Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.5.1.98 - histone deacetylase and Organism(s) Mus musculus and UniProt Accession P70288

for references in articles please use BRENDA:EC3.5.1.98
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.5 Acting on carbon-nitrogen bonds, other than peptide bonds
             3.5.1 In linear amides
                3.5.1.98 histone deacetylase
IUBMB Comments
A class of enzymes that remove acetyl groups from N6-acetyl-lysine residues on a histone. The reaction of this enzyme is opposite to that of EC 2.3.1.48, histone acetyltransferase. Histone deacetylases (HDACs) can be organized into three classes, HDAC1, HDAC2 and HDAC3, depending on sequence similarity and domain organization. Histone acetylation plays an important role in regulation of gene expression. In eukaryotes, HDACs play a key role in the regulation of transcription and cell proliferation . May be identical to EC 3.5.1.17, acyl-lysine deacylase.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Mus musculus
UNIPROT: P70288
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Mus musculus
The expected taxonomic range for this enzyme is: Eukaryota, Bacteria, Archaea
Reaction Schemes
hydrolysis of an N6-acetyl-lysine residue of a histone to yield a deacetylated histone
Synonyms
histone deacetylase, hdac1, hdac6, hdac2, hdac3, hdac4, hdac5, hdac8, hdac9, hdac7, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
histone deacetylase 2
-
class IIa histone deacetylase
-
HDAC
-
-
HDAC2
-
-
histone deacetylase
-
-
histone deacetylase 2
-
-
histone deacetylase 3
-
histone deacetylase 6
-
histone deacetylase 7
-
tubulin deacetylase
-
zinc-dependent histone deacetylase
-
-
Zn-HDAC
-
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis
-
deacetylation
SYSTEMATIC NAME
IUBMB Comments
histone amidohydrolase
A class of enzymes that remove acetyl groups from N6-acetyl-lysine residues on a histone. The reaction of this enzyme is opposite to that of EC 2.3.1.48, histone acetyltransferase. Histone deacetylases (HDACs) can be organized into three classes, HDAC1, HDAC2 and HDAC3, depending on sequence similarity and domain organization. Histone acetylation plays an important role in regulation of gene expression. In eukaryotes, HDACs play a key role in the regulation of transcription and cell proliferation [4]. May be identical to EC 3.5.1.17, acyl-lysine deacylase.
CAS REGISTRY NUMBER
COMMENTARY hide
9076-57-7
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
N-acetyl-Lys16-histone H4 + H2O
acetate + histone H4
show the reaction diagram
-
-
-
?
N-acetyl-lysine-histone H3 + H2O
acetate + histone H3
show the reaction diagram
-
-
individual lysine residues in the H3 tail are deacetylated at similar rates
-
?
N-acetyl-lysine-histone H4 + H2O
acetate + histone H4
show the reaction diagram
-
-
rate of deacetylation is not uniform. H4 K5 is deacetylated first, followed by K8, K12 and K16. The specificity of deacetylation and the histone-binding preference of transcriptional co-repressors N-CoR/SMRT match each other, rate of deacetylation by isoform HDAC3 is not uniform. H4 K5 is deacetylated first, followed by K8, K12 and K16. The specificity of deacetylation and the histone-binding preference of transcriptional co-repressors N-CoR/SMRT match each other
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
N-acetyl-Lys16-histone H4 + H2O
acetate + histone H4
show the reaction diagram
-
-
-
?
N-acetyl-lysine-histone H4 + H2O
acetate + histone H4
show the reaction diagram
-
-
rate of deacetylation is not uniform. H4 K5 is deacetylated first, followed by K8, K12 and K16. The specificity of deacetylation and the histone-binding preference of transcriptional co-repressors N-CoR/SMRT match each other
-
?
additional information
?
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Zn2+
-
zinc-dependent enzyme
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(2E)-N-(2-aminophenyl)-3-(4-{1-[(2-hydroxyethyl)amino]-2-oxo-2-[4-(trifluoromethyl)anilino]ethyl}phenyl)prop-2-enamide
-
(2E)-N-(2-aminophenyl)-3-(4-{1-[(3S)-3-(dimethylamino)pyrrolidin-1-yl]-2-oxo-2-[4-(trifluoromethyl)anilino]ethyl}phenyl)prop-2-enamide
-
(2E)-N-(2-aminophenyl)-3-[4-(1-{[2-(morpholin-4-yl)ethyl]amino}-2-oxo-2-[4-(trifluoromethyl)anilino]ethyl)phenyl]prop-2-enamide
-
(2E)-N-(2-aminophenyl)-3-{4-[2-(4-bromoanilino)-1-(3-hydroxypyrrolidin-1-yl)-2-oxoethyl]phenyl}prop-2-enamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]-2-fluorophenyl}-N-(4-chlorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-1-benzyl-N-(4-chlorophenyl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-1-methyl-N-(3-methylphenyl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-1-methyl-N-(4-methylphenyl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-1-methyl-N-(6-methylpyridin-3-yl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-1-methyl-N-(piperidin-1-yl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-1-methyl-N-(propan-2-yl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-1-methyl-N-(pyridin-2-yl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-1-methyl-N-(pyridin-3-yl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-1-methyl-N-(pyridin-4-yl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-1-methyl-N-phenylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-1-methyl-N-[4-(propan-2-yl)phenyl]pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-1-methyl-N-[4-(trifluoromethyl)phenyl]pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(2,4-difluorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(2-chloro-4-fluorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(2-fluorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(3,4-dichlorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(3,4-difluorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(3-bromo-4-fluorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(3-chloro-4-fluorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(3-chlorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(3-fluorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(3-methoxyphenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-bromophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chloro-3-methylphenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-(2,2,2-trifluoroethyl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-(2,2-difluoroethyl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-(2,2-dimethylpropyl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-(2-fluoroethyl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-(2-hydroxy-2-methylpropyl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-(2-hydroxyethyl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-(2-methoxyethyl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-(3-hydroxy-2,2-dimethylpropyl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-(cyanomethyl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-(oxan-4-yl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-(propan-2-yl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-(pyrimidin-2-yl)pyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-cyclobutylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-ethylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-cyanophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-cyclopropylphenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-fluoro-3-methylphenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-fluorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-methoxyphenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(5-chloropyridin-2-yl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-cyclopentyl-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-cyclopropyl-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N~3~-(4-chlorophenyl)-N~1~,N~1~-diethylpyrrolidine-1,3-dicarboxamide
-
(3R)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N~3~-(4-chlorophenyl)-N~1~-ethylpyrrolidine-1,3-dicarboxamide
-
(3R)-4-{5-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]pyrazin-2-yl}-N-(4-chlorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{5-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]pyridin-2-yl}-N-(4-chlorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{6-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]pyridazin-3-yl}-N-(4-chlorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R)-4-{6-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]pyridin-3-yl}-N-(4-chlorophenyl)-1-methylpyrrolidine-3-carboxamide
-
(3R,4S)-4-{4-[(1E)-3-(2-aminoanilino)-3-oxoprop-1-en-1-yl]phenyl}-N-(4-chlorophenyl)-1-methylpyrrolidine-3-carboxamide
-
Butyrate
-
inhibition of histone deacetylases, results in down-regulation of HoxA9 expression
chidamide
-
entinostat
-
mocetinostat
-
MS-275
-
inhibition of histone deacetylases, results in down-regulation of HoxA9 expression
panobinostat
-
resminostat
-
sodium butyrate
-
-
suberoylanilide hydroxyamic acid
-
a specific inhibitor of zinc-dependent histone deacetylase activity. The compound directly induces p19INK4d expression in regenerating liver by increasing p19INK4d promoter-associated histone acetylation, molecular mechanisms by which the inhibitor delays liver regeneration exerting promoter-specific effects on histone acetylation during liver regeneration, overview
trichostatin A
vorinostat
-
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
heat shock protein 70
Hsp70
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
malfunction
depleting maternal isozyme HDAC2 results in hyperacetylation of H4K16, while normal deacetylation of other lysine residues of histone H3 or H4 is observed, and defective chromosome condensation and segregation during oocyte maturation occurs in a subpopulation of oocytes, leading to increased incidence of aneuploidy likely accounts for the observed sub-fertility of mice harboring Hdac2-defective oocytes. The infertility of mice harboring Hdac1-/+/Hdac2-/- oocytes is attributed to failure of those few eggs that properly mature to metaphase II to initiate DNA replication following fertilization. Hdac1-/+/Hdac2-/- eggs are fertilized but fail to initiate DNA replication. The increased amount of acetylated H4K16 likely impairs kinetochore function in oocytes lacking isozyme HDAC2 because kinetochores in mutant oocytes are less able to form coldstable microtubule attachments and less CENP-A is located at the centromere. Phenotype, overview
physiological function
histone deacetylase 2 regulates chromosome segregation and kinetochore function via H4K16 deacetylation during oocyte maturation in mouse. HDAC2 is the major isozyme that regulates global histone acetylation during oocyte development and is largely responsible for the deacetylation of H4K16 during maturation. Histone deacetylation that occurs during oocyte maturation is critical for proper chromosome segregation
malfunction
physiological function
additional information
-
isoform-specific regulation of zinc-dependent histone deacetylase expression, subcellular localization, and activity in regenerating liver. The signals that regulate the PH-induced metabolic response to hepatic insufficiency are not downstream, but might be upstream, of the target of suberoylanilide hydroxyamic acid's anti-regenerative activity
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
HDAC2_MOUSE
488
0
55302
Swiss-Prot
other Location (Reliability: 1)
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
phosphoprotein
in thymocytes, TCR stimulation results in HDAC7 phosphorylation and nuclear exclusion via protein kinase D
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
cytoplasmic lysates are prepared
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
isoform HDAC3, expression in NIH 3T3 fibroblasts
-
stable expression in MCF-7 cell
-
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
the hepatic enzyme activity is significantly increased in nuclear and cytoplasmic fractions following partial hepatectomy. Isoform-specific effects of partial hepatectomy on isozyme HDAC mRNA and protein expression, with increased isozyme expression of the class I HDACs, 1 and 8, and class II HDAC4 in regenerating liver. Hepatic expression of (class II) HDAC5 is unchanged after partial hepatectomy, HDAC5 exhibits transient nuclear accumulation in regenerating liver
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
medicine
it is proposed that induction of Hsp70 and subsequent activation of HDAC2 are important triggering signals of cardiac hypertrophy
medicine
-
loss of class IIa HDACs in murine liver results in inhibition of FOXO target genes and lowers blood glucose, resulting in increased glycogen storage. Suppression of class IIa HDACs in mouse models of type 2 diabetes ameliorates hyperglycemia, suggesting that inhibitors of class I/II HDACs may be potential therapeutics for metabolic syndrome
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Harms, K.L.; Chen, X.
Histone deacetylase 2 modulates p53 transcriptional activities through regulation of p53-DNA binding activity
Cancer Res.
67
3145-3152
2007
Mus musculus
Manually annotated by BRENDA team
Hartman, H.B.; Yu, J.; Alenghat, T.; Ishizuka, T.; Lazar, M.A.
The histone-binding code of nuclear receptor co-repressors matches the substrate specificity of histone deacetylase 3
EMBO Rep.
6
445-451
2005
Mus musculus
Manually annotated by BRENDA team
Rossig, L.; Urbich, C.; Bruhl, T.; Dernbach, E.; Heeschen, C.; Chavakis, E.; Sasaki, K.; Aicher, D.; Diehl, F.; Seeger, F.; Potente, M.; Aicher, A.; Zanetta, L.; Dejana, E.; Zeiher, A.M.; Dimmeler, S.
Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells
J. Exp. Med.
201
1825-1835
2005
Mus musculus
Manually annotated by BRENDA team
Geiger, R.C.; Kaufman, C.D.; Lam, A.P.; Budinger, G.R.; Dean, D.A.
Tubulin acetylation and histone deacetylase 6 activity in the lung under cyclic load
Am. J. Respir. Cell Mol. Biol.
40
76-82
2009
Homo sapiens, Mus musculus (Q9Z2V5), Mus musculus
Manually annotated by BRENDA team
Kee, H.J.; Eom, G.H.; Joung, H.; Shin, S.; Kim, J.R.; Cho, Y.K.; Choe, N.; Sim, B.W.; Jo, D.; Jeong, M.H.; Kim, K.K.; Seo, J.S.; Kook, H.
Activation of histone deacetylase 2 by inducible heat shock protein 70 in cardiac hypertrophy
Circ. Res.
103
1259-1269
2008
Mus musculus (P70288)
Manually annotated by BRENDA team
Knutson, S.K.; Chyla, B.J.; Amann, J.M.; Bhaskara, S.; Huppert, S.S.; Hiebert, S.W.
Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks
EMBO J.
27
1017-1028
2008
Mus musculus (O88895), Mus musculus
Manually annotated by BRENDA team
Wallace, D.M.; Cotter, T.G.
Histone deacetylase activity in conjunction with E2F-1 and p53 regulates Apaf-1 expression in 661W cells and the retina
J. Neurosci. Res.
87
887-905
2009
Mus musculus
Manually annotated by BRENDA team
Jawerka, M.; Colak, D.; Dimou, L.; Spiller, C.; Lagger, S.; Montgomery, R.L.; Olson, E.N.; Wurst, W.; Goettlicher, M.; Goetz, M.
The specific role of histone deacetylase 2 in adult neurogenesis
Neuron Glia Biol.
6
93-107
2010
Mus musculus
Manually annotated by BRENDA team
Mihaylova, M.M.; Vasquez, D.S.; Ravnskjaer, K.; Denechaud, P.D.; Yu, R.T.; Alvarez, J.G.; Downes, M.; Evans, R.M.; Montminy, M.; Shaw, R.J.
Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis
Cell
145
607-621
2011
Mus musculus
Manually annotated by BRENDA team
Huang, J.; Barr, E.; Rudnick, D.A.
Characterization of the regulation and function of zinc-dependent histone deacetylases during rodent liver regeneration
Hepatology
57
1742-1751
2013
Mus musculus
Manually annotated by BRENDA team
Wong, J.C.; Tang, G.; Wu, X.; Liang, C.; Zhang, Z.; Guo, L.; Peng, Z.; Zhang, W.; Lin, X.; Wang, Z.; Mei, J.; Chen, J.; Pan, S.; Zhang, N.; Liu, Y.; Zhou, M.; Feng, L.; Zhao, W.; Li, S.; Zhang, C.; Zhang, M.; Rong, Y.; Jin, T.G.; Zhang, X.; Ren, S.; Ji, Y.; Zhao, R.; She, J.; Ren, Y.; Xu, C.; Chen, D.; Cai, J.; Shan, S.
Pharmacokinetic optimization of class-selective histone deacetylase inhibitors and identification of associated candidate predictive biomarkers of hepatocellular carcinoma tumor response
J. Med. Chem.
55
8903-8925
2012
Mus musculus (O09106), Mus musculus, Homo sapiens (Q13547)
Manually annotated by BRENDA team
Ma, P.; Schultz, R.M.
Histone deacetylase 2 (HDAC2) regulates chromosome segregation and kinetochore function via H4K16 deacetylation during oocyte maturation in mouse
PLoS Genet.
9
e1003377
2013
Mus musculus (P70288), Mus musculus
Manually annotated by BRENDA team
Kasler, H.G.; Lee, I.S.; Lim, H.W.; Verdin, E.
Histone deacetylase 7 mediates tissue-specific autoimmunity via control of innate effector function in invariant natural killer T cells
eLife
7
e32109
2018
Mus musculus (Q8C2B3), Homo sapiens (Q8WUI4), Homo sapiens, Mus musculus C57BL/6 (Q8C2B3)
Manually annotated by BRENDA team