Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(R)-2-chloropropionate + H2O
(S)-2-hydroxypropionate + chloride
-
-
-
?
(R)-2-chloropropionic acid + H2O
(S)-2-hydroxypropionic acid + chloride
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
(S)-2-chloropropionate + H2O
(R)-2-hydroxypropionate + chloride
-
-
-
?
(S)-2-chloropropionic acid + H2O
(R)-2-hydroxypropionic acid + chloride
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
2,2-dichloropropionate + H2O
?
2,3-dichloropropionate + H2O
?
2-bromo-2-methylpropionate + H2O
2-hydroxy-2-methylpropionate + bromide
slow substrate for the wild-type enzyme, but inhibitory for enzyme mutant D194N
-
-
?
2-chloro-3-hydroxypropionate + H2O
glycerate + HCl
2-chloro-n-butyrate + H2O
2-hydroxybutyrate + HCl
D-2-chloropropionate + H2O
L-lactate + HCl
D-2-monochloropropionate + H2O
L-lactate + HCl
DL-2-chloropropionate + H2O
DL-lactate + HCl
L-2-chloropropionate + H2O
D-lactate + HCl
L-2-monochloropropionate + H2O
D-lactate + HCl
monobromoacetate + H2O
glycolate + HBr
monochloroacetate + H2O
glycolate + HCl
monoiodoacetate + H2O
glycolate + HI
tribromoacetic acid + H2O
carbon monoxide + carbon dioxide + HBr
-
-
-
?
additional information
?
-
(R)-2-chloropropionic acid + H2O

(S)-2-hydroxypropionic acid + chloride
-
-
-
-
?
(R)-2-chloropropionic acid + H2O
(S)-2-hydroxypropionic acid + chloride
-
-
-
-
?
(R)-2-chloropropionic acid + H2O
(S)-2-hydroxypropionic acid + chloride
-
-
-
-
?
(R)-2-haloacid + H2O

(S)-2-hydroxyacid + halide
-
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
enzyme of 2-chloroacrylate grown cells
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
enzyme of 2-chloroacrylate grown cells
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-chloropropionic acid + H2O

(R)-2-hydroxypropionic acid + chloride
-
-
-
-
?
(S)-2-chloropropionic acid + H2O
(R)-2-hydroxypropionic acid + chloride
-
-
-
-
?
(S)-2-chloropropionic acid + H2O
(R)-2-hydroxypropionic acid + chloride
-
-
-
-
?
(S)-2-haloacid + H2O

(R)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
enzyme of 2-chloroacrylate grown cells
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
enzyme of 2-chloroacrylate grown cells
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
-
?
2,2-dichloropropionate + H2O

?
-
-
-
-
?
2,2-dichloropropionate + H2O
?
-
-
-
-
?
2,3-dichloropropionate + H2O

?
-
-
-
-
?
2,3-dichloropropionate + H2O
?
-
-
-
-
?
2-chloro-3-hydroxypropionate + H2O

glycerate + HCl
-
-
-
-
?
2-chloro-3-hydroxypropionate + H2O
glycerate + HCl
-
-
-
-
?
2-chloro-n-butyrate + H2O

2-hydroxybutyrate + HCl
-
-
-
-
?
2-chloro-n-butyrate + H2O
2-hydroxybutyrate + HCl
-
-
-
-
?
D-2-chloropropionate + H2O

L-lactate + HCl
-
-
-
-
D-2-chloropropionate + H2O
L-lactate + HCl
-
a step preceding the dehalogenation is partly rate-limiting when D-2-chloropropionate is used as the substrate
-
-
?
D-2-chloropropionate + H2O
L-lactate + HCl
-
-
-
-
D-2-chloropropionate + H2O
L-lactate + HCl
-
a step preceding the dehalogenation is partly rate-limiting when D-2-chloropropionate is used as the substrate
-
-
?
D-2-monochloropropionate + H2O

L-lactate + HCl
-
-
-
-
-
D-2-monochloropropionate + H2O
L-lactate + HCl
-
-
-
-
?
D-2-monochloropropionate + H2O
L-lactate + HCl
-
-
-
-
-
D-2-monochloropropionate + H2O
L-lactate + HCl
-
-
-
-
?
dichloroacetate + H2O

?
-
-
-
-
?
dichloroacetate + H2O
?
-
-
-
-
?
DL-2-chloropropionate + H2O

DL-lactate + HCl
-
-
-
-
-
DL-2-chloropropionate + H2O
DL-lactate + HCl
-
-
-
-
?
DL-2-chloropropionate + H2O
DL-lactate + HCl
-
-
-
-
-
DL-2-chloropropionate + H2O
DL-lactate + HCl
-
-
-
-
?
L-2-chloropropionate + H2O

D-lactate + HCl
-
-
-
-
?
L-2-chloropropionate + H2O
D-lactate + HCl
-
-
-
-
L-2-chloropropionate + H2O
D-lactate + HCl
-
-
-
-
?
L-2-chloropropionate + H2O
D-lactate + HCl
-
-
-
-
L-2-chloropropionate + H2O
D-lactate + HCl
-
-
-
-
?
L-2-chloropropionate + H2O
D-lactate + HCl
-
-
-
-
?
L-2-monochloropropionate + H2O

D-lactate + HCl
-
-
-
-
?
L-2-monochloropropionate + H2O
D-lactate + HCl
-
-
-
-
?
L-2-monochloropropionate + H2O
D-lactate + HCl
-
-
-
-
?
monobromoacetate + H2O

glycolate + HBr
-
-
-
-
?
monobromoacetate + H2O
glycolate + HBr
-
-
-
-
?
monobromoacetate + H2O
glycolate + HBr
-
-
-
-
?
monochloroacetate + H2O

glycolate + HCl
-
-
-
-
-
monochloroacetate + H2O
glycolate + HCl
-
-
-
-
?
monochloroacetate + H2O
glycolate + HCl
-
-
-
?
monochloroacetate + H2O
glycolate + HCl
-
-
-
-
?
monochloroacetate + H2O
glycolate + HCl
-
-
-
-
-
monochloroacetate + H2O
glycolate + HCl
-
-
-
?
monochloroacetate + H2O
glycolate + HCl
-
-
-
-
?
monochloroacetate + H2O
glycolate + HCl
-
-
-
-
?
monoiodoacetate + H2O

glycolate + HI
-
-
-
-
?
monoiodoacetate + H2O
glycolate + HI
-
-
-
-
?
monoiodoacetate + H2O
glycolate + HI
-
-
-
-
?
trichloroacetate + H2O

?
-
-
-
-
?
trichloroacetate + H2O
?
-
-
-
-
?
additional information

?
-
DL-2-haloacid dehalogenase, DL-DEX, converts both enantiomers of the substrate
-
-
-
additional information
?
-
-
not: chloroacetamide, chloroacetaldehyde, 3-chloropropionate, best substrate: 2-halopropionate, followed by monohaloacetate, 2-halobutyrate, and 2-halovalerate in that order
-
-
-
additional information
?
-
-
the enzyme has a single common active site for both reactions on L- and D-enantiomers, the reaction mechanismm does not proceed via an ester intermediate and not via a nucleophilic aspartate attacking the C-atom of the substrate to displace the halo-atom on contrast to the (S)-2-haloacid dehalogenase, EC 3.8.1.2. In the (S,R)-2-haloacid dehalogenase, a water molecule directly atacks the substrate for halide displacement, structure-function relationship, overview
-
-
-
additional information
?
-
-
the enzyme has a single common active site for both reactions on L- and D-enantiomers, the reaction mechanismm does not proceed via an ester intermediate and not via a nucleophilic aspartate attacking the C-atom of the substrate to displace the halo-atom on contrast to the (S)-2-haloacid dehalogenase, EC 3.8.1.2. In the (S,R)-2-haloacid dehalogenase, a water molecule directly atacks the substrate for halide displacement, structure-function relationship, overview
-
-
-
additional information
?
-
-
not: chloroacetamide, chloroacetaldehyde, 3-chloropropionate, best substrate: 2-halopropionate, followed by monohaloacetate, 2-halobutyrate, and 2-halovalerate in that order
-
-
-
additional information
?
-
-
the enzyme has a single common active site for both reactions on L- and D-enantiomers, the reaction mechanismm does not proceed via an ester intermediate and not via a nucleophilic aspartate attacking the C-atom of the substrate to displace the halo-atom on contrast to the (S)-2-haloacid dehalogenase, EC 3.8.1.2. In the (S,R)-2-haloacid dehalogenase, a water molecule directly atacks the substrate for halide displacement, structure-function relationship, overview
-
-
-
additional information
?
-
-
2-haloacid dehalogenases catalyse the hydrolytic dehalogenation of 2-haloalkanoic acids, cleaving the carbon-halide bond at the Calpha-atom position and releasing a halogen atom
-
-
-
additional information
?
-
2-haloacid dehalogenases catalyse the hydrolytic dehalogenation of 2-haloalkanoic acids, cleaving the carbon-halide bond at the Calpha-atom position and releasing a halogen atom
-
-
-
additional information
?
-
-
enzyme ps-2-HAD reveals its capacity to catalyse the dehalogenation of both L- and D-substrates
-
-
-
additional information
?
-
enzyme ps-2-HAD reveals its capacity to catalyse the dehalogenation of both L- and D-substrates
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(R)-2-chloropropionic acid + H2O
(S)-2-hydroxypropionic acid + chloride
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
(S)-2-chloropropionic acid + H2O
(R)-2-hydroxypropionic acid + chloride
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
L-2-chloropropionate + H2O
D-lactate + HCl
additional information
?
-
(R)-2-chloropropionic acid + H2O

(S)-2-hydroxypropionic acid + chloride
-
-
-
-
?
(R)-2-chloropropionic acid + H2O
(S)-2-hydroxypropionic acid + chloride
-
-
-
-
?
(R)-2-chloropropionic acid + H2O
(S)-2-hydroxypropionic acid + chloride
-
-
-
-
?
(R)-2-haloacid + H2O

(S)-2-hydroxyacid + halide
-
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
?
(R)-2-haloacid + H2O
(S)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-chloropropionic acid + H2O

(R)-2-hydroxypropionic acid + chloride
-
-
-
-
?
(S)-2-chloropropionic acid + H2O
(R)-2-hydroxypropionic acid + chloride
-
-
-
-
?
(S)-2-chloropropionic acid + H2O
(R)-2-hydroxypropionic acid + chloride
-
-
-
-
?
(S)-2-haloacid + H2O

(R)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
?
(S)-2-haloacid + H2O
(R)-2-hydroxyacid + halide
-
-
-
-
?
L-2-chloropropionate + H2O

D-lactate + HCl
-
-
-
-
?
L-2-chloropropionate + H2O
D-lactate + HCl
-
-
-
-
?
additional information

?
-
DL-2-haloacid dehalogenase, DL-DEX, converts both enantiomers of the substrate
-
-
-
additional information
?
-
-
2-haloacid dehalogenases catalyse the hydrolytic dehalogenation of 2-haloalkanoic acids, cleaving the carbon-halide bond at the Calpha-atom position and releasing a halogen atom
-
-
-
additional information
?
-
2-haloacid dehalogenases catalyse the hydrolytic dehalogenation of 2-haloalkanoic acids, cleaving the carbon-halide bond at the Calpha-atom position and releasing a halogen atom
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
evolution

Based on their substrate specificities and the configurations of their products, 2-HADs are classified into three types. DL-2-HADs catalyse the dehalogenation of both D- and L-2-haloalkanoic acids, inverting the stereochemistry at the Calpha-atom position and producing the corresponding L- and D-products, respectively. D- and L-2-HADs act specifically on only one enantiomer and cause inversion of Calpha-atom stereochemistry in the hydroxyalkanoic acid product. Enzymatic activity analysis of Pseudomonas syringae 2-HAD reveals its capacity to catalyse the dehalogenation of both L- and D-substrates, but the structure of ps-2-HAD is completely different from that of DehI, which is the only DL-2-HAD enzyme that is structurally characterized, bps-2-HAD shows similar overall folding to L-HADs. Thus ps-2-HAD has a distinct active site and a unique catalytic behaviour compared with other HADs
evolution
the reaction proceeds in two steps, in the first step, a catalytic aspartate residue nucleophilically attacks the alpha-carbon atom of the substrate to release the halide ion, resulting in the formation of an ester intermediate in which the aspartate residue is covalently bound to the alpha-carbon atom of the substrate. In the second step, the ester intermediate is hydrolyzed by a solvent water molecule. This mechanism is not restricted to this group of enzymes, e.g., fluoroacetate dehalogenase catalyzes the reaction in the same manner, although this enzyme is not evolutionarily related to the group II enzymes. Group I enzymes, including DL-2-haloacid dehalogenase and D-2-haloacid dehalogenase, catalyze the reaction without forming an ester intermediate. Instead, a solvent water molecule directly attacks the alpha-carbon atom of the substrate to release the halide ion. DL-2-haloacid dehalogenase is an extraordinary enzyme that acts on both enantiomers of the substrate
additional information

-
either the magnesium-binding cavity at least partially overlaps with the active site of ps-2-HAD or the coordinated residues or water molecules are involved directly in the catalytic reaction
additional information
either the magnesium-binding cavity at least partially overlaps with the active site of ps-2-HAD or the coordinated residues or water molecules are involved directly in the catalytic reaction
additional information
modeling of binding pocket and the active site and QM/QM calculations, docking study using (R)- and (S)-2-chloropropionates, overview. The binding site cavity is shielded from the solvent region, and is composed of eight hydrophobic residues (Trp37, Ala39, Phe40, Gly41, Ala192, Phe273, Ile274, and Ile277), and five hydrophilic residues (Asn117, Tyr120, Ser193, Asp194, and Tyr270)
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
D194N
site-directed mutagenesis
D180A
-
the mutation destabilizes the rotation of the nucleophile D10, fixes catalytic water around D10, and prevents K151 from approaching D10
D181A
-
the activity of mutant is similar to wild-type enzyme
D181E
-
the activity of mutant is similar to wild-type enzyme
D181R
-
the activity of mutant is similar to wild-type enzyme
K151A
-
the mutant is almost inactive, the mutation destabilizes substrate orientation and affects the balance of the charge around the active site
K151R
-
the mutant is almost inactive
S118A
-
the mutant retains 30% of the activity of the wild type enzyme
D181A
-
the activity of mutant is similar to wild-type enzyme
-
D181E
-
the activity of mutant is similar to wild-type enzyme
-
D181R
-
the activity of mutant is similar to wild-type enzyme
-
D180A
-
the mutation destabilizes the rotation of the nucleophile D10, fixes catalytic water around D10, and prevents K151 from approaching D10
-
K151A
-
the mutant is almost inactive, the mutation destabilizes substrate orientation and affects the balance of the charge around the active site
-
K151R
-
the mutant is almost inactive
-
S118A
-
the mutant retains 30% of the activity of the wild type enzyme
-
D10A
site-directed mutagenesis, the D10A mutant shows over 50% reduced enzyme activity compared to the wild-type enzyme
D11A
site-directed mutagenesis, the D11A mutant shows highly reduced enzyme activity compared to the wild-type enzyme
D180A
site-directed mutagenesis, the D180A mutant shows over 50% reduced enzyme activity compared to the wild-type enzyme
D184A
site-directed mutagenesis, the mutant cannot be expressed recombinantly
D185A
site-directed mutagenesis, the mutant cannot be expressed recombinantly
D8A
site-directed mutagenesis, the D8A mutant retains about half the enzyme activity of the wild-type
K155A
site-directed mutagenesis, the mutant cannot be expressed recombinantly
T127A
site-directed mutagenesis, the mutant cannot be expressed recombinantly
additional information

-
each of the 26 residues with charged and polar side chains, which are conserved between enzyme and D-2-haloacid dehalogenase, is mutated, Thr65, Glu69 and Asp194 are found to be essential
additional information
-
each of the 26 residues with charged and polar side chains, which are conserved between enzyme and D-2-haloacid dehalogenase, is mutated, Thr65, Glu69 and Asp194 are found to be essential
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Motosugi, K; Esahi, N.; Soda, K.
Bacterial assimilation of D- and L-2-chloropropionates and occurrence of a new dehalogenase
Arch. Microbiol.
131
179-183
1982
Pseudomonas sp. 113, Pseudomonas sp.
brenda
Motosugi, K; Esahi, N.; Soda, K.
Purification and properties of a new enzyme, DL-2-haloacid dehalogenase, from Pseudomonas sp.
J. Bacteriol.
150
522-527
1982
Pseudomonas sp. 113, Pseudomonas sp.
brenda
Motosugi, K; Esahi, N.; Soda, K.
Enzymatic preparation of D- and L-lactic acid from racemic 2-chloropropionic acid
Biotechnol. Bioeng.
26
805-806
1984
Pseudomonas putida, Pseudomonas sp. 113, Pseudomonas sp.
brenda
Stringfellow, J.M.; Cairns, S.S.; Cornish, A.; Cooper, R.A.
Haloalkanoate dehalogease II (DehE) of a Rhizobium sp.molecular analysis of the gene and formation of carbon monoxide from trihaloacetate by the enzyme
Eur. J. Biochem.
250
789-793
1997
Pseudomonas sp., Rhizobium sp.
brenda
Liu, J.Q.; Kurihara, T.; Hasan, A.K.M.Q.; Nardi-Dei, V.; Koshikawa, H.; Esaki, N.; Soda, K.
Purification and characterization of thermostable and nonthermostable 2-haloacid dehalogenases with different stereospecificities from Pseudomonas sp. strain YL
Appl. Environ. Microbiol.
60
2389-2393
1994
Pseudomonas sp., Pseudomonas sp. YL
brenda
Nardi-Dei, V.; Kurihara, T.; Park, C.; Miyagi, M.; Tsunasawa, S.; Soda, K.; Esaki, N.
DL-2-Haloacid dehalogenase from Pseudomonas sp. 113 is a new class of dehalogenase catalyzing hydrolytic dehalogenation not involving enzyme-substrate ester intermediate
J. Biol. Chem.
274
20977-20981
1999
Pseudomonas sp., Pseudomonas sp. 113
brenda
Leigh, J.A.; Skinner, A.J.; Cooper, R.A.
Partial purification, stereospecificity and stoichiometry of three dehalogenases from a Rhizobium species
FEMS Microbiol. Lett.
49
353-356
1988
Rhizobium sp.
-
brenda
Weightman, A.J.; Weightman, A.L.; Slater, J.H.
Stereospecificity of 2-monochloropropionate dehalogenation by the two dehalogenases of Pseudomonas P3: evidence for two different dehalogenation mechanisms
J. Gen. Microbiol.
128
1755-1762
1982
Pseudomonas putida, Pseudomonas putida PP3
brenda
Soda, K.; Kurihara, T.; Liu, J.Q.; Nardi-Dei, V.; Park, C.; Miyagi, M.; Tsunasawa, S.; Esaki, N.
Bacterial 2-haloacid dehalogenases: Structures and catalytic properties
Pure Appl. Chem.
68
2097-2103
1996
Pseudomonas putida, Pseudomonas putida PP3, Pseudomonas sp., Pseudomonas sp. 113, Rhizobium sp.
-
brenda
Kurihara, T.; Esaki, N.; Soda, K.
Bacterial 2-haloacid dehalogenases: structures and reaction mechanisms
J. Mol. Catal. B
10
57-65
2000
Pseudomonas sp., Pseudomonas sp. 113
-
brenda
Nardi-Dei, V.; Kurihara, T.; Park, C.; Esaki, N.; Soda, K.
Bacterial DL-2-haloacid dehalogenase from Pseudomonas sp. strain 113: gene cloning and structural comparison with D- and L-2-haloacid dehalogenases
J. Bacteriol.
179
4232-4238
1997
Achromobacter xylosoxidans (Q59168), Pseudomonas putida, Pseudomonas putida AJ1, Pseudomonas sp. 113 (O06652), Pseudomonas sp. (O06652), Pseudomonas sp.
brenda
Ohkouchi, Y.; Koshikawa, H.; Terashima, Y.
Cloning and expression of DL-2-haloacid dehalogenase gene from Burkholderia cepacia
Water Sci. Technol.
42
261-268
2000
Burkholderia cepacia, Burkholderia cepacia KY, Pseudomonas sp., Pseudomonas sp. 113
-
brenda
Brokamp, A.; Happe, B.; Schmidt, F.R.J.
Cloning and nucleotide sequence of a D,L-haloalkanoic acid dehalogenase encoding gene from Alcaligenes xylosoxidans ssp. denitrificans ABIV
Biodegradation
7
383-396
1997
Achromobacter xylosoxidans
brenda
Hasan, A.K.M.Q.; Takada, H.; Koshikawa, H.; Liu, J.Q.; Kurihara, T.; Esaki, N.; Soda, K.
Two kinds of 2-halo acid dehalogeases fromm Pseudomonas sp. YL induced by 2-chloroacrylates and 2-chloropropionate
Biosci. Biotechnol. Biochem.
58
1599-1602
1994
Pseudomonas sp., Pseudomonas sp. YL
-
brenda
Kurihara, T.; Esaki, N.
Bacterial hydrolytic dehalogenases and related enzymes: occurrences, reaction mechanisms, and applications
Chem. Rec.
8
67-74
2008
Methylobacterium sp. CPA1 (A6BM74), Pseudomonas putida, Pseudomonas putida PP3, Pseudomonas sp. 113 (O06652), Pseudomonas sp. (O06652)
brenda
Nakamura, T.; Yamaguchi, A.; Kondo, H.; Watanabe, H.; Kurihara, T.; Esaki, N.; Hirono, S.; Tanaka, S.
Roles of K151 and D180 in L-2-haloacid dehalogenase from Pseudomonas sp. YL: Analysis by molecular dynamics and ab initio fragment molecular orbital calculations
J. Comput. Chem.
30
2625-2634
2009
Pseudomonas sp., Pseudomonas sp. YL
brenda
Kurihara, T.
A mechanistic analysis of enzymatic degradation of organohalogen compounds
Biosci. Biotechnol. Biochem.
75
189-198
2011
Pseudomonas sp. 113, Pseudomonas sp.
brenda
Hou, Z.; Zhang, H.; Li, M.; Chang, W.
Structure of 2-haloacid dehalogenase from Pseudomonas syringae pv. tomato DC3000
Acta Crystallogr. Sect. D
69
1108-1114
2013
Pseudomonas syringae, Pseudomonas syringae (Q88B12)
brenda
Siwek, A.; Omi, R.; Hirotsu, K.; Jitsumori, K.; Esaki, N.; Kurihara, T.; Paneth, P.
Binding modes of DL-2-haloacid dehalogenase revealed by crystallography, modeling and isotope effects studies
Arch. Biochem. Biophys.
540
26-32
2013
Methylobacterium sp. (A6BM74)
brenda