Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

Reference on EC 3.5.5.4 - cyanoalanine nitrilase

Please use the Reference Search for a specific query.
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Yanase, H.; Sakai, T.; Tonomura, K.
Metabolism of nitriles in microorganisms. Part V. Purification, crystallization and some properties of beta-cyano-L-alanine-degrading enzyme in Pseudomonas sp. 13
Agric. Biol. Chem.
47
473-482
1983
Pseudomonas sp., Pseudomonas sp. 13
-
Manually annotated by BRENDA team
Piotrowski, M.; Volmer, J.J.
Cyanide metabolism in higher plants: cyanoalanine hydratase is a NIT4 homolog
Plant Mol. Biol.
61
111-122
2006
Lupinus angustifolius (Q3LRV4), Lupinus angustifolius (Q5QGZ8)
Manually annotated by BRENDA team
Kriechbaumer, V.; Park, W.J.; Piotrowski, M.; Meeley, R.B.; Gierl, A.; Glawischnig, E.
Maize nitrilases have a dual role in auxin homeostasis and beta-cyanoalanine hydrolysis
J. Exp. Bot.
58
4225-4233
2007
Zea mays
Manually annotated by BRENDA team
Ishikawa, T.; Okazaki, K.; Kuroda, H.; Itoh, K.; Mitsui, T.; Hori, H.
Molecular cloning of Brassica rapa nitrilases and their expression during clubroot development
Mol. Plant Pathol.
8
623-637
2007
Brassica rapa
Manually annotated by BRENDA team
Jenrich, R.; Trompetter, I.; Bak, S.; Olsen, C.E.; Moller, B.L.; Piotrowski, M.
Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism
Proc. Natl. Acad. Sci. USA
104
18848-18853
2007
Sorghum bicolor
Manually annotated by BRENDA team
Howden, A.J.; Harrison, C.J.; Preston, G.M.
A conserved mechanism for nitrile metabolism in bacteria and plants
Plant J.
57
243-253
2009
Pseudomonas fluorescens, Pseudomonas fluorescens SBW25
Manually annotated by BRENDA team
Gupta, N.; Balomajumder, C.; Agarwal, V.
Enzymatic mechanism and biochemistry for cyanide degradation: A review
J. Hazard. Mater.
176
1-13
2010
Priestia megaterium, Chromobacterium violaceum, Escherichia coli
Manually annotated by BRENDA team
Janowitz, T.; Trompetter, I.; Piotrowski, M.
Evolution of nitrilases in glucosinolate-containing plants
Phytochemistry
70
1680-1686
2009
Allium cepa, Arabidopsis thaliana, Brassica rapa, Carica papaya, Ricinus communis, Glycine max, Hordeum vulgare, Lactuca sativa, Linum usitatissimum, Lotus japonicus, Lupinus angustifolius, Solanum lycopersicum, Manihot esculenta, Medicago truncatula, Mesembryanthemum crystallinum, Nicotiana tabacum, Oryza sativa, Physcomitrium patens, Pinus taeda, Populus trichocarpa, Saccharum officinarum, Sorghum bicolor, Triticum aestivum, Tropaeolum majus, Vitis vinifera, Zea mays, Curcuma longa, Selaginella moellendorffii, Capsella rubella, Tarenaya spinosa
Manually annotated by BRENDA team
O'Leary, B.; Preston, G.M.; Sweetlove, L.J.
Increased beta-cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in Arabidopsis
Mol. Plant
7
231-243
2014
Pseudomonas fluorescens
Manually annotated by BRENDA team
Machingura, M.; Sidibe, A.; Wood, A.J.; Ebbs, S.D.
The beta-cyanoalanine pathway is involved in the response to water deficit in Arabidopsis thaliana
Plant Physiol. Biochem.
63
159-169
2013
Arabidopsis thaliana
Manually annotated by BRENDA team
Acera, F.; Carmona, M.I.; Castillo, F.; Quesada, A.; Blasco, R.
A cyanide-induced 3-cyanoalanine nitrilase in the cyanide-assimilating bacterium Pseudomonas pseudoalcaligenes strain CECT 5344
Appl. Environ. Microbiol.
83
e00089-17
2017
Pseudomonas oleovorans (W6R265), Pseudomonas oleovorans CECT 5344 (W6R265)
Manually annotated by BRENDA team