Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 5.4.99.17 - squalene-hopene cyclase and Organism(s) Alicyclobacillus acidocaldarius and UniProt Accession P33247

for references in articles please use BRENDA:EC5.4.99.17
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     5 Isomerases
         5.4 Intramolecular transferases
             5.4.99 Transferring other groups
                5.4.99.17 squalene-hopene cyclase
IUBMB Comments
The enzyme also produces the cyclization product hopan-22-ol by addition of water (cf. EC 4.2.1.129, squalene-hopanol cyclase). Hopene and hopanol are formed at a constant ratio of 5:1.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Alicyclobacillus acidocaldarius
UNIPROT: P33247
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Alicyclobacillus acidocaldarius
The expected taxonomic range for this enzyme is: Bacteria, Archaea, Eukaryota
Synonyms
squalene-hopene cyclase, squalene hopene cyclase, aacshc, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
squalene hopene cyclase
-
squalene-hopene cyclase
-
cyclase, squalene-hopanoid
-
-
-
-
squalene hopene cyclase
-
-
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
squalene = hop-22(29)-ene
show the reaction diagram
overall mechanism of the polycyclization reaction of SHCs and structures of squalene cyclization products, overview
squalene = hop-22(29)-ene
show the reaction diagram
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
cyclization
PATHWAY SOURCE
PATHWAYS
-
-, -
SYSTEMATIC NAME
IUBMB Comments
squalene mutase (cyclizing)
The enzyme also produces the cyclization product hopan-22-ol by addition of water (cf. EC 4.2.1.129, squalene-hopanol cyclase). Hopene and hopanol are formed at a constant ratio of 5:1.
CAS REGISTRY NUMBER
COMMENTARY hide
76600-69-6
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
(S)-6,7-epoxygeraniol + H2O
(1S,3R)-3-(hydroxymethyl)-2,2-dimethyl-4-methylidenecyclohexan-1-ol
show the reaction diagram
0.57% conversion with high enzyme concentrations
-
-
?
(S)-citronellal + H2O
(-)-iso-isopulegol
show the reaction diagram
0.59% conversion with high enzyme concentrations
-
-
?
citronellal
isopulegol
show the reaction diagram
activity of mutant Y420C, not of the wild-type enzyme
i.e. 2-isopropenyl-5-methyl-cyclohexanol
-
?
geraniol + H2O
gamma-cyclogeraniol + cyclogeraniol hydrate
show the reaction diagram
0.4% conversion with high enzyme concentrations
-
-
?
squalene
hop-22(29)-ene
show the reaction diagram
squalene + H2O
hopan-22-ol
show the reaction diagram
-
-
-
?
(23E)-hydroxysqualene
rac-(2R)-2-((3aS,5aR,5bR,7aS,11aS,11bR)-5a,5b,8,8,11a,13b-hexamethylicosahydro-1H-cyclopenta[a]chrysen-3-yl)propanal + rac-(2R)-2-((3aR,5aS,5bS,7aR,11aR,11bS)-5a,5b,8,8,11a,13b-hexamethylicosahydro-1H-cyclopenta[a]chrysen-3-yl)propanal + rac-2-((3aR,5aS,5bS,7aR,11aR,11bS)-5a,5b,8,8,11a,13b-hexamethylicosahydro-1H-cyclopenta[a]chrysen-3-yl)prop-2-en-1-ol
show the reaction diagram
-
-
-
-
?
(23E)-methylsqualene
rac-(5R,9S,10R,13R,14R,17S)-4,4,10,13,14-pentamethyl-17-((E)-6-methyloct-5-en-2-yl)-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthrene + rac-(5R,8S,9S,10R,13S,14S)-4,4,8,10,14-pentamethyl-17-((E)-6-methylocta-1,5-dien-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthrene + rac-(3aR,5aS,5bS,7aR,11aR,11bS,13aS)-3-(but-1-en-2-yl)-5a,5b,8,8,11a,13b-hexamethylicosahydro-1H-cyclopenta[a]chrysene + rac-2-((3aR,5aS,5bS,7aR,11aR,11bS,13aS)-5a,5b,8,8,11a,13b-hexamethylicosahydro-1H-cyclopenta[a]chrysen-3-yl)butan-2-ol
show the reaction diagram
-
-
-
-
?
(23Z)-hydroxysqualene
rac-(2R)-2-((3aS,5aR,5bR,7aS,11aS,11bR)-5a,5b,8,8,11a,13b-hexamethylicosahydro-1H-cyclopenta[a]chrysen-3-yl)propanal + rac-(2R)-2-((3aR,5aS,5bS,7aR,11aR,11bS)-5a,5b,8,8,11a,13b-hexamethylicosahydro-1H-cyclopenta[a]chrysen-3-yl)propanal + rac-2-((3aR,5aS,5bS,7aR,11aR,11bS)-5a,5b,8,8,11a,13b-hexamethylicosahydro-1H-cyclopenta[a]chrysen-3-yl)prop-2-en-1-ol + ((9beta,10alpha,13xi,20xi)-20,26-epoxydammar-24-ene)
show the reaction diagram
-
-
-
-
?
(23Z)-methylsqualene
(23Z)-methylsqualene + rac-(3aR,5aS,5bS,7aR,11aR,11bS,13aS)-3-(but-1-en-2-yl)-5a,5b,8,8,11a,13b-hexamethylicosahydro-1H-cyclopenta[a]chrysene + rac-(3aR,5aS,5bS,7aR,11aR,11bS)-3-((E)-but-2-en-2-yl)-5a,5b,8,8,11a,13b-hexamethylicosahydro-1H-cyclopenta[a]chrysene
show the reaction diagram
-
-
-
-
?
(2E)-methylsqualene
rac-(3aR,5aS,5bS,7aR,11aR,11bS,13aS)-8-ethyl-5a,5b,8,11a,13b-pentamethyl-3-(prop-1-en-2-yl)icosahydro-1H-cyclopenta[a]chrysene
show the reaction diagram
-
-
-
-
?
(3S)-2,3-oxidosqualene
lanosterol
show the reaction diagram
-
-
-
-
?
(6E)-3,7,11-trimethyldodeca-1,6,10-trien-3-ol
(-)-caparrapioxide + (-)-8-epi-caparrapioxide
show the reaction diagram
-
-
-
-
?
(6E,10E)-2,6,10-trimethyldodeca-2,6,10-triene
(4aR,5S,8aS)-1,1,4a,5,6-pentamethyl-1,2,3,4,4a,5,8,8a-octahydronaphthalene + (4aR,5S,8aS)-1,1,4a,5-tetramethyl-6-methylidenedecahydronaphthalene + (1R,2R,4aS,8aS)-1,2,5,5,8a-pentamethyldecahydronaphthalen-2-ol + (1R,2S,4aS,8aS)-1,2,5,5,8a-pentamethyldecahydronaphthalen-2-ol + (4aS,8aS)-4,4,7,8,8a-pentamethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalene + (3S,4aS,8aS)-3,4,4,8,8a-pentamethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalene
show the reaction diagram
-
via bicyclic C8-cation
-
-
?
(E,E,E,E)-2,6,10,14,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene
8-(4,8-Dimethyl-nona-3,7-dienyl)-1,1,4a,8a-tetramethyl-7-methylene-tetradecahydro-phenanthrene
show the reaction diagram
-
-
low conversion, NMR spectroscopic analysis
-
?
(E,E,E,E)-2,6,10,15,18,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene
1,1,4a,10a,10b-Pentamethyl-8-methylene-7-(4-methyl-pent-3-enyl)-octadecahydro-chrysene
show the reaction diagram
-
-
one of the three major products, NMR spectroscopic analysis
-
?
(E,E,E,E)-2,6,10,15,18,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene
1,1,4a,6a,8,10a-Hexamethyl-7-(4-methyl-pent-3-enyl)-1,2,3,4,4a,4b,5,6,6a,7,8,9,10,10a,12,12a-hexadecahydro-chrysene
show the reaction diagram
-
-
one of the three major products, NMR spectroscopic analysis
-
?
(E,E,E,E)-2,6,10,15,18,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene
1,1,4a,8,10a,10b-Hexamethyl-7-(4-methyl-pent-3-enyl)-1,2,3,4,4a,4b,5,6,8,9,10,10a,10b,11,12,12a-hexadecahydro-chrysene
show the reaction diagram
-
-
one of the three major products, NMR spectroscopic analysis
-
?
(E,E,E,E)-2,6,10,15,18,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene
2,4a,4b,7,7,10a-Hexamethyl-1-(4-methyl-pent-3-enyl)-octadecahydro-chrysen-2-ol
show the reaction diagram
-
-
minor product, NMR spectroscopic analysis
-
?
(E,E,E,E)-2,6,10,15,18,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene
2-(3a,5a,5b,8,8,11a-Hexamethyl-icosahydro-cyclopenta[a]chrysen-3-yl)-propan-2-ol
show the reaction diagram
-
-
minor product, NMR spectroscopic analysis
-
?
(E,E,E,E)-2,6,10,15,18,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene
alpha-3-Isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-icosahydro-cyclopenta[a]chrysene
show the reaction diagram
-
-
minor product, NMR spectroscopic analysis
-
?
(E,E,E,E)-2,6,10,15,18,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene
beta-3-Isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-icosahydro-cyclopenta[a]chrysene
show the reaction diagram
-
-
minor product, NMR spectroscopic analysis
-
?
(E,E,E,E)-2,6,10,15,23-pentamethyltetracosa-2,6,10,14,18,22-hexaene
2-(5a,5b,8,8,11a-Pentamethyl-icosahydro-cyclopenta[a]chrysen-3-yl)-propan-2-ol
show the reaction diagram
-
-
one of the three major products, yield 19.8%, NMR spectroscopic analysis
-
?
(E,E,E,E)-2,6,10,15,23-pentamethyltetracosa-2,6,10,14,18,22-hexaene
3-Isopropenyl-5a,5b,8,8,11a-pentamethyl-icosahydro-cyclopenta[a]chrysene
show the reaction diagram
-
-
one of the three major products, yield 29.4%, NMR spectroscopic analysis
-
?
(E,E,E,E)-2,6,10,15,23-pentamethyltetracosa-2,6,10,14,18,22-hexaene
3-Isopropenyl-5a,5b,8,8,13b-pentamethyl-icosahydro-cyclopenta[a]chrysene
show the reaction diagram
-
-
one of the three major products, yield 34.8%, NMR spectroscopic analysis
-
?
(R)-citronellal + H2O
(-)-isopulegol + (+)-neoiso-isopulegol
show the reaction diagram
-
-
-
-
?
(S)-citronellal + H2O
(+)-isopulegol
show the reaction diagram
-
-
-
-
?
10-ethylsqualene
(2R)-2-[(7E,11E)-3-ethyl-8,12,16-trimethylheptadeca-7,11,15-trien-1-yl]-1,1-dimethyl-3-methylidenecyclohexane + (3R,5aR,9aS)-3-[(5Z)-6,10-dimethylundeca-5,9-dien-2-yl]-3-ethyl-6,6,9a-trimethyl-2,3,5,5a,6,7,8,9,9a,9b-decahydro-1H-cyclopenta[a]naphthalene + (4aS,5R,8aR)-6-ethylidene-1,1,4a-trimethyl-5-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]decahydronaphthalene + (4aR,5S,8aR)-6-ethyl-1,1,4a-trimethyl-5-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]decahydronaphthalene + (2R)-2-[(3E,7E,11E)-3-ethyl-8,12,16-trimethylheptadeca-3,7,11,15-tetraen-1-yl]-1,3,3-trimethylcyclohexanol
show the reaction diagram
-
-
-
-
?
15-ethylsqualene
(2R)-2-[(3E,11E)-8-ethyl-3,12,16-trimethylheptadeca-3,7,11,15-tetraen-1-yl]-1,1-dimethyl-3-methylidenecyclohexane + (4aS,5S,8aR)-5-[(7E)-4-ethyl-8,12-dimethyltrideca-3,7,11-trien-1-yl]-1,1,4a-trimethyl-6-methylidenedecahydronaphthalene + (4aS,5S,8aR)-5-[(7E)-4-ethyl-8,12-dimethyltrideca-3,7,11-trien-1-yl]-1,1,4a,6-tetramethyl-1,2,3,4,4a,5,8,8a-octahydronaphthalene + (2R)-2-[(3E,11E)-8-ethyl-3,12,16-trimethylheptadeca-3,7,11,15-tetraen-1-yl]-1,3,3-trimethylcyclohexanol
show the reaction diagram
-
-
-
-
?
19-ethylsqualene
(2R)-2-[(3E,7E,11E)-12-ethyl-3,8,16-trimethylheptadeca-3,7,11,15-tetraen-1-yl]-1,1-dimethyl-3-methylidenecyclohexane + (6R)-6-[(3E,7E,11E)-12-ethyl-3,8,16-trimethylheptadeca-3,7,11,15-tetraen-1-yl]-1,5,6-trimethylcyclohexene + (4aS,5S,8aR)-5-[(3E,7E)-8-ethyl-4,12-dimethyltrideca-3,7,11-trien-1-yl]-1,1,4a-trimethyl-6-methylidenedecahydronaphthalene + (5R,8R,9R,10S,14S)-4,4,8,10,14-pentamethyl-17-(7-methyloct-6-en-3-yl)-2,3,4,5,6,7,8,9,10,11,12,14,15,16-tetradecahydro-1H-cyclopenta[a]phenanthrene + (4aS,5S,8aR)-5-[(3E,7E)-9-ethyl-4,12-dimethyltrideca-3,7,11-trien-1-yl]-1,1,4a,6-tetramethyl-1,2,3,4,4a,5,8,8a-octahydronaphthalene + (3S,3aS,5aR,5bR,7aR,11aS,11bS,13aR,13bS)-13b-ethyl-5a,5b,8,8,11a-pentamethyl-3-(prop-1-en-2-yl)icosahydro-1H-cyclopenta[a]chrysene
show the reaction diagram
-
-
-
-
?
2-((2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienyl)phenol + H2O
(3S,4aR,6aR,12aR,12bS)-4,4,6a,12b-tetramethyl-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-2H-benzo[a]xanthen-3-ol + 2 H+
show the reaction diagram
-
-
-
-
?
2-((2E,6E)-9-(3,3-dimethyloxiran-2-yl)-3,7-dimethylnona-2,6-dienyl)phenol
(4aS,6aR,12aR,12bS)-4,4,6a,12b-tetramethyl-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-2H-benzo[a]xanthene + 2-[[(1S,4aS,8aS)-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl]methyl]phenol + 2-[[(1S,4aS,8aS)-5,5,8a-trimethyl-2-methylidenedecahydronaphthalen-1-yl]methyl]phenol
show the reaction diagram
-
-
-
-
?
2-(farnesyldimethylallyl)pyrrole
?
show the reaction diagram
-
-
product is a 10:1 mixture of a tricyclic and a bicyclic unnatural polyprenoid
-
?
3-(farnesyldimethylallyl)indole
?
show the reaction diagram
-
-
conversion into a 2:1 mixture of a tetracyclic and a pentacyclic product
-
?
C33 polyprene
?
show the reaction diagram
-
the enzymatic products consist of mono-, bi-, tri-, tetra- and pentacyclic skeletons, however, hexacyclic products are not generated
-
-
?
citronellal
isopulegol
show the reaction diagram
-
-
i.e. 2-isopropenyl-5-methyl-cyclohexanol
-
?
farnesol
drimenol + albicanol + driman-8,11-diol + [(1S,2R,8aS)-2,5,5,8a-tetramethyl-2-[[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy]decahydronaphthalen-1-yl]methanol
show the reaction diagram
-
-
drimane-type sequiterpenes
-
?
farnesylacetone
sclareoloxide
show the reaction diagram
-
-
-
-
?
geranylacetone
(8aS)-2,5,5,8a-tetramethyl-4a,5,6,7,8,8a-hexahydro-4H-chromene
show the reaction diagram
-
-
-
-
?
geranylfarnesol
?
show the reaction diagram
-
-
-
-
?
geranylfarnesyl acetate
?
show the reaction diagram
-
-
-
-
?
homofarnesoic acid
sclareolide
show the reaction diagram
-
-
-
-
?
homofarnesol
ambroxan
show the reaction diagram
-
-
-
-
?
hongoquercin A
?
show the reaction diagram
-
-
-
-
?
hongoquercin B
?
show the reaction diagram
-
-
-
-
?
squalene
hop-22(29)-ene
show the reaction diagram
squalene
hop-22(29)-ene + hopanol
show the reaction diagram
-
the enzyme catalyzes cyclization of the linear triterpenoid squalene to hopene and hopanol by the class II mechanism
-
-
?
squalene
hopene
show the reaction diagram
-
-
-
-
?
squalene + H2O
hopan-22-ol
show the reaction diagram
-
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
squalene
hop-22(29)-ene
show the reaction diagram
-
-
-
?
squalene + H2O
hopan-22-ol
show the reaction diagram
-
-
-
?
citronellal
isopulegol
show the reaction diagram
-
-
i.e. 2-isopropenyl-5-methyl-cyclohexanol
-
?
squalene
hop-22(29)-ene
show the reaction diagram
squalene + H2O
hopan-22-ol
show the reaction diagram
-
-
-
-
?
additional information
?
-
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(4-(2-[(allyl-cyclopropyl-amino)-methyl]-cyclopropylmethoxy)-phenyl)-(4-bromo-phenyl)-methanone
IC50 59 nM
(4-bromo-phenyl)-(4-(2-[(cyclopropyl-methyl-amino)-methyl]-cyclopropylmethoxy)-2-fluoro-phenyl)-methanone
IC50 50 nM
(4-bromo-phenyl)-(4-(2-[(cyclopropyl-methyl-amino)-methyl]-cyclopropylmethoxy)-phenyl)-methanone
IC50 62 nM
(4-bromo-phenyl)-(4-[4-(cyclopropyl-methyl-amino)-but-2-enyloxy]-phenyl)-methanone
IC50 18 nM
(4-bromo-phenyl)-(4-[6-(cyclopropyl-methyl-amino)-hexyloxy]-2-fluoro-phenyl)-methanone
IC50 38 nM
(4-chloro-phenyl)-(4-[4-(4,5-dihydro-oxazol-2-yl)-benzylidene]-piperidin-1-yl)-methanone
IC50 2800 nM
(4-[6-(allyl-methyl-amino)-hexyloxy]-2-fluoro-phenyl)-(4-bromo-phenyl)-methanone
IC50 60 nM
(4-[6-(allyl-methyl-amino)-hexyloxy]-phenyl)-(4-bromo-phenyl)-methanone
IC50 96 nM
1-(4-(4-[(4-chloro-phenoxycarbonyl)-methyl-amino]-cyclohexyl)-benzyl)-1-hydroxy-piperidinium
IC50 123 nM
4'-[4-(allyl-methyl-amino)-but-2-enyloxy]-biphenyl-4-yl-(4-bromo-phenyl)-methanone
IC50 29 nM
4-[4-(allyl-methyl-amino)-but-2-enyloxy]-phenyl-(4-bromo-phenyl)-methanone
IC50 40 nM
4-[6-(allyl-methyl-amino)-hexyloxy]-piperidin-1-yl-(4-fluoro-phenyl)-methanone
IC50 1200 nM
4-[6-(cyclopropyl-methyl-amino)-hexyloxy]-piperidin-1-yl-(4-fluoro-phenyl)-methanone
IC50 760 nM
6-[[3-(4-bromophenyl)-1,2-benzisoxazol-6-yl]oxy]-N-methyl-N-prop-2-en-1-ylhexan-1-amine
-
6-[[3-(4-bromophenyl)-1-benzofuran-6-yl]oxy]-N-methyl-N-prop-2-en-1-ylhexan-1-amine
-
6-[[3-(4-bromophenyl)-1-methyl-1H-indol-6-yl]oxy]-N-methyl-N-prop-2-en-1-ylhexan-1-amine
-
6-[[3-(4-bromophenyl)-1H-indazol-6-yl]oxy]-N-methyl-N-prop-2-en-1-ylhexan-1-amine
-
allyl-(4-[3-(4-bromo-phenyl)-5-fluoro-1-methyl-1H-indazol-6-yloxy]-but-2-enyl)-methyl-amine
allyl-(4-[3-(4-bromo-phenyl)-benzofuran-6-yloxy]-but-2-enyl)-methyl-amine
IC50 23 nM
allyl-(4-[3-(4-bromo-phenyl)-benzo[b]thiophen-6-yloxy]-butyl)-methyl-amine
IC50 75 nM
allyl-(4-[3-(4-bromo-phenyl)-benzo[d]isoxazol-6-yloxy]-but-2-enyl)-amine
IC50 49 nM
allyl-(4-[4-(6-bromo-benzo[d]isothiazol-3-yl)-phenoxy]-but-2-enyl)-methyl-amine
IC50 130 nM
allyl-(6-[1-(4-bromo-phenyl)-isoquinolin-6-yloxy]-hexyl)-methyl-amine
IC50 186 nM
allyl-(6-[3-(4-bromo-phenyl)-1-methyl-1H-indazol-6-yloxy]-hexyl)-methyl-amine
IC50 289 nM
allyl-(6-[3-(4-bromo-phenyl)-1H-indazol-6-yloxy]-hexyl)-methyl-amine
IC50 180 nM
allyl-(6-[3-(4-bromo-phenyl)-benzofuran-6-yloxy]-hexyl)-methyl-amine
IC50 80 nM
allyl-(6-[3-(4-bromo-phenyl)-benzo[d]isothiazol-6-yloxy]-hexyl)-methyl-amine
IC50 306 nM
allyl-(6-[3-(4-bromo-phenyl)-benzo[d]isoxazol-6-yloxy]-hexyl)-methyl-amine
IC50 75 nM
allyl-(6-[4-(4-bromo-phenyl)-1H-benzo[d][1,2]oxazin-7-yloxy]-hexyl)-methyl-amine
IC50 172 nM
allyl-(6-[4-(6-bromo-benzo[d]isothiazol-3-yl)-phenoxy]-hexyl)-methyl-amine
IC50 141 nM
methyl-[4-(4-piperidin-1-ylmethyl-phenyl)-cyclohexyl]-carbamic acid 4-chloro-phenyl ester
IC50 406 nM
(18E)-29-methylidenehexanor-2,3-oxidosqualene
-
IC50 0.2 microMol, pH 6.0, 55°C
(1E,3E,7E,11E)-15,16-epoxy-8,12,16-trimethyl-1-methylthio-1,3,7,11-heptadecatetraene
-
IC50 1 microMol, pH 6.0, 55°C
(1E,3E,7E,11E,15E)-19,20-epoxy-7,12,16,20-tetramethyl-1-methylthio-1,3,7,11,15-heneicosapentaene
-
IC50 1.4 microMol, pH 6.0, 55°C, not time-dependency up to 10fold higher concentration than IC50
(1Z,3E,7E,11E)-15,16-epoxy-8,12,16-trimethyl-1-methylthio-1,3,7,11-heptadecatetraene
-
IC50 4 microMol, pH 6.0, 55°C
(1Z,3E,7E,11E,15E)-19,20-epoxy-7,12,16,20-tetramethyl-1-methylthio-1,3,7,11,15-heneicosapentaene
-
IC50 1.8 microMol, pH 6.0, 55°C, not time-dependency up to 10fold higher concentration than IC50
(2E)-4-[4-(6-bromo-1,2-benzisothiazol-3-yl)phenoxy]-N-methyl-N-prop-2-en-1-ylbut-2-en-1-aminium
-
-
(2E)-4-[4-[(4-bromophenyl)carbonyl]phenoxy]-N-methyl-N-prop-2-en-1-ylbut-2-en-1-aminium
-
-
(2E)-4-[[3-(4-bromophenyl)-1,2-benzisoxazol-6-yl]oxy]-N-methyl-N-prop-2-en-1-ylbut-2-en-1-aminium
-
-
(2E)-4-[[3-(4-bromophenyl)-1-benzofuran-6-yl]oxy]-N-methyl-N-prop-2-en-1-ylbut-2-en-1-aminium
-
-
(2E)-4-[[3-(4-bromophenyl)-1-benzothiophen-6-yl]oxy]-N-methyl-N-prop-2-en-1-ylbut-2-en-1-aminium
-
-
(3E,7E,11E)-15,16-epoxy-8,12,16-trimethyl-1-phenylthio-1,3,7,11-heptadecatetraene
-
IC50 2.2 microMol, pH 6.0, 55°C
(5-hydroxycarvacryl)trimethylammonium chloride 1-piperidine carboxylate
(5E,9E)-13,14-epoxy-6,10,14-trimethyl-1-phenylthio-1,5,9-pentadecatriene
-
IC50 7 microMol, pH 6.0, 55°C
(5E,9E,13E)-17,18-epoxy-5,10,14,18-tetramethyl-1-phenylthio-1,5,9,13-nonadecatetraene
-
IC50 3 microMol, pH 6.0, 55°C
1-[(4-chlorophenyl)carbonyl]-4-[[4-(4,5-dihydro-1,3-oxazol-2-yl)phenyl]methylidene]piperidine
-
-
1-[4-(trans-4-[[(4-chlorophenoxy)carbonyl](methyl)amino]cyclohexyl)benzyl]piperidinium
-
-
3-(10'-(allylmethylamino)decanoyl)chroman-2,4-dione
-
IC50 100 microMol
3-carboxy-4-nitrophenyl-dithio-1,1',2-trisnorsqualene
-
covalently modifies C435
4-chlorophenyl methyl(trans-4-[4-[(1-oxidopiperidin-1-yl)methyl]phenyl]cyclohexyl)carbamate
-
-
6-([1-[(4-fluorophenyl)carbonyl]piperidin-4-yl]oxy)-N-methyl-N-prop-2-en-1-ylhexan-1-aminium
-
-
6-[(1,3-dimethyl-1H-indazol-5-yl)oxy]-N-methyl-N-prop-2-en-1-ylhexan-1-aminium
-
-
6-[4-(6-bromo-1,2-benzisothiazol-3-yl)phenoxy]-N-methyl-N-prop-2-en-1-ylhexan-1-aminium
-
-
6-[4-[(4-bromophenyl)carbonyl]-3-fluorophenoxy]-N-methyl-N-prop-2-en-1-ylhexan-1-aminium
-
-
6-[4-[(4-bromophenyl)carbonyl]phenoxy]-N-(3-hydroxypropyl)-N-methylhexan-1-aminium
-
-
6-[4-[(4-bromophenyl)carbonyl]phenoxy]-N-methyl-N-prop-2-en-1-ylhexan-1-aminium
-
-
6-[[1-(4-bromophenyl)isoquinolin-6-yl]oxy]-N-methyl-N-prop-2-en-1-ylhexan-1-aminium
-
-
6-[[3-(4-bromophenyl)-1,2-benzisothiazol-5-yl]oxy]-N-methyl-N-prop-2-en-1-ylhexan-1-aminium
-
-
6-[[3-(4-bromophenyl)-1,2-benzisoxazol-6-yl]oxy]-N-methyl-N-prop-2-en-1-ylhexan-1-aminium
-
-
6-[[3-(4-bromophenyl)-1-benzofuran-6-yl]oxy]-N-methyl-N-prop-2-en-1-ylhexan-1-aminium
-
-
6-[[3-(4-bromophenyl)-1H-indazol-6-yl]oxy]-N-methyl-N-prop-2-en-1-ylhexan-1-aminium
-
-
6-[[4-(4-bromophenyl)-1H-2,3-benzoxazin-7-yl]oxy]-N-methyl-N-prop-2-en-1-ylhexan-1-aminium
-
-
7-(10'-(dimethylamino-N-decyloxy))chromen-2-one
-
IC50 5 microMol
7-(10-(allylmethylamino)-decyloxy)chromen-2-one
-
IC50 2 microMol
7-(4'-(N,N,N'-trimethylethylendiamino)-but-2-ynyloxy)chromen-2-one
-
not active at 100 microMol
7-(4'-(N-diethylamino)-but-2-ynyloxy)chromen-2-one
-
IC50 5 microMol
7-(4'-(N-pyrrolidyn)-but-2-ynyloxy)chromen-2-one
-
IC50 5 microMol
7-(4-allylmethylamino-but-2-ynyloxy)chromen-2-one
-
IC50 0.75 microMol
7-(6'-(benzylamino-hexyloxy))chromen-2-one
-
IC50 8 microMol
7-(6-(allylmethylamino)-hexyloxy)chromen-2-one
-
IC50 4-5 microMol
7-(8'-(dimethylamino-N-octyloxy))chromen-2-one
-
IC50 5-7 microMol
7-(morpholinyl-N-hexyloxy)chromen-2-one
-
IC50 6 microMol
7-(morpholinyl-N-octyloxy)chromen-2-one
-
IC50 7 microMol
7-(piperidinyl-N-hexyloxy)chromen-2-one
-
IC50 8 microMol
azasqualene
-
inhibition at 0.001 mM
Cu2+
-
slight inhibition at 1 mM
diethyldicarbonate
-
92% inhibition at 5 mM
dodecyldimethylamine N-oxide
-
competitive inhibition
dodecyltrimethylammonium bromide
-
competitive inhibition, 50% inhibition at 0.0001 mM
farnesol
-
inhibition at 0.1 mM
Fe2+
-
slight inhibition at 1 mM
N,N-dimethyldodecylamine N-oxide
-
forms a complex with the enzyme
N-(6-[4-[(4-bromophenyl)carbonyl]-3-fluorophenoxy]hexyl)-N-methylcyclopropanaminium
-
-
N-([4'-[(4-bromophenyl)carbonyl]biphenyl-4-yl]methyl)-N-methylprop-2-en-1-aminium
-
-
N-dodecyliodoacetamide
-
IC50 wild-type >200 microMol, quintuple mutant >200 microMol, sextuple mutant >200 microMol, pH 6.0, 50°C
N-ethylmaleimide
-
65% inhibition at 5 mM, 20% inhibition at 1 mM
N-squalenyliodoacetamide
-
IC50 wild-type >200 microMol, quintuple mutant >200 microMol, sextuple mutant 50 microMol, pH 6.0, 50°C
N-[(2E)-4-[4-[(4-bromophenyl)carbonyl]phenoxy]but-2-en-1-yl]-N-methylcyclopropanaminium
-
-
N-[6-([1-[(4-fluorophenyl)carbonyl]piperidin-4-yl]oxy)hexyl]-N-methylcyclopropanaminium
-
-
N-[[(1S,2S)-2-([4-[(4-bromophenyl)carbonyl]-3-fluorophenoxy]methyl)cyclopropyl]methyl]-N-methylcyclopropanaminium
-
-
N-[[(1S,2S)-2-([4-[(4-bromophenyl)carbonyl]phenoxy]methyl)cyclopropyl]methyl]-N-methylcyclopropanaminium
-
-
N-[[(1S,2S)-2-([4-[(4-bromophenyl)carbonyl]phenoxy]methyl)cyclopropyl]methyl]-N-prop-2-en-1-ylcyclopropanaminium
-
-
p-chloromercuribenzenesulfonic acid
-
96% inhibition at 1 mM
Ro 48-8071
-
IC50 0.35 microMol
sodium dodecylsulfate
-
strong inhibition
sodium taurodeoxycholate
-
under 0.15% and above 0.25%
squalene-maleimide
-
time-dependent inhibitor
Zn2+
-
slight inhibition at 5 mM
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
sodium taurodeoxycholate
-
1.5fold activation at 0.16%
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.003 - 0.016
squalene
pH 6.0, 60°C
0.001 - 0.0023
(3S)-2,3-oxidosqualene
0.003 - 0.955
squalene
additional information
additional information
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.15 - 1.98
squalene
additional information
additional information
-
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
3.2 - 53.09
squalene
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.00054
(5-hydroxycarvacryl)trimethylammonium chloride 1-piperidine carboxylate
-
-
0.00014
dodecyldimethylamine N-oxide
-
-
0.00032
dodecyltrimethylammonium bromide
-
-
additional information
additional information
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.000059
(4-(2-[(allyl-cyclopropyl-amino)-methyl]-cyclopropylmethoxy)-phenyl)-(4-bromo-phenyl)-methanone
Alicyclobacillus acidocaldarius
IC50 59 nM
0.00005
(4-bromo-phenyl)-(4-(2-[(cyclopropyl-methyl-amino)-methyl]-cyclopropylmethoxy)-2-fluoro-phenyl)-methanone
Alicyclobacillus acidocaldarius
IC50 50 nM
0.000062
(4-bromo-phenyl)-(4-(2-[(cyclopropyl-methyl-amino)-methyl]-cyclopropylmethoxy)-phenyl)-methanone
Alicyclobacillus acidocaldarius
IC50 62 nM
0.000018
(4-bromo-phenyl)-(4-[4-(cyclopropyl-methyl-amino)-but-2-enyloxy]-phenyl)-methanone
Alicyclobacillus acidocaldarius
IC50 18 nM
0.000038
(4-bromo-phenyl)-(4-[6-(cyclopropyl-methyl-amino)-hexyloxy]-2-fluoro-phenyl)-methanone
Alicyclobacillus acidocaldarius
IC50 38 nM
0.0028
(4-chloro-phenyl)-(4-[4-(4,5-dihydro-oxazol-2-yl)-benzylidene]-piperidin-1-yl)-methanone
Alicyclobacillus acidocaldarius
IC50 2800 nM
0.00006
(4-[6-(allyl-methyl-amino)-hexyloxy]-2-fluoro-phenyl)-(4-bromo-phenyl)-methanone
Alicyclobacillus acidocaldarius
IC50 60 nM
0.000096
(4-[6-(allyl-methyl-amino)-hexyloxy]-phenyl)-(4-bromo-phenyl)-methanone
Alicyclobacillus acidocaldarius
IC50 96 nM
0.000123
1-(4-(4-[(4-chloro-phenoxycarbonyl)-methyl-amino]-cyclohexyl)-benzyl)-1-hydroxy-piperidinium
Alicyclobacillus acidocaldarius
IC50 123 nM
0.000029
4'-[4-(allyl-methyl-amino)-but-2-enyloxy]-biphenyl-4-yl-(4-bromo-phenyl)-methanone
Alicyclobacillus acidocaldarius
IC50 29 nM
0.00004
4-[4-(allyl-methyl-amino)-but-2-enyloxy]-phenyl-(4-bromo-phenyl)-methanone
Alicyclobacillus acidocaldarius
IC50 40 nM
0.0012
4-[6-(allyl-methyl-amino)-hexyloxy]-piperidin-1-yl-(4-fluoro-phenyl)-methanone
Alicyclobacillus acidocaldarius
IC50 1200 nM
0.00076
4-[6-(cyclopropyl-methyl-amino)-hexyloxy]-piperidin-1-yl-(4-fluoro-phenyl)-methanone
Alicyclobacillus acidocaldarius
IC50 760 nM
0.000075
6-[[3-(4-bromophenyl)-1,2-benzisoxazol-6-yl]oxy]-N-methyl-N-prop-2-en-1-ylhexan-1-amine
Alicyclobacillus acidocaldarius
-
0.000281 - 0.000332
allyl-(4-[3-(4-bromo-phenyl)-5-fluoro-1-methyl-1H-indazol-6-yloxy]-but-2-enyl)-methyl-amine
0.000023
allyl-(4-[3-(4-bromo-phenyl)-benzofuran-6-yloxy]-but-2-enyl)-methyl-amine
Alicyclobacillus acidocaldarius
IC50 23 nM
0.000075
allyl-(4-[3-(4-bromo-phenyl)-benzo[b]thiophen-6-yloxy]-butyl)-methyl-amine
Alicyclobacillus acidocaldarius
IC50 75 nM
0.000049
allyl-(4-[3-(4-bromo-phenyl)-benzo[d]isoxazol-6-yloxy]-but-2-enyl)-amine
Alicyclobacillus acidocaldarius
IC50 49 nM
0.00013
allyl-(4-[4-(6-bromo-benzo[d]isothiazol-3-yl)-phenoxy]-but-2-enyl)-methyl-amine
Alicyclobacillus acidocaldarius
IC50 130 nM
0.000186
allyl-(6-[1-(4-bromo-phenyl)-isoquinolin-6-yloxy]-hexyl)-methyl-amine
Alicyclobacillus acidocaldarius
IC50 186 nM
0.000289
allyl-(6-[3-(4-bromo-phenyl)-1-methyl-1H-indazol-6-yloxy]-hexyl)-methyl-amine
Alicyclobacillus acidocaldarius
IC50 289 nM
0.00018
allyl-(6-[3-(4-bromo-phenyl)-1H-indazol-6-yloxy]-hexyl)-methyl-amine
Alicyclobacillus acidocaldarius
IC50 180 nM
0.00008
allyl-(6-[3-(4-bromo-phenyl)-benzofuran-6-yloxy]-hexyl)-methyl-amine
Alicyclobacillus acidocaldarius
IC50 80 nM
0.000306
allyl-(6-[3-(4-bromo-phenyl)-benzo[d]isothiazol-6-yloxy]-hexyl)-methyl-amine
Alicyclobacillus acidocaldarius
IC50 306 nM
0.000075
allyl-(6-[3-(4-bromo-phenyl)-benzo[d]isoxazol-6-yloxy]-hexyl)-methyl-amine
Alicyclobacillus acidocaldarius
IC50 75 nM
0.000172
allyl-(6-[4-(4-bromo-phenyl)-1H-benzo[d][1,2]oxazin-7-yloxy]-hexyl)-methyl-amine
Alicyclobacillus acidocaldarius
IC50 172 nM
0.000141
allyl-(6-[4-(6-bromo-benzo[d]isothiazol-3-yl)-phenoxy]-hexyl)-methyl-amine
Alicyclobacillus acidocaldarius
IC50 141 nM
0.000406
methyl-[4-(4-piperidin-1-ylmethyl-phenyl)-cyclohexyl]-carbamic acid 4-chloro-phenyl ester
Alicyclobacillus acidocaldarius
IC50 406 nM
0.0002
(18E)-29-methylidenehexanor-2,3-oxidosqualene
Alicyclobacillus acidocaldarius
-
IC50 0.2 microMol, pH 6.0, 55°C
0.001
(1E,3E,7E,11E)-15,16-epoxy-8,12,16-trimethyl-1-methylthio-1,3,7,11-heptadecatetraene
Alicyclobacillus acidocaldarius
-
IC50 1 microMol, pH 6.0, 55°C
0.0014
(1E,3E,7E,11E,15E)-19,20-epoxy-7,12,16,20-tetramethyl-1-methylthio-1,3,7,11,15-heneicosapentaene
Alicyclobacillus acidocaldarius
-
IC50 1.4 microMol, pH 6.0, 55°C, not time-dependency up to 10fold higher concentration than IC50
0.004
(1Z,3E,7E,11E)-15,16-epoxy-8,12,16-trimethyl-1-methylthio-1,3,7,11-heptadecatetraene
Alicyclobacillus acidocaldarius
-
IC50 4 microMol, pH 6.0, 55°C
0.0018
(1Z,3E,7E,11E,15E)-19,20-epoxy-7,12,16,20-tetramethyl-1-methylthio-1,3,7,11,15-heneicosapentaene
Alicyclobacillus acidocaldarius
-
IC50 1.8 microMol, pH 6.0, 55°C, not time-dependency up to 10fold higher concentration than IC50
0.0022
(3E,7E,11E)-15,16-epoxy-8,12,16-trimethyl-1-phenylthio-1,3,7,11-heptadecatetraene
Alicyclobacillus acidocaldarius
-
IC50 2.2 microMol, pH 6.0, 55°C
0.007
(5E,9E)-13,14-epoxy-6,10,14-trimethyl-1-phenylthio-1,5,9-pentadecatriene
Alicyclobacillus acidocaldarius
-
IC50 7 microMol, pH 6.0, 55°C
0.003
(5E,9E,13E)-17,18-epoxy-5,10,14,18-tetramethyl-1-phenylthio-1,5,9,13-nonadecatetraene
Alicyclobacillus acidocaldarius
-
IC50 3 microMol, pH 6.0, 55°C
0.1
3-(10'-(allylmethylamino)decanoyl)chroman-2,4-dione
Alicyclobacillus acidocaldarius
-
IC50 100 microMol
0.005
7-(10'-(dimethylamino-N-decyloxy))chromen-2-one
Alicyclobacillus acidocaldarius
-
IC50 5 microMol
0.002
7-(10-(allylmethylamino)-decyloxy)chromen-2-one
Alicyclobacillus acidocaldarius
-
IC50 2 microMol
0.005
7-(4'-(N-diethylamino)-but-2-ynyloxy)chromen-2-one
Alicyclobacillus acidocaldarius
-
IC50 5 microMol
0.005
7-(4'-(N-pyrrolidyn)-but-2-ynyloxy)chromen-2-one
Alicyclobacillus acidocaldarius
-
IC50 5 microMol
0.00075
7-(4-allylmethylamino-but-2-ynyloxy)chromen-2-one
Alicyclobacillus acidocaldarius
-
IC50 0.75 microMol
0.008
7-(6'-(benzylamino-hexyloxy))chromen-2-one
Alicyclobacillus acidocaldarius
-
IC50 8 microMol
0.004 - 0.005
7-(6-(allylmethylamino)-hexyloxy)chromen-2-one
Alicyclobacillus acidocaldarius
-
IC50 4-5 microMol
0.005 - 0.007
7-(8'-(dimethylamino-N-octyloxy))chromen-2-one
Alicyclobacillus acidocaldarius
-
IC50 5-7 microMol
0.006
7-(morpholinyl-N-hexyloxy)chromen-2-one
Alicyclobacillus acidocaldarius
-
IC50 6 microMol
0.007
7-(morpholinyl-N-octyloxy)chromen-2-one
Alicyclobacillus acidocaldarius
-
IC50 7 microMol
0.008
7-(piperidinyl-N-hexyloxy)chromen-2-one
Alicyclobacillus acidocaldarius
-
IC50 8 microMol
0.2
N-dodecyliodoacetamide
Alicyclobacillus acidocaldarius
-
IC50 wild-type >200 microMol, quintuple mutant >200 microMol, sextuple mutant >200 microMol, pH 6.0, 50°C
0.05 - 0.2
N-squalenyliodoacetamide
0.00035
Ro 48-8071
Alicyclobacillus acidocaldarius
-
IC50 0.35 microMol
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
35 - 50
-
mutant Q262G
45 - 55
-
mutant Q262A
50 - 60
additional information
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
enzyme SHC in vivo is a membrane-associated protein and can be solubilized from cell extracts by nonionic detergents, such as Triton X-100 or octylthioglucopyranoside. The enzyme is attached to the inner side of the cytoplasmic membrane by interactions of hydrophobic residues with the phospholipids. The membrane-binding part of the enzyme is a nonpolar region that is encircled by positive-charged amino acids enforcing the anchoring of the enzyme to the negatively charged surface of the phospholipid membrane
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
evolution
enzyme distribution in the different taxa, overview
metabolism
the enzyme converts squalene to hopanol, EC 4.2.1.129, and to hopene, EC 5.4.99.17, but not to tetrahymanol, EC 4.2.1.123, pathway overview
evolution
metabolism
the enzyme is involved in biosynthesis of hopanoids, members of a large group of cyclic triterpenoic compounds that have important functions in many prokaryotic and eukaryotic organisms
physiological function
-
hopene and hopanol are prokaryotic steroid analogues and have important functions as membrane constituents
additional information
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
71600
2 * 71600, about, sequence calculation
150000
-
gel filtration
71600
x * 71600, SDS-PAGE
75000
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
homodimer
2 * 71600, about, sequence calculation
dimer
-
2 * 75000, SDS-PAGE, enzyme forms aggregates in absence of detergent
additional information
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
complexes with 11 human oxidosqualene cyclase inhibitors produced by cocrystallization, elucidation of the structures by X-ray diffraction analyses
resolution of 2.0 Angstrom
cocrystallization with 2-azasqualene
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
C435S/D374I/D374V/H451F
site-directed mutagenesis, inactive mutant
D376E
site-directed mutagenesis, inactive mutant
D377C/D377N/Y612A
site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview
D377E/D376Q/D376R/D377R/E45K/W406V/W417A/D377C
site-directed mutagenesis, inactive mutant
F365A
F365C
F365G
the mutant shows increased activity with (S)-6,7-epoxygeraniol and no activity with geraniol compared to the wild type enzyme
F601A
F601W
the mutant shows about wild type activity
F605A
site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview
G600F
the mutant exhibits 68% conversion of geraniol to cyclogeraniol hydrate
I261A
I261W
the mutant shows increased activity with (S)-6,7-epoxygeraniol and no activity with geraniol compared to the wild type enzyme
L36A
the mutant shows increased activity with (S)-6,7-epoxygeraniol compared to the wild type enzyme
Q262G/Q262A/P263G/P263A
site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview
S307A
the mutant shows increased activity with (S)-6,7-epoxygeraniol and no activity with geraniol compared to the wild type enzyme
V380E
site-directed mutagenesis, inactive mutant
V381A/D376C
site-directed mutagenesis, inactive mutant
W169A
the mutant shows about wild type activity
W169F/W169H/W489A/F605K
site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview
Y420A
Y420C
Y420W
the mutant exhibits 54% conversion of (S)-6,7-epoxygeraniol to (1S,3R)-3-(hydroxymethyl)-2,2-dimethyl-4-methylidenecyclohexan-1-ol
Y420W/G600F
the mutant exhibits 78% conversion of (S)-6,7-epoxygeraniol to (1S,3R)-3-(hydroxymethyl)-2,2-dimethyl-4-methylidenecyclohexan-1-ol
Y606A/W23V/W495V/W522V/W533A/W591L/W78S/E35Q/E197Q/D530N/T378A
site-directed mutagenesis, the mutant shows the same product pattern and activity as the wild-type
Y609A/Y612A/L607K
site-directed mutagenesis, the mutant shows an altered product pattern compared to the wild-type enzyme, overview
Y609F
Y612F/D376E/D376G/D377E/D377G/D377Q/E45A/E45D/F365W/T41A/E93A/R127Q/W133A/Y267A/F434A/F437A/W258L/D350N/D421N/D442N/H451R/D447N/D377N/D313N/E535Q/D374E
site-directed mutagenesis, the mutant shows the same product pattern as the wild-type with less enzyme activity
C25S/C50S/C435S/C455S/C537S
-
quintuple mutant
C25S/C50S/D376C/C435S/C455S/C537S
-
sextuple mutant
C435S/D374I/D374V/H451F
inactive mutant
D376E
D376E/D377E
-
no enzyme activity
D376G
-
0.2% activity when enzyme concentration is increased to 100fold
D376Q
-
no enzyme activity
D376R
-
no enzyme activity
D377C/D377N/Y612A
the mutant shows an altered product pattern compared to the wild-type enzyme, overview
D377C/V380E/V381A
-
no detectable cyclization of squalene
D377E
-
0.2% activity when enzyme concentration is increased to 100fold
D377E/D376Q/D376R/D377R/E45K/W406V/W417A/D377C
inactive mutant
D377G
-
0.2% activity when enzyme concentration is increased to 100fold
D377Q
-
0.2% activity when enzyme concentration is increased to 100fold
D377R
-
no enzyme activity
E45D
-
reduced enzyme activity
E45K
-
no enzyme activity
E45Q
-
slightly increased enzyme activity
F365A
the mutant shows an altered product pattern compared to the wild-type enzyme, overview
F365W
-
marginal catalytic activity
F365Y
-
and mutant with F365 changed to unnatural amino acid O-methyltyrosine. Both show increased decreased activity at high temperature
F434A
F437A
F601A
the mutant shows an altered product pattern compared to the wild-type enzyme, overview
F605A
F605W
-
increased catalytic acitivy at low temperature, but decreased activity at high temperature due to higher cation-pi binding energies
F605Y
-
and mutant with F605 changed to unnatural amino acid O-methyltyrosine. Both show increased catalytic acitivy at low temperature, but decreased activity at high temperature due to higher cation-pi binding energies
G262A
-
the mutant produces hopanol as the main product instead of hop-22(29)-ene. The mutant also produces hop-21(22)ene
I261A
P263A
P263G
Q262A
-
mutation located between C29 of the hopanyl cation and the "front water"
Q262G
Q262G/Q262A/P263G/P263A
the mutant shows an altered product pattern compared to the wild-type enzyme, overview
R127Q
V381A/D376C
inactive mutant
W133A
W169A
-
the mutant has higher activity with (S)-citronellal compared to the wild type enzyme
W169F/W169H/W489A/F605K
the mutant shows an altered product pattern compared to the wild-type enzyme, overview
W23V
-
same activity and optimal temperature as wild type enzyme
W258L
-
60% of wild type activity, lower temperature optimum
W312G
-
the mutant produces (-)-neo-isopulegol from (S)-citronellal
W406V
-
no enzyme activity
W417A
-
no enzyme activity
W485V
-
same activity and optimal temperature as wild type enzyme
W522V
-
same activity and optimal temperature as wild type enzyme
W533A
-
same activity and optimal temperature as wild type enzyme
W591L
-
same activity and optimal temperature as wild type enzyme
W78S
-
same activity and optimal temperature as wild type enzyme
Y267A
Y420A
the mutant shows an altered product pattern compared to the wild-type enzyme, overview
Y495F
-
reduced enzyme activity, wild-type product pattern
Y606A
-
kinetics identical to wild-type
Y606A/W23V/W495V/W522V/W533A/W591L/W78S/E35Q/E197Q/D530N/T378A
the mutant shows the same product pattern and activity as the wild-type
Y609A
-
the mutant produces (+)-isopulegol from (S)-citronellal
Y609A/Y612A/L607K
the mutant shows an altered product pattern compared to the wild-type enzyme, overview
Y609F
Y612F
-
reduced enzyme activity, wild-type product pattern
Y612F/D376E/D376G/D377E/D377G/D377Q/E45A/E45D/F365W/T41A/E93A/R127Q/W133A/Y267A/F434A/F437A/W258L/D350N/D421N/D442N/H451R/D447N/D377N/D313N/E535Q/D374E
the mutant shows the same product pattern as the wild-type with less enzyme activity
additional information
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
60
-
wild type enzyme: 50% loss of activity after 120 min, D376E mutant: 50% loss of activity after 100 min
70
-
stable for 10 min
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
bicontinuous microemulsions can be used as reaction media for enzyme-catalysed reactions
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
native and/or recombinant enzyme, the enzyme in vivo is a membrane-associated protein and can be solubilized from cell extracts by nonionic detergents, such as Triton X-100 or octylthioglucopyranoside
DEAE-Sephacel column chromatography
-
ion exchange and gel filtration
-
SiO2 column chromatography
-
wild type and mutants, homogeneity
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expression in Escherichia coli JM 105
gene shc, DNA and amino acid sequence determination, expression in Escherichia coli
DNA and amino acid sequence determination and analysis, sequence comparison, expression in Escherichia coli strain DH5alpha
expressed in Escherichia coli
-
expressed in Escherichia coli (DE3) cells
-
expressed in Escherichia coli BL21(DE3) cells
-
expression in Escherichia coli
-
expression in Escherichia coli BL21
-
expression in Escherichia coli JM 105
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
synthesis
-
production of unnatural polyprenoids and supranatural steroids by manipulation of the enzyme reaction by combination of substrate analogues
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Ceruti, M.; Balliano, G.; Rocco, F.; Milla, P.; Arpicco, S.; Cattel, L.; Viola, F.
Vinyl sulfide derivatives of truncated oxidosqualene as selective inhibitors of oxidosqualene and squalene-hopene cyclases
Lipids
36
629-636
2001
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Dang, T.; Prestwich, G.D.
Site-directed mutagenesis of squalene-hopene cyclase: altered substrate specificity and product distribution
Chem. Biol.
7
643-649
2000
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Feil, C.; Suessmuth, R.; Jung, G.; Poralla, K.
Site-directed mutagenesis of putative active-site residues in squalene-hopene cyclase
Eur. J. Biochem.
242
51-55
1996
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Full, C.
Bicyclic triterpenes as new main products of squalene-hopene cyclase by mutation at conserved tyrosine residues
FEBS Lett.
509
361-364
2001
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Full, C.; Poralla, K.
Conserved Tyr residues determine functions of Alicyclobacillus acidocaldarius squalene-hopene cyclase
FEMS Microbiol. Lett.
183
221-224
2000
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Hoshino, T.; Kouda, M.; Abe, T.; Sato, T.
Functional analysis of Phe605, a conserved aromatic amino acid in squalene-hopene cyclases
Chem. Commun. (Camb.)
2000
1485-1486
2000
Alicyclobacillus acidocaldarius
-
Manually annotated by BRENDA team
Hoshino, T.; Sato, T.
Squalene-hopene cyclase: catalytic mechanism and substrate recognition
Chem. Commun. (Camb.)
2000
291-301
2002
Alicyclobacillus acidocaldarius
-
Manually annotated by BRENDA team
Milla, P.; Lenhart, A.; Grosa, G.; Viola, F.; Weihofen, W.A.; Schulz, G.E.; Balliano, G.
Thiol-modifying inhibitors for understanding squalene cyclase function
Eur. J. Biochem.
269
2108-2116
2002
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Ochs, D.; Tappe, C.H.; Gaertner, P.; Kellner, R.; Poralla, K.
Properties of purified squalene-hopene cyclase from Bacillus acidocaldarius
Eur. J. Biochem.
194
75-80
1990
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Sato, T.; Hoshino, T.
Functional analysis of the DXDDTA motif in squalene-hopene cyclase by site-directed mutagenesis experiments: initiation site of the polycyclization reaction and stabilization site of the carbocation intermediate of the initially cyclized A-ring
Biosci. Biotechnol. Biochem.
63
2189-2198
1999
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Sato, T.; Hoshino, T.
Kinetic studies on the function of all the conserved tryptophans involved inside and outside the QW motifs of squalene-hopene cyclase: stabilizing effect of the protein structure against thermal denaturation
Biosci. Biotechnol. Biochem.
63
1171-1180
1999
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Sato, T.; Sasahara, S.; Yamakami, T.; Hoshino, T.
Functional analyses of Tyr420 and Leu607 of Alicyclobacillus acidocaldarius squalene-hopene cyclase. Neoachillapentaene, a novel triterpene with the 1,5,6-trimethylcyclohexene moiety produced through folding of the constrained boat structure
Biosci. Biotechnol. Biochem.
66
1660-1670
2002
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Seckler, B.; Poralla, K.
Characterization and partial purification of squalene-hopene cyclase from Bacillus acidocaldarius
Biochim. Biophys. Acta
881
356-363
1986
Alicyclobacillus acidocaldarius, Alicyclobacillus acidocaldarius 104-IA
-
Manually annotated by BRENDA team
Wendt, K.U.; Lenhart, A.; Schulz, G.E.
The structure of the membrane protein squalene-hopene cyclase at 2.0.ANG. resolution
J. Mol. Biol.
286
175-187
1999
Alicyclobacillus acidocaldarius (P33247), Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Zheng, Y.F.; Abe, I.; Prestwich, G.D.
Inhibition kinetics and affinity labeling of bacterial squalene:hopene cyclase by thia-substituted analogs of 2,3-oxidosqualene
Biochemistry
37
5981-5987
1998
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Sato, T.; Kouda, M.; Hoshino, T.
Site-directed mutagenesis experiments on the putative deprotonation site of squalene-hopene cyclase from Alicyclobacillus acidocaldarius
Biosci. Biotechnol. Biochem.
68
728-738
2004
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Reinert, D.J.; Balliano, G.; Schulz, G.E.
Conversion of squalene to the pentacarbocyclic hopene
Chem. Biol.
11
121-126
2004
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Cravotto, G.; Balliano, G.; Tagliapietra, S.; Palmisano, G.; Penoni, A.
Umbelliferone aminoalkyl derivatives, a new class of squalene-hopene cyclase inhibitors
Eur. J. Med. Chem.
39
917-924
2004
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Lenhart, A.; Reinert, D.J.; Aebi, J.D.; Dehmlow, H.; Morand, O.H.; Schulz, G.E.
Binding structures and potencies of oxidosqualene cyclase inhibitors with the homologous squalene-hopene cyclase
J. Med. Chem.
46
2083-2092
2003
Alicyclobacillus acidocaldarius (P33247), Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Rocco, F.; Bosso, S.O.; Viola, F.; Milla, P.; Roma, G.; Grossi, G.; Ceruti, M.
Conjugated methyl sulfide and phenyl sulfide derivatives of oxidosqualene as inhibitors of oxidosqualene and squalene-hopene cyclases
Lipids
38
201-207
2003
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Ceruti, M.; Balliano, G.; Rocco, F.; Lenhart, A.; Schulz, G.E.; Castelli, F.; Milla, P.
Synthesis and biological activity of new iodoacetamide derivatives on mutants of squalene-hopene cyclase
Lipids
40
729-735
2005
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Nakano, S.; Ohashi, S.; Hoshino, T.
Squalene-hopene cyclase: insight into the role of the methyl group on the squalene backbone upon the polycyclization cascade. Enzymatic cyclization products of squalene analogs lacking a 26-methyl group and possessing a methyl group at C7 or C11
Org. Biomol. Chem.
2
2012-2022
2004
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Tanaka, H.; Noguchi, H.; Abe, I.
Enzymatic formation of indole-containing unnatural cyclic polyprenoids by bacterial squalene:hopene cyclase
Org. Lett.
7
5873-5876
2005
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Morikubo, N.; Fukuda, Y.; Ohtake, K.; Shinya, N.; Kiga, D.; Sakamoto, K.; Asanuma, M.; Hirota, H.; Yokoyama, S.; Hoshino, T.
Cation-pi interaction in the polyolefin cyclization cascade uncovered by incorporating unnatural amino acids into the catalytic sites of squalene cyclase
J. Am. Chem. Soc.
128
13184-13194
2006
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Tanaka, H.; Noma, H.; Noguchi, H.; Abe, I.
Enzymatic formation of pyrrole-containing novel cyclic polyprenoids by bacterial squalene:hopene cyclase
Tetrahedron Lett.
47
3085-3089
2006
Alicyclobacillus acidocaldarius
-
Manually annotated by BRENDA team
Schwab, F.; van Gunsteren, W.F.; Zagrovic, B.
Computational study of the mechanism and the relative free energies of binding of anticholesteremic inhibitors to squalene-hopene cyclase
Biochemistry
47
2945-2951
2008
Alicyclobacillus acidocaldarius (P33247)
Manually annotated by BRENDA team
Hoshino, T.; Kumai, Y.; Sato, T.
Reviewing the polyolefin cyclization reaction of the C(35) polyprene catalyzed by squalene-hopene cyclase
Chemistry
15
2091-2100
2009
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Ermondi, G.; Caron, G.
GRIND-based 3D-QSAR to predict inhibitory activity for similar enzymes, OSC and SHC
Eur. J. Med. Chem.
43
1462-1468
2008
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Cheng, J.; Hoshino, T.
Cyclization cascade of the C33-bisnorheptaprenoid catalyzed by recombinant squalene cyclase
Org. Biomol. Chem.
7
1689-1699
2009
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Siedenburg, G.; Jendrossek, D.
Squalene-hopene cyclases
Appl. Environ. Microbiol.
77
3905-3915
2011
Alicyclobacillus acidocaldarius, Alicyclobacillus acidocaldarius (P33247), Bradyrhizobium japonicum, Methylococcus capsulatus, Rhodopseudomonas palustris, Streptomyces peucetius, Tetrahymena thermophila, Zymomonas mobilis, no activity in Methylococcus capsulatus
Manually annotated by BRENDA team
Siedenburg, G.; Breuer, M.; Jendrossek, D.
Prokaryotic squalene-hopene cyclases can be converted to citronellal cyclases by single amino acid exchange
Appl. Microbiol. Biotechnol.
97
1571-1580
2013
Bradyrhizobium japonicum, Rhodopseudomonas palustris, Teredinibacter turnerae, Syntrophobacter fumaroxidans (A0LJS0), Alicyclobacillus acidocaldarius (P33247), Zymomonas mobilis (P33990), Zymomonas mobilis (Q5NM88), Burkholderia ambifaria (Q0B2H5), Burkholderia ambifaria (Q0B5S3), Bacillus anthracis (Q81YD8), Streptomyces coelicolor (Q9X7V9), Acetobacter pasteurianus (YP3187836), Burkholderia ambifaria ATCC BAA-244 / AMMD (Q0B2H5), Burkholderia ambifaria ATCC BAA-244 / AMMD (Q0B5S3), Zymomonas mobilis ATCC 31821 (P33990), Zymomonas mobilis CP4 (Q5NM88), Alicyclobacillus acidocaldarius DSM 446 (P33247)
Manually annotated by BRENDA team
Seitz, M.; Syren, P.; Steiner, L.; Klebensberger, J.; Nestl, B.; Hauer, B.
Synthesis of heterocyclic terpenoids by promiscuous squalene-hopene cyclases
ChemBioChem
14
436-439
2013
Alicyclobacillus acidocaldarius, Zymomonas mobilis
Manually annotated by BRENDA team
Hammer, S.C.; Syren, P.O.; Seitz, M.; Nestl, B.M.; Hauer, B.
Squalene hopene cyclases: highly promiscuous and evolvable catalysts for stereoselective CC and CX bond formation
Curr. Opin. Chem. Biol.
17
293-300
2013
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Yonemura, Y.; Ohyama, T.; Hoshino, T.
Chemo-enzymatic syntheses of drimane-type sesquiterpenes and the fundamental core of hongoquercin meroterpenoid by recombinant squalene-hopene cyclase
Org. Biomol. Chem.
10
440-446
2012
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Bastian, S.; Hammer, S.; Kre, N.; Nestl, B.; Hauer, B.
Selectivity in the cyclization of citronellal introduced by squalene hopene cyclase variants
ChemCatChem
9
4364-4368
2017
Alicyclobacillus acidocaldarius
-
Manually annotated by BRENDA team
Kaneko, I.; Terasawa, Y.; Hoshino, T.
Squalene-hopene cyclase mechanistic insights into the polycyclization cascades of squalene analogs bearing ethyl and hydroxymethyl groups at the C-2 and C-23 positions
Chemistry
24
11139-11157
2018
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Steudle, A.K.; Nestl, B.M.; Hauer, B.; Stubenrauch, C.
Activity of squalene-hopene cyclases in bicontinuous microemulsions
Colloids Surf. B Biointerfaces
135
735-741
2015
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team
Takahashi, K.; Sasaki, Y.; Hoshino, T.
Squalene-hopene cyclase on the polycyclization reactions of squalene analogues bearing ethyl groups at positions C-6, C-10, C-15, and C-19
Eur. J. Org. Chem.
2018
1477-1490
2018
Alicyclobacillus acidocaldarius
-
Manually annotated by BRENDA team
Hammer, S.C.; Marjanovic, A.; Dominicus, J.M.; Nestl, B.M.; Hauer, B.
Squalene hopene cyclases are protonases for stereoselective Bronsted acid catalysis
Nat. Chem. Biol.
11
121-126
2015
Alicyclobacillus acidocaldarius (P33247)
Manually annotated by BRENDA team
Cheng, J.; Nakano, C.; Shi, G.L.; Hoshino, T.
Further insight into polycyclization cascades of acyclic geranylfarnesol and its acetate by squalene-hopene cyclase from Alicyclobacillus acidocaldarius
Nat. Prod. Commun.
11
163-167
2016
Alicyclobacillus acidocaldarius
Manually annotated by BRENDA team