
61
169-177
2014
Chlamydomonas reinhardtii, Chlamydomonas reinhardtii CC124
-
brenda