Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
83 kDa full-length protective antigen + H2O
20 kDa N-terminal fragment of protective antigen + 63 kDa N-terminal fragment of protective antigen
-
-
-
?
acetyl-Gly-Tyr-betaAla-RRRRRRRRVLR-4-nitroanilide + H2O
?
-
-
-
-
?
acetyl-GYbetaARRRRRRRRVLR-4-nitroanilide + H2O
?
-
commercial substrate S-pNA
-
-
?
AcG-Y-betaA-R-R-R-A-R-R-R-R-V-L-R-4-nitroanilide + H2O
AcG-Y-betaA-R-R-R-A-R-R-R-R-V-L-R + 4-nitroaniline
-
-
-
-
?
AcM-L-A-R-R-R-P-V-L-P-4-nitroanilide + H2O
AcM-L-A-R-R-R-P-V-L-P + 4-nitroaniline
-
-
-
-
?
AcR-R-R-R-V-L-R-4-methylcoumarin-7-amide + H2O
AcR-R-R-R-V-L-R + 7-amino-4-methylcoumarin
-
-
-
-
?
AcR-R-R-R-V-L-R-4-nitroanilide + H2O
AcR-R-R-R-V-L-R + 4-nitroaniline
-
-
-
-
?
dansyl-RDIRRITLFSLH
?
-
i.e. S20D, substrate isolated from phage library
-
-
?
Dsor1 kinase + H2O
?
-
Dsor1 is a Drosophila mitogen-activated protein kinase kinase
-
-
?
fluorescein-QRRKKVYPYPME + H2O
fluorescein-QRRKKVYP + YPME
-
i.e. LF15, peptide substrate isolated from second-iteration substrate phage library
-
-
?
fluorescence resonance energy transfer peptide MAPKKide + H2O
?
-
-
-
-
?
Hep kinase + H2O
?
-
Hep (Hemipterous) is a Drosophila mitogen-activated protein kinase kinase
incubation of Hep with anthrax lethal factor generates a product of about 44 kDa
-
?
Lic kinase + H2O
?
-
Lic (Licorne) is a Drosophila mitogen-activated protein kinase kinase
-
-
?
MAP kinase kinase 3b + H2O
?
-
-
-
-
?
Mca-KKPTPIQLN-Dnp + H2O
Mca-KKPTP + IQLN-Dnp
-
-
-
-
?
Mca-KKVYPYPMEK-Dnp + H2O
Mca-KKVYP + YPMEK-Dnp
-
-
-
-
?
Mca-KKWLMYPLEK-Dnp + H2O
Mca-KKWLM + YPLEK-Dnp
-
-
-
-
?
MEK2 + H2O
?
-
mitogen-activated protein kinase kinase, cleavage between residues 10-11
-
-
?
mitogen activated protein kinase kinase + H2O
?
-
-
-
-
?
mitogen activated protein kinase kinase 1 + H2O
?
-
-
-
-
?
mitogen-activated protein kinase + H2O
?
mitogen-activated protein kinase 3 + H2O
?
-
-
-
-
?
mitogen-activated protein kinase kinase + H2O
?
mitogen-activated protein kinase kinase 1 + H2O
?
mitogen-activated protein kinase kinase 2 + H2O
?
mitogen-activated protein kinase kinase 3 + H2O
?
mitogen-activated protein kinase kinase 3b + H2O
?
-
-
-
-
?
mitogen-activated protein kinase kinase 4 + H2O
?
mitogen-activated protein kinase kinase 6 + H2O
?
mitogen-activated protein kinase kinase 7 + H2O
?
MKK3b + H2O
?
-
mitogen-activated protein kinase kinase, cleavage between residues 26-27
-
-
?
MKK4 + H2O
?
-
mitogen-activated protein kinase kinase, cleavage between residues 45-46 and 58-59
-
-
?
MKK6b + H2O
?
-
mitogen-activated protein kinase kinase, cleavage between residues 14-15
-
-
?
MKK7beta + H2O
?
-
mitogen-activated protein kinase kinase, cleavage between residues 44-45 and 76-77
-
-
?
NOD-like receptor protein-1 + H2O
-
-
lethal factor cleaves rat NOD-like receptor protein Nlrp1. Cleavage is required for toxin-induced inflammasome activation, interleukin IL-1beta release, and macrophage pyroptosis
-
-
?
SKARRKKVYPYPXENFPPSTARPT + H2O
SKARRKKVYP + YPXENFPPSTARPT
-
-
-
-
?
additional information
?
-
MEK1 + H2O

?
-
i.e. signal-regulated kinase activator kinase
-
-
?
MEK1 + H2O
?
-
mitogen-activated protein kinase kinase, cleavage between residues 8-9
-
-
?
mitogen-activated protein kinase + H2O

?
-
-
-
-
?
mitogen-activated protein kinase + H2O
?
-
cleavage within N-terminus of MAPKKs
-
-
?
mitogen-activated protein kinase + H2O
?
-
substrate: MAPKK4, MAPKK6, MAPKK7, no substrate: MAPKK5
-
-
-
mitogen-activated protein kinase + H2O
?
-
substrate: MAPKK3, i.e. MKK3
-
-
-
mitogen-activated protein kinase + H2O
?
-
substrates: MAPKK1, MAPKK2
-
-
-
mitogen-activated protein kinase + H2O
?
-
inactivation of substrate
-
-
-
mitogen-activated protein kinase kinase + H2O

?
-
-
-
-
?
mitogen-activated protein kinase kinase + H2O
?
-
anthrax lethal toxin cleaves mitogen-activated protein kinase kinase/MEK/MAPKK 1-4 and 6, but not mitogen-activated protein kinase kinase 5 and 7 in murine neutrophils
-
-
?
mitogen-activated protein kinase kinase 1 + H2O

?
-
-
-
-
?
mitogen-activated protein kinase kinase 1 + H2O
?
-
specifically cleaves the aminoterminal 7 amino acids of mitogen-activated protein kinase kinases
-
-
?
mitogen-activated protein kinase kinase 1 + H2O
?
-
all but one of the mitogen-activated protein kinase kinases (MEK) are cleaved within 3 h, and the cleavage of MEKs in keratinocytes leads to their subsequent proteasome-mediated degradation at different rates
-
-
?
mitogen-activated protein kinase kinase 2 + H2O

?
-
-
-
-
?
mitogen-activated protein kinase kinase 2 + H2O
?
-
specifically cleaves the aminoterminal 7 amino acids of mitogen-activated protein kinase kinases
-
-
?
mitogen-activated protein kinase kinase 2 + H2O
?
-
all but one of the mitogen-activated protein kinase kinases (MEK) are cleaved within 3 h, and the cleavage of MEKs in keratinocytes leads to their subsequent proteasome-mediated degradation at different rates
-
-
?
mitogen-activated protein kinase kinase 3 + H2O

?
-
-
-
-
?
mitogen-activated protein kinase kinase 3 + H2O
?
-
specifically cleaves the aminoterminal 7 amino acids of mitogen-activated protein kinase kinases
-
-
?
mitogen-activated protein kinase kinase 3 + H2O
?
-
all but one of the mitogen-activated protein kinase kinases (MEK) are cleaved within 3 h, and the cleavage of MEKs in keratinocytes leads to their subsequent proteasome-mediated degradation at different rates
-
-
?
mitogen-activated protein kinase kinase 4 + H2O

?
-
-
-
-
?
mitogen-activated protein kinase kinase 4 + H2O
?
-
specifically cleaves the aminoterminal 7 amino acids of mitogen-activated protein kinase kinases
-
-
?
mitogen-activated protein kinase kinase 4 + H2O
?
-
all but one of the mitogen-activated protein kinase kinases (MEK) are cleaved within 3 h, and the cleavage of MEKs in keratinocytes leads to their subsequent proteasome-mediated degradation at different rates
-
-
?
mitogen-activated protein kinase kinase 6 + H2O

?
-
-
-
-
?
mitogen-activated protein kinase kinase 6 + H2O
?
-
specifically cleaves the aminoterminal 7 amino acids of mitogen-activated protein kinase kinases
-
-
?
mitogen-activated protein kinase kinase 6 + H2O
?
-
all but one of the mitogen-activated protein kinase kinases (MEK) are cleaved within 3 h, and the cleavage of MEKs in keratinocytes leads to their subsequent proteasome-mediated degradation at different rates
-
-
?
mitogen-activated protein kinase kinase 7 + H2O

?
-
-
-
-
?
mitogen-activated protein kinase kinase 7 + H2O
?
-
specifically cleaves the aminoterminal 7 amino acids of mitogen-activated protein kinase kinases
-
-
?
mitogen-activated protein kinase kinase 7 + H2O
?
-
all but one of the mitogen-activated protein kinase kinases (MEK) are cleaved within 3 h, and the cleavage of MEKs in keratinocytes leads to their subsequent proteasome-mediated degradation at different rates
-
-
?
additional information

?
-
-
cleavage occurs within the N-terminal proline-rich regions of MAPKKs, consensus motifs
-
-
-
additional information
?
-
-
lethal factor acts directly on T and B lymphocytes, blocking antigen receptor-dependent proliferation, cytokine production and Ig production. In this manner, lethal factor mounts a broad-based attack on host-immunity, thus providing Bacillus anthracis with multiple mechanisms for avoiding protective host responses
-
-
-
additional information
?
-
-
does not cleave MEK5
-
-
-
additional information
?
-
-
participates in the activation of caspase-1
-
-
-
additional information
?
-
-
anthrax lethal factor cleaves and inactivates extracellular signal-regulated kinase kinases of the mitogen-activated protein kinase pathway in human dermal microvascular endothelial cells
-
-
-
additional information
?
-
-
lethal toxin treatment of murine J774A.1 macrophages results in caspase-1 recruitment to the Nalp1b-containing complex, concurrent with processing of cytosolic caspase-1 substrates. Nalp1b belongs to the NLR family of intracellular surveillance proteins, which are able to recognize pathogen-associated molecular patterns, including lipopolysaccharide (LPS). Nalp1b and caspase-1 are able to interact with each other
-
-
-
additional information
?
-
-
prevention of inflammatory response of immune system by preventing interleukin-8 expression: selective blocking of histone H3 phosphorylation at serine 10 and acetylation at lysine 14, H3 normally promotes the accessibility of NF-kappaB (transcription factor for inflammatory gene expression) to target promoters, the histone blocking is mitigated by cleaving mitogen-activated protein kinase kinase, thus preventing the activation of p38-mitogen-activated protein kinase and extracellular signal-regulated kinase
-
-
-
additional information
?
-
-
lethal factor cleaves it substrates between P1 and P1’ and has a broad specificity with preference toward hydrophobic residues, but not charged or branched residues. The most preferred residues are, from P1 to P3’’, Trp, Leu, Met, Tyr, Pro, and Leu
-
-
-
additional information
?
-
-
an extremely polymorphic gene in the locus Nalp1b, is the primary mediator of mouse macrophage susceptibility to LeTx. LeTx-induced macrophage death requires caspase-1, which is activated in susceptible, but not resistant, macrophages after intoxication, suggesting that Nalp1b directly or indirectly activates caspase-1 in response to LeTx
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(1E,6E)-4-(1,3-dithian-2-ylidene)-1,7-difuran-2-ylhepta-1,6-diene-3,5-dione
-
-
(1Z,6E)-4-(1,3-dithian-2-ylidene)-1,7-difuran-2-ylhepta-1,6-diene-3,5-dione
-
-
(2R)-N4-hydroxy-N1-[(2S)-3-(1H-indol-3-yl)-1-(methylamino)-1-oxopropan-2-yl]-2-(2-methylpropyl)butanediamide
-
inhibitor identified by in silico high-throughput virtual screening protocol
(2S)-6-[(1R)-N-1-(4-fluorophenyl)propan]aminoamino-2-(4-fluoro-3,5-dimethylbenzyl)-N-hydroxyhexanamide
-
inhibitor provides protection against lethal infection when administered as a monotherapy. Two doses (10 mg/kg) administered at 2 h and 8 h after spore infection are sufficient to provide a significant survival benefit in infected mice
(2S)-6-[N-1-(4-fluorophenyl)propan]amino-2-[(2R)-2-(4-fluorophenyl)-2-methoxyethyl]-N-hydroxyhexanamide
-
inhibitor provides protection against lethal infection when administered as a monotherapy. Two doses (10 mg/kg) administered at 2 h and 8 h after spore infection are sufficient to provide a significant survival benefit in infected mice
(3S)-N-hydroxy-4-methyl-3-([[(2R)-1-(methylamino)-1-oxo-4-phenylbutan-2-yl]amino]methyl)pentanamide
-
inhibitor identified by in silico high-throughput virtual screening protocol
(4E)-4-[(2,4-dihydroxyphenyl)methylidene]-1,2,5-thiadiazolidin-3-one
-
-
(5E)-5-(1,3-benzothiazol-2-ylimino)-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid
-
-
(5Z)-3-(4-hydroxyphenyl)-5-[[5-(4-nitrophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
-
-
(5Z)-3-(4-methoxyphenyl)-2-thioxo-5-([5-[3-(trifluoromethyl)phenyl]furan-2-yl]methylidene)-1,3-thiazolidin-4-one
-
-
(5Z)-3-(furan-2-ylmethyl)-5-[[5-(3-nitrophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
-
-
(5Z)-3-(furan-2-ylmethyl)-5-[[5-(4-nitrophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
-
-
(5Z)-5-[(2,4-dihydroxyphenyl)methylidene]-2-thioxoimidazolidin-4-one
-
-
(5Z)-5-[[5-(2-nitrophenyl)furan-2-yl]methylidene]-3-(2-phenylethyl)-2-thioxo-1,3-thiazolidin-4-one
-
-
(5Z)-5-[[5-(3,4-dichlorophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
-
-
(5Z)-5-[[5-(4-bromo-3-chlorophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
-
-
(5Z)-5-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-3-(furan-2-ylmethyl)-2-thioxo-1,3-thiazolidin-4-one
-
-
(5Z)-5-[[5-(4-fluorophenyl)furan-2-yl]methylidene]-3-prop-2-en-1-yl-2-thioxo-1,3-thiazolidin-4-one
-
-
(9E)-N-[2-(2,4,5-trihydroxyphenyl)ethyl]octadec-9-enamide
-
-
(9E)-N-[2-(3,4,5-trihydroxyphenyl)ethyl]octadec-9-enamide
-
-
(9Z)-N-(3,4-dihydroxybenzyl)octadec-9-enamide
-
-
(9Z)-N-[2-(3,4-dihydroxyphenyl)ethyl]octadec-9-enamide
-
-
1-[(1S,2R,3S,4S,6S)-2-amino-6-[(6-amino-2,6-dideoxy-a-D-arabino-hexopyranosyl)oxy]-3,4-dihydroxycyclohexyl]guanidine
-
-
2-([benzyl(ethyl)amino]methyl)-6-iodo-4-methylphenol
-
inhibitor identified by in silico high-throughput virtual screening protocol
2-chloro-4-(5-[(Z)-[(3-cyano-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)imino]methyl]furan-2-yl)benzoic acid
-
-
2-chloro-4-(5-[(Z)-[4-oxo-3-(pyridin-3-ylmethyl)-2-thioxo-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl)benzoic acid
-
-
2-chloro-4-[5-[(Z)-(4-oxo-3-prop-2-en-1-yl-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]furan-2-yl]benzoic acid
-
-
2-chloro-4-[[(4Z)-4-[[4-(methylsulfanyl)phenyl]methylidene]-5-oxo-2-phenyl-4,5-dihydro-1H-imidazol-1-yl]sulfamoyl]benzoic acid
-
-
2-chloro-5-(2,5-dimethyl-1H-pyrrol-1-yl)benzoic acid
-
-
2-chloro-5-[(4Z)-3-methyl-4-[[4-(1-methylethyl)phenyl]methylidene]-5-oxo-4,5-dihydro-1H-pyrazol-1-yl]benzoic acid
-
-
2-chloro-5-[(4Z)-4-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl]benzoic acid
-
-
2-chloro-5-[[(4Z)-4-[[4-(methylsulfanyl)phenyl]methylidene]-5-oxo-2-phenylimidazolidin-1-yl]sulfamoyl]benzoic acid
-
-
2-hydroxy-5-(5-[(Z)-[2-imino-4-oxo-3-(1,3-thiazol-2-yl)-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl)benzoic acid
-
-
2-hydroxy-5-[5-[(Z)-[2-imino-3-[imino(methylsulfanyl)methyl]-4-oxo-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl]benzoic acid
-
-
2-thiolacetyl-YPM-amide
-
-
2-[[(2-amino-2-carboxyethyl)sulfanyl]methyl]-5-phenylfuran-3-carboxylic acid
-
-
3,3'-methanediylbis(6-hydroxybenzoic acid)
-
-
3,4-dihydroxy-N'-[(1Z)-(2-hydroxy-5-nitrophenyl)methylidene]benzohydrazide
-
-
3-(5-[(Z)-[1-(3-chlorophenyl)-3,5-dioxopyrazolidin-4-ylidene]methyl]furan-2-yl)benzoic acid
-
-
3-(N-hydroxycarboxamido)-2-isobutylpropanoyl-Trp-methylamide
-
inhibitor used for structure-based pharmacopore model
3-[(5E)-5-[(3-bromo-4-methoxyphenyl)methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
-
-
3-[(5Z)-5-[(3-bromo-4-methoxyphenyl)methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
-
-
3-[(5Z)-5-[[5-(2-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
-
-
3-[(5Z)-5-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
-
-
3-[(5Z)-5-[[5-(4-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
-
-
4-(2,5-dimethyl-1H-pyrrol-1-yl)-2-hydroxybenzoic acid
-
-
4-(5-[(Z)-[3-(4-nitrophenyl)-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl)benzoic acid
-
-
4-phenylaminocarbonylbis-demethoxycurcumin
-
inhibitory potency is comparable with curcumin, while showing improved solubility and stability
4-[(5Z)-5-[[5-(3-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]butanoic acid
-
-
4-[(5Z)-5-[[5-(4-bromophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]butanoic acid
-
-
4-[5-[(E)-(5-cyano-2-hydroxy-4-methyl-6-oxopyridin-3(6H)-ylidene)methyl]furan-2-yl]benzenesulfonamide
-
-
4-[5-[(Z)-(3-benzyl-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]furan-2-yl]benzoic acid
-
-
4-[5-[(Z)-[4-oxo-2-thioxo-3-[3-(trifluoromethyl)phenyl]-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl]benzoic acid
-
-
4-[[(4-chlorophenyl)carbamoyl]amino]-N-(5-ethyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide
-
-
5-(4-carboxy-3-chlorophenyl)-2-[(Z)-[(3-cyano-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)imino]methyl]furan-3-carboxylic acid
-
-
5-bromo-2-(5-[(Z)-[1-(3-carboxyphenyl)-5-oxo-3-(trifluoromethyl)-1,5-dihydro-4H-pyrazol-4-ylidene]methyl]furan-2-yl)benzoic acid
-
-
5-bromo-2-(5-[(Z)-[1-(3-carboxyphenyl)-5-oxo-3-(trifluoromethyl)-1,5-dihydro-4H-pyrazol-4-ylidene]methyl]uran-2-yl)benzoic acid
-
-
5-chloro-2-[5-[(E)-(1,5-dioxo-6,7,8,9-tetrahydro-5H-[1]benzothieno[3,2-e][1,3]thiazolo[3,2-a]pyrimidin-2(1H)-ylidene)methyl]furan-2-yl]benzoic acid
-
-
6-S-(3-aminopropyl)-6-thio-beta-D-cyclodextrin
-
-
6-S-(8-aminooctyl)-6-thio-beta-D-cyclodextin
-
-
6-S-[3-(aminomethyl)benzyl]-6-thio-beta-D-cyclodextrin
-
-
6-S-[4-(aminomethyl)benzyl]-6-thio-beta-D-cyclodextrin
-
-
8-[(E)-[[4-(2,3-dihydro-1,3-thiazol-2-ylsulfamoyl)phenyl]imino]methyl]-4H-1,3-benzodioxine-6-carboxylic acid
-
-
acetyl-GYbetaARRRRRRRRVLR-hydroxamate
-
-
AcG-Y-betaA-R-R-R-A-R-R-R-R-V-L-R-4-nitroanilide
-
substrate inhibition
AcM-L-A-R-R-R-P-V-L-P-4-nitroanilide
-
substrate inhibition
AcR-R-R-R-V-L-R-4-methylcoumarin-7-amide
-
substrate inhibition
AcR-R-R-R-V-L-R-4-nitroanilide
-
substrate inhibition
C-terminal dimer of the protective antigen binding domain of anthrax lethal factor
-
-
-
C-terminal trimer of the protective antigen binding domain of anthrax lethal factor
-
-
-
celastrol
-
celastrol, a quinine methide triterpene derived from a plant extract used in herbal medicine, inhibits lethal toxin-induced death of RAW264.7 murine macrophages. Celastrol does not prevent cleavage of mitogen activated protein kinase kinase 1. Celastrol confers almost complete protection when it is added up to 1.5 h after intoxication, indicating that it can rescue cells in the late stages of intoxication. Celastrol inhibits the proteasome-dependent degradation of proteins in RAW264.7 cells. Celastrol blocks stimulation of IL-18 processing, indicating that celastrol acts upstream of inflammasome activation
curcumin
-
inhibits by both decreasing catalytic capacity and increasing substrate affinity
fluvastatin
-
statins attenuate lethal factor action action. statin treatment maintains macrophage cell viability above 60% of untreated control cells even after 9 h of lethal toxin treatment. Statins decrease mitogen-activated protein kinase cleavage
mevastatin
-
statins attenuate lethal factor action action. statin treatment maintains macrophage cell viability above 60% of untreated control cells even after 9 h of lethal toxin treatment. Statins decrease mitogen-activated protein kinase cleavage
N'1,N'4-bis[(1E)-(2-hydroxy-5-methylphenyl)methylidene]benzene-1,4-dicarbohydrazide
-
-
N'1-[(1E)-(2-hydroxyphenyl)methylidene]-N'4-[(1Z)-(2-hydroxyphenyl)methylidene]benzene-1,4-dicarbohydrazide
-
-
N'1-[(1E)-(5-fluoro-2-hydroxyphenyl)methylidene]-N'4-[(1Z)-(5-fluoro-2-hydroxyphenyl)methylidene]benzene-1,4-dicarbohydrazide
-
-
N,N''',N'''''',N'''''''''-[[(1R,3S,4S,6R)-4,6-dicarbamimidamidocyclohexane-1,3-diyl]bis(oxybenzene-1,2,4-triyl)]tetraguanidine
-
-
N,N'''-[(1R,3S)-4-(2,4-dicarbamimidamidonaphthalen-1-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1R,3S)-4-(2-amino-1H-benzimidazol-7-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1R,3S,4R,5R,6S)-4-[(2,6-dicarbamimidamido-2,6-dideoxy-a-D-glucopyranosyl)oxy]-5,6-dihydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1R,3S,4R,6R)-4-(2-carbamimidamidophenyl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1R,3S,4R,6R)-4-(4-carbamimidamidonaphthalen-1-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1R,3S,4R,6R)-4-(4-carbamimidamidophenyl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1R,3S,4S,6R)-4-(3-carbamimidamidopyridin-2-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1R,3S,4S,6R)-4-(5-carbamimidamidopyridin-2-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
-
-
N,N'''-[(1S,2R,3S,4S,6S)-6-[(6-amino-2-carbamimidamido-2,6-dideoxy-a-D-glucopyranosyl)oxy]-3,4-dihydroxycyclohexane-1,2-diyl]diguanidine
-
-
N,N'''-[4-[(1R,2S,4R,5R)-2,4-dicarbamimidamido-5-hydroxycyclohexyl]benzene-1,3-diyl]diguanidine
-
-
N-2-benzyl-N-2-[(4-fluoro-3-methylphenyl)sulfonyl]-N-hydroxy-D-alaninamide
-
-
N-2-[4-(aminomethyl)benzyl]-N-2-[(4-fluoro-3-methylphenyl)sulfonyl]-N-hydroxy-D-alaninamide
-
-
N-hydroxy-4-[2-[(9E)-octadec-9-enoylamino]ethyl]benzamide
-
-
N-hydroxy-4-[[(9Z)-octadec-9-enoylamino]methyl]benzamide
-
-
N-oleoyldopamine
-
uncompetitive inhibition
N-terminal dimer of the protective antigen binding domain of anthrax lethal factor
-
-
-
N-terminal trimer of the protective antigen binding domain of anthrax lethal factor
-
-
-
N2-[(4-fluoro-3-methylphenyl)sulfonyl]-N-hydroxy-N-2-(4-nitrobenzyl)-D-alaninamide
-
-
neamine
-
mixed-type, noncompetitive inhibition
NH4Cl
-
blocks mitogen-activated protein kinase kinase 3 proteolysis in anthrax lethal toxin-treated macrophages
simvastatin
-
statins attenuate lethal factor action action. statin treatment maintains macrophage cell viability above 60% of untreated control cells even after 9 h of lethal toxin treatment. Statins decrease mitogen-activated protein kinase cleavage
verapamil
-
blocks mitogen-activated protein kinase kinase 3 proteolysis in anthrax lethal toxin-treated macrophages
[(5Z)-5-([5-[2-chloro-5-(trifluoromethyl)phenyl]furan-2-yl]methylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(2-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(3,4-dichlorophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(3-chloro-4-methoxyphenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(3-chloro-4-sulfamoylphenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(3-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(4-bromophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(4-chloro-2-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[(5Z)-5-[[5-(4-iodophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
-
-
[4-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl]acetic acid
-
-
[4-[(5Z)-5-(furan-2-ylmethylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]phenyl]acetic acid
-
-
[[4-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl]sulfanyl]acetic acid
-
-
neomycin B

-
mixed-type, noncompetitive inhibition
additional information

-
peptides that can block toxin assembly. Minimal peptide sequence TYWWLD can be used to develop potent polyvalent inhibitors of anthrax toxin
-
additional information
-
complete caspase-1 inhibition is required to block antrax lethal toxin-mediated necrosis
-
additional information
-
Ca2+-free medium completely prevents mitogen-activated protein kinase kinase 3 proteolysis in anthrax lethal toxin-treated macrophages
-
additional information
-
statin-mediated effects on lethal toxin action are attributable to disruption of Rho GTPases. The Rho GTPase-inactivating toxin, toxin B, does not significantly affect lethal toxin binding or internalization, suggesting that the Rho GTPases regulate trafficking and/or localization of lethal toxin once internalized
-
additional information
-
fusion protein of N-terminal 27 amino acids deletion of protective antigen-binding domain of anthrax lethal factor Delta27LFn and protective antigen-binding domain of edema factor is a 62-fold more potent toxin inhibitor than protective antigen-binding domain of anthrax lethal factor or protective antigen-binding domain of edema factor in a cell model of intoxication, and this increased activity corresponds to a 39-fold higher protective antigen-binding affinity by Biacore analysis. The fusion protein can protect the highly susceptible Fischer 344 rats from anthrax lethal toxin challenge
-
additional information
-
micromolar-level anthrax lethal factor inhibition can be attained by compounds with non-hydroxamate zinc-binding groups that exhibit monodentate zinc chelation as long as key hydrophobic interactions with at least two anthrax lethal factor subsites are retained
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
0.003
(1E,6E)-4-(1,3-dithian-2-ylidene)-1,7-difuran-2-ylhepta-1,6-diene-3,5-dione
Bacillus anthracis;
-
-
0.003
(1Z,6E)-4-(1,3-dithian-2-ylidene)-1,7-difuran-2-ylhepta-1,6-diene-3,5-dione
Bacillus anthracis;
-
-
0.0102
(2R)-N4-hydroxy-N1-[(2S)-3-(1H-indol-3-yl)-1-(methylamino)-1-oxopropan-2-yl]-2-(2-methylpropyl)butanediamide
Bacillus anthracis;
-
pH 8.0, 37°C
0.0071
(3S)-N-hydroxy-4-methyl-3-([[(2R)-1-(methylamino)-1-oxo-4-phenylbutan-2-yl]amino]methyl)pentanamide
Bacillus anthracis;
-
pH 8.0, 37°C
0.0034
(4E)-4-[(2,4-dihydroxyphenyl)methylidene]-1,2,5-thiadiazolidin-3-one
Bacillus anthracis;
-
-
0.0077
(5E)-5-(1,3-benzothiazol-2-ylimino)-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid
Bacillus anthracis;
-
-
0.0377
(5Z)-3-(4-hydroxyphenyl)-5-[[5-(4-nitrophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis;
-
-
0.3
(5Z)-3-(4-methoxyphenyl)-2-thioxo-5-([5-[3-(trifluoromethyl)phenyl]furan-2-yl]methylidene)-1,3-thiazolidin-4-one
Bacillus anthracis;
-
-
0.0383
(5Z)-3-(furan-2-ylmethyl)-5-[[5-(3-nitrophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis;
-
-
0.0126
(5Z)-3-(furan-2-ylmethyl)-5-[[5-(4-nitrophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis;
-
-
0.0034
(5Z)-5-[(2,4-dihydroxyphenyl)methylidene]-2-thioxoimidazolidin-4-one
Bacillus anthracis;
-
-
0.0319
(5Z)-5-[[5-(2-nitrophenyl)furan-2-yl]methylidene]-3-(2-phenylethyl)-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis;
-
-
0.0074
(5Z)-5-[[5-(3,4-dichlorophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis;
-
-
0.007
(5Z)-5-[[5-(4-bromo-3-chlorophenyl)furan-2-yl]methylidene]-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis;
-
-
0.15
(5Z)-5-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-3-(furan-2-ylmethyl)-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis;
-
-
0.05
(5Z)-5-[[5-(4-fluorophenyl)furan-2-yl]methylidene]-3-prop-2-en-1-yl-2-thioxo-1,3-thiazolidin-4-one
Bacillus anthracis;
-
-
0.07
(9E)-N-[2-(2,4,5-trihydroxyphenyl)ethyl]octadec-9-enamide
Bacillus anthracis;
-
-
0.013
(9E)-N-[2-(3,4,5-trihydroxyphenyl)ethyl]octadec-9-enamide
Bacillus anthracis;
-
-
0.015
(9Z)-N-(3,4-dihydroxybenzyl)octadec-9-enamide
Bacillus anthracis;
-
-
0.015
(9Z)-N-[2-(3,4-dihydroxyphenyl)ethyl]octadec-9-enamide
Bacillus anthracis;
-
-
0.0007
1-[(1S,2R,3S,4S,6S)-2-amino-6-[(6-amino-2,6-dideoxy-a-D-arabino-hexopyranosyl)oxy]-3,4-dihydroxycyclohexyl]guanidine
Bacillus anthracis;
-
-
0.0495
2-([benzyl(ethyl)amino]methyl)-6-iodo-4-methylphenol
Bacillus anthracis;
-
pH 8.0, 37°C
0.0042
2-chloro-4-(5-[(Z)-[(3-cyano-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)imino]methyl]furan-2-yl)benzoic acid
Bacillus anthracis;
-
-
0.0099
2-chloro-4-(5-[(Z)-[4-oxo-3-(pyridin-3-ylmethyl)-2-thioxo-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl)benzoic acid
Bacillus anthracis;
-
-
0.0027
2-chloro-4-[5-[(Z)-(4-oxo-3-prop-2-en-1-yl-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]furan-2-yl]benzoic acid
Bacillus anthracis;
-
-
0.0036
2-chloro-4-[[(4Z)-4-[[4-(methylsulfanyl)phenyl]methylidene]-5-oxo-2-phenyl-4,5-dihydro-1H-imidazol-1-yl]sulfamoyl]benzoic acid
Bacillus anthracis;
-
-
0.0068
2-chloro-5-(2,5-dimethyl-1H-pyrrol-1-yl)benzoic acid
Bacillus anthracis;
-
-
0.0079
2-chloro-5-[(4Z)-3-methyl-4-[[4-(1-methylethyl)phenyl]methylidene]-5-oxo-4,5-dihydro-1H-pyrazol-1-yl]benzoic acid
Bacillus anthracis;
-
-
0.0021 - 0.0107
2-chloro-5-[(4Z)-4-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl]benzoic acid
0.0025
2-chloro-5-[[(4Z)-4-[[4-(methylsulfanyl)phenyl]methylidene]-5-oxo-2-phenylimidazolidin-1-yl]sulfamoyl]benzoic acid
Bacillus anthracis;
-
-
0.0048
2-hydroxy-5-(5-[(Z)-[2-imino-4-oxo-3-(1,3-thiazol-2-yl)-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl)benzoic acid
Bacillus anthracis;
-
-
0.0048
2-hydroxy-5-[5-[(Z)-[2-imino-3-[imino(methylsulfanyl)methyl]-4-oxo-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl]benzoic acid
Bacillus anthracis;
-
-
0.0036
2-[[(2-amino-2-carboxyethyl)sulfanyl]methyl]-5-phenylfuran-3-carboxylic acid
Bacillus anthracis;
-
-
0.0031
3,3'-methanediylbis(6-hydroxybenzoic acid)
Bacillus anthracis;
-
-
0.2
3,4-dihydroxy-N'-[(1Z)-(2-hydroxy-5-nitrophenyl)methylidene]benzohydrazide
Bacillus anthracis;
-
DS-998
0.0083 - 0.0105
3-(5-[(Z)-[1-(3-chlorophenyl)-3,5-dioxopyrazolidin-4-ylidene]methyl]furan-2-yl)benzoic acid
0.0044
3-[(5E)-5-[(3-bromo-4-methoxyphenyl)methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
Bacillus anthracis;
-
-
0.0044
3-[(5Z)-5-[(3-bromo-4-methoxyphenyl)methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
Bacillus anthracis;
-
-
0.0128
3-[(5Z)-5-[[5-(2-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
Bacillus anthracis;
-
-
0.0008
3-[(5Z)-5-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
Bacillus anthracis;
-
-
0.0027
3-[(5Z)-5-[[5-(4-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]propanoic acid
Bacillus anthracis;
-
-
0.0043
4-(2,5-dimethyl-1H-pyrrol-1-yl)-2-hydroxybenzoic acid
Bacillus anthracis;
-
-
0.0048
4-(5-[(Z)-[3-(4-nitrophenyl)-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl)benzoic acid
Bacillus anthracis;
-
-
0.02
4-[(5Z)-5-[[5-(3-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]butanoic acid
Bacillus anthracis;
-
-
0.0023
4-[(5Z)-5-[[5-(4-bromophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]butanoic acid
Bacillus anthracis;
-
-
0.0083
4-[5-[(E)-(5-cyano-2-hydroxy-4-methyl-6-oxopyridin-3(6H)-ylidene)methyl]furan-2-yl]benzenesulfonamide
Bacillus anthracis;
-
-
0.006
4-[5-[(Z)-(3-benzyl-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]furan-2-yl]benzoic acid
Bacillus anthracis;
-
-
0.0029
4-[5-[(Z)-[4-oxo-2-thioxo-3-[3-(trifluoromethyl)phenyl]-1,3-thiazolidin-5-ylidene]methyl]furan-2-yl]benzoic acid
Bacillus anthracis;
-
-
0.0039
4-[[(4-chlorophenyl)carbamoyl]amino]-N-(5-ethyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide
Bacillus anthracis;
-
-
0.0042
5-(4-carboxy-3-chlorophenyl)-2-[(Z)-[(3-cyano-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)imino]methyl]furan-3-carboxylic acid
Bacillus anthracis;
-
-
0.0017
5-bromo-2-(5-[(Z)-[1-(3-carboxyphenyl)-5-oxo-3-(trifluoromethyl)-1,5-dihydro-4H-pyrazol-4-ylidene]methyl]furan-2-yl)benzoic acid
Bacillus anthracis;
-
-
0.0017
5-bromo-2-(5-[(Z)-[1-(3-carboxyphenyl)-5-oxo-3-(trifluoromethyl)-1,5-dihydro-4H-pyrazol-4-ylidene]methyl]uran-2-yl)benzoic acid
Bacillus anthracis;
-
-
0.0008
5-chloro-2-[5-[(E)-(1,5-dioxo-6,7,8,9-tetrahydro-5H-[1]benzothieno[3,2-e][1,3]thiazolo[3,2-a]pyrimidin-2(1H)-ylidene)methyl]furan-2-yl]benzoic acid
Bacillus anthracis;
-
-
0.0029
6-S-(3-aminopropyl)-6-thio-beta-D-cyclodextrin
Bacillus anthracis;
-
-
0.0003
6-S-(8-aminooctyl)-6-thio-beta-D-cyclodextin
Bacillus anthracis;
-
-
0.0005
6-S-[3-(aminomethyl)benzyl]-6-thio-beta-D-cyclodextrin
Bacillus anthracis;
-
-
0.0007
6-S-[4-(aminomethyl)benzyl]-6-thio-beta-D-cyclodextrin
Bacillus anthracis;
-
-
0.0093
8-[(E)-[[4-(2,3-dihydro-1,3-thiazol-2-ylsulfamoyl)phenyl]imino]methyl]-4H-1,3-benzodioxine-6-carboxylic acid
Bacillus anthracis;
-
-
0.08
N'1,N'4-bis[(1E)-(2-hydroxy-5-methylphenyl)methylidene]benzene-1,4-dicarbohydrazide
Bacillus anthracis;
-
-
0.05
N'1-[(1E)-(2-hydroxyphenyl)methylidene]-N'4-[(1Z)-(2-hydroxyphenyl)methylidene]benzene-1,4-dicarbohydrazide
Bacillus anthracis;
-
-
0.05
N'1-[(1E)-(5-fluoro-2-hydroxyphenyl)methylidene]-N'4-[(1Z)-(5-fluoro-2-hydroxyphenyl)methylidene]benzene-1,4-dicarbohydrazide
Bacillus anthracis;
-
-
0.00065
N,N''',N'''''',N'''''''''-[[(1R,3S,4S,6R)-4,6-dicarbamimidamidocyclohexane-1,3-diyl]bis(oxybenzene-1,2,4-triyl)]tetraguanidine
Bacillus anthracis;
-
-
0.0107
N,N'''-[(1R,3S)-4-(2,4-dicarbamimidamidonaphthalen-1-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis;
-
-
0.1537
N,N'''-[(1R,3S)-4-(2-amino-1H-benzimidazol-7-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis;
-
-
0.0007
N,N'''-[(1R,3S,4R,5R,6S)-4-[(2,6-dicarbamimidamido-2,6-dideoxy-a-D-glucopyranosyl)oxy]-5,6-dihydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis;
-
-
0.0306
N,N'''-[(1R,3S,4R,6R)-4-(2-carbamimidamidophenyl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis;
-
-
0.0314
N,N'''-[(1R,3S,4R,6R)-4-(4-carbamimidamidonaphthalen-1-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis;
-
-
0.0149
N,N'''-[(1R,3S,4R,6R)-4-(4-carbamimidamidophenyl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis;
-
-
0.0041
N,N'''-[(1R,3S,4S,6R)-4-(3-carbamimidamidopyridin-2-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis;
-
-
0.0066
N,N'''-[(1R,3S,4S,6R)-4-(5-carbamimidamidopyridin-2-yl)-6-hydroxycyclohexane-1,3-diyl]diguanidine
Bacillus anthracis;
-
-
0.0005
N,N'''-[(1S,2R,3S,4S,6S)-6-[(6-amino-2-carbamimidamido-2,6-dideoxy-a-D-glucopyranosyl)oxy]-3,4-dihydroxycyclohexane-1,2-diyl]diguanidine
Bacillus anthracis;
-
-
0.0006
N,N'''-[4-[(1R,2S,4R,5R)-2,4-dicarbamimidamido-5-hydroxycyclohexyl]benzene-1,3-diyl]diguanidine
Bacillus anthracis;
-
-
0.0152
N-2-benzyl-N-2-[(4-fluoro-3-methylphenyl)sulfonyl]-N-hydroxy-D-alaninamide
Bacillus anthracis;
-
pH not specified in the publication, temperature not specified in the publication
0.0056
N-2-[4-(aminomethyl)benzyl]-N-2-[(4-fluoro-3-methylphenyl)sulfonyl]-N-hydroxy-D-alaninamide
Bacillus anthracis;
-
pH not specified in the publication, temperature not specified in the publication
0.032
N-hydroxy-4-[2-[(9E)-octadec-9-enoylamino]ethyl]benzamide
Bacillus anthracis;
-
-
0.042
N-hydroxy-4-[[(9Z)-octadec-9-enoylamino]methyl]benzamide
Bacillus anthracis;
-
-
0.015
N-oleoyldopamine
Bacillus anthracis;
-
-
0.0149
N2-[(4-fluoro-3-methylphenyl)sulfonyl]-N-hydroxy-N-2-(4-nitrobenzyl)-D-alaninamide
Bacillus anthracis;
-
pH not specified in the publication, temperature not specified in the publication
0.0031
[(5Z)-5-[[5-(2-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis;
-
-
0.000265
[(5Z)-5-[[5-(3,4-dichlorophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis;
-
-
0.000298
[(5Z)-5-[[5-(3-chloro-4-methoxyphenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis;
-
-
0.0091
[(5Z)-5-[[5-(3-chloro-4-sulfamoylphenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis;
-
-
0.0031
[(5Z)-5-[[5-(3-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis;
-
-
0.00085
[(5Z)-5-[[5-(4-bromophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis;
-
-
0.0005
[(5Z)-5-[[5-(4-chloro-2-nitrophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis;
-
-
0.0009
[(5Z)-5-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis;
-
-
0.0055
[(5Z)-5-[[5-(4-iodophenyl)furan-2-yl]methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid
Bacillus anthracis;
-
-
0.0076
[4-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl]acetic acid
Bacillus anthracis;
-
-
0.14
[4-[(5Z)-5-(furan-2-ylmethylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]phenyl]acetic acid
Bacillus anthracis;
-
-
0.0029
[[4-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl]sulfanyl]acetic acid
Bacillus anthracis;
-
-
0.0021
2-chloro-5-[(4Z)-4-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl]benzoic acid

Bacillus anthracis;
-
-
0.0107
2-chloro-5-[(4Z)-4-[[5-(4-chlorophenyl)furan-2-yl]methylidene]-3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl]benzoic acid
Bacillus anthracis;
-
-
0.0083
3-(5-[(Z)-[1-(3-chlorophenyl)-3,5-dioxopyrazolidin-4-ylidene]methyl]furan-2-yl)benzoic acid

Bacillus anthracis;
-
-
0.0105
3-(5-[(Z)-[1-(3-chlorophenyl)-3,5-dioxopyrazolidin-4-ylidene]methyl]furan-2-yl)benzoic acid
Bacillus anthracis;
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
synthesis
-
preparation of semisynthetic protective antigen-binding domain of anthrax lethal factor, LFN, by native chemical ligation of synthetic LFN residues 14-28 thioester with recombinant N29C-LFN residues 29-263 and comparison with two variants containing alterations in residues 14-28 of the N-terminal region. The properties of the variants in blocking ion conductance through the protective antigen pore and translocating across planar phospholipid bilayers in response to a pH gradient are consistent with current concepts of the mechanism of polypeptide translocation through the pore. The semisynthesis platform allows for investigation of the interaction of the pore with its substrates
diagnostics

-
the development, performance characteristics and validation using human serum of a robust and rugged format of the LTx neutralization activity (TNA) assay is reported and its application in evaluating immune serum from humans, Rhesus macaques and rabbits. This format uses standardized and characterized reagents in conjunction with customized interpretive software and a novel mathematical algorithm to calculate and extrapolate multiple reportable values, in addition to ED50, with high specificity, analytical sensitivity, accuracy and precision. This LTx neutralization activity (TNA) assay format is proposed as a unifying platform technology
diagnostics
-
the anthrax lethal toxin neutralization assay (TNA) measures the ability of antibodies to neutralize the cytotoxicity of anthrax lethal toxin rather than quantifying total antibody through a conjugated species-specific secondary antibody. TNA may provide a more relevant immunological measure, as it quantitates functional antibodies only rather than total protective antigen-binding antibodies. In this study, TNA data are generated in several different laboratories to measure the immune responses in rabbits, nonhuman primates, and humans. A collaborative study is conducted in which 108 samples from the three species are analyzed in seven independent laboratories. This study demonstrates that the TNA is a panspecies assay that can be performed in several different laboratories with a high degree of quantitative agreement and precision
medicine

-
mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge
medicine
-
human medical countermeasures for anthrax
medicine
-
sublethal doses of Bacillus anthracis lethal toxin inhibit inflammation with lipopolysaccharide and Escherichia coli challenge but have opposite effects on survival
medicine
-
inducing strong mucosal and systemic immune responses against both anthrax toxins and bacilli after nasal immunization using a synthetic double-stranded RNA (dsRNA), polyriboinosinic-polyribocytidylic acid as adjuvant. The capsular poly-gamma-D-glutamic acid (PGA) from bacillus is immunogenic when conjugated to a carrier protein and dosed intranasally to mice. The nasal immunization with the poly-gamma-D-glutamic acid-carrier protein conjugate in combination with the anthrax protective antigen (PA) protein induces both anti-PGA and anti-PA immune responses in mouse sera and lung mucosal secretions. The anti-PA antibody response is shown to have anthrax lethal toxin neutralization activity. The anti-PGA Abs induced are able to activate complement and kill PGA-producing bacteria. It is feasible to develop a novel dual-action nasal anthrax vaccine
medicine
-
the antitumor toxin has potential for use in cancer therapy
medicine
-
the use of drugs capable of inhibiting Rho GTPase activity, such as statins, may provide a means to attenuate intoxication during Bacillus anthracis infection
medicine
-
engineered lethal anthrax toxin prevents tumor growth by inhibiting angiogenesis (10 nmol/l engineered protective antigen + 5.5 nmol/l lethal factor)
medicine
-
anthrax toxin entry and activity differs among immune cells. Macrophages, dendritic cells, and B cells display higher activity of a of fusion protein of the anthrax toxin lethal factor N-terminal domain LFn, residues 1-254, with beta-lactamase, i.e. LFnBLA, than CD4+ and CD8+ T cells in both spleen cell suspension and the purified samples of individual cell types. Expression of anthrax toxin receptor CMG2 is higher in CD4+ and CD8+ T cells, which is not correlated to the intracellular LFnBLA activity
medicine
-
neuronal nitric oxide synthase deficiency in mice causes strikingly increased sensitivity to anthrax lethal toxin, while deficiencies in NOS enzymes iNOS and eNOS have no effect on anthrax lethal toxin-mediated mortality. The increased sensitivity of nNOS2/2 mice is independent of macrophage sensitivity to toxin, or cytokine responses, and can be replicated in nNOS-sufficient wild-type mice through pharmacological inhibition of the enzyme with 7-nitroindazole. Anthrax lethal toxin induces architectural changes in heart morphology of nNOS2/2 mice, with rapid appearance of novel inter-fiber spaces but no associated apoptosis of cardiomyocytes. Anthrax lethal toxin-treated wild-type mice have no histopathology observed at the light microscopy level. Electron microscopic analyses reveal striking pathological changes in the hearts of both nNOS2/2 and wild-type mice, varying only in severity and timing. Endothelial andcapillary necrosis and degeneration, inter-myocyte edema, myofilament and mitochondrial degeneration, and altered sarcoplasmic reticulum cisternae are observed in both anthrax lethal toxin-treated wild-type and nNOS2/2 mice. Biomarkers of cardiac injury, myoglobin, cardiac troponin-I, and heart fatty acid binding protein, are elevated in anthrax lethal toxin-treated mice very rapidly and reach concentrations rarely reported in mice. The potent nitric oxide scavenger, 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3-oxide, i.e. carboxy-PTIO, shows some protective effect against anthrax lethal toxin
medicine
-
anthrax lethal factor is a specific biomarker of active infection by Bacillus anthracis
medicine
-
blood borne lethal toxin is a novel therapeutic target for combating anthrax
medicine
-
administration of lethal factor proteases early in the infection inhibits dissemination of vegetative bacteria to the organs in the first 32 h following infection. Neutralizing antibodies against edema factor also inhibit bacterial dissemination with similar efficacy
medicine
-
in a murine model of intoxication, lethal factor causes the dose-dependent disruption of intestinal epithelial integrity, characterized by mucosal erosion, ulceration, and bleeding. The pathology correlates with a blockade of intestinal crypt cell proliferation, accompanied by marked apoptosis in the villus tips. Treated mice nearly uniformly develop systemic infections with commensal enteric organisms within 72 hours of administration. Intestinal pathology depends upon lethal factor proteolytic activity and is partially attenuated by co-administration of broad spectrum antibiotics
medicine
-
seven of eleven acute myeloid leukemia cell lines show cytotoxic responses to anthrax lethal toxin LeTx. Cytotoxicity is mimicked by the specific mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 inhibitor U0126, indicating involvement of the ERK1/2 branch of the MAPK pathway. The four LeTx-resistant cell lines are sensitive to the phosphatidylinositol 3-kinase inhibitor LY294002. with a lack of additive/synergistic effects when both pathways are inhibited. Phospho-ERK1/2 is only present in LeTx-sensitive cells. LeTx-induced cell death is caspase-independent and nonapoptotic
molecular biology

-
microarray analysis is used to investigate the effects of Bacillus anthracis lethal toxin on human neutrophil-like NB-4 cells to identify markers of intoxication. Genes down-regulated after a 2 h lethal toxin exposure include those encoding chemokines and transcription factors. Significant decreases in the mRNA of interleukin-8, CCL20, CCL3 and CCL4 are observed using real-time PCR. The decreases are more pronounced at 4 and 8 h and are lethal toxin-specific. Decreases in chemokine protein levels are evident after 24 h and are sensitive to low concentrations of lethal toxin. Co-incubation with an anti-lethal factor mAb restores levels of interleukin-8 to 100% and 50%, respectively
molecular biology
-
it is shown that treatment of RAW 264.7 murine macrophage cells with anthrax lethaltoxin induces autophagy suggesting a protective role as autophagy inhibition using 3-methyladenine results in an accelerated cell death
molecular biology
-
protein expression profile of murine macrophages RAW264.7 treated with LeTx is analyzed using two-dimensional polyacrylamide gel electrophoresis and MALDI-TOF MS. Among the differentially expressed spots, cleaved mitogen-activated protein kinase kinase 1 acting as a negative element in the signal transduction pathway, and glucose-6-phosphate dehydrogenase playing a role in the protection of cells from hyperproduction of active oxygen are up-regulated LeTx-treated macrophages
molecular biology
-
the cellular damage inflicted by anthrax lethal toxin depends not only on the innate responses but also on the maturation stage of the cell, which modulates the more general caspase-1-independent responses
molecular biology
-
proteasome inhibitors block anthrax lethal toxin-mediated caspase-1 activation and can protect against cell death, indicating that the degradation of at least one cellular protein is required for cell death. Proteins can be degraded by the proteasome via the N-end rule. Using amino acid derivatives that act as inhibitors of this pathway, it is shown that the N-end rule is required for anthrax lethal toxin-mediated caspase-1 activation and cell death. The Streptomyces olivoreti peptide bestatin, which inhibits leucine, alanine and arginine aminopeptidases, protects macrophages against anthrax lethal toxin. c-IAP1, a mammalian member of the inhibitor of apoptosis protein (IAP) family is identified, as a novel N-end rule substrate degraded in macrophages treated with anthrax lethal toxin
molecular biology
-
the in vitro effects of thermal stress on the killing of murine macrophages by anthrax lethal toxin are investigated. Heat shock rapidly halts anthrax lethal toxin-induced cell death without any impact on toxin uptake or mitogen-activated protein kinases cleavage, by a mechanism independent of novel protein synthesis, p38 activation, HSP90 activity or proteasome inhibition. Rather, heat shock prevents the activation of procaspase-1 in anthrax lethal toxin -treated cells, apparently by the sequestration of pro-caspase-1 in a large, inhibitory complex. Heat-shocked cell lysates strongly inhibit the active caspase-1 heterotetramer in vitro, independent of a specific inflammasome platform. Results suggest the presence of a cellular, heat shock-inducible, caspase-1 inhibiting factor
molecular biology
-
toxin effects of lethal toxin and edema toxin of Bacillus anthracis in bone marrow dendritic cells stimulated with either LPS or Legionella pneumophila are analysed. Lethal toxin, not ET, is more toxic for cells from BALB/c mice than from C57BL/6 as measured by 7-AAD uptake. Results support the conclusion that lethal toxin and edema toxin are not uniformly suppressive of dendritic cell function but rather modulate function up or down depending on variables such as the function tested, the microbial stimulus used, and the genetic variation in innate immune response mechanisms in the host cell
molecular biology
-
results suggest that this toxin delivery system is capable of stimulating protective immune responses where effective immunization requires stimulation of both classes of T cells
molecular biology
-
lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages consisting of caspase-1 and Nalp1b, resulting in cleavage of cytosolic caspase-1 substrates and cell death
molecular biology
-
primary keratinocytes are resistant to LeTx cytotoxicity, and MEK cleavage does not correlate with LeTx cytotoxicity. LeTx is considered as an anti-inflammatory agent, however it upregulates RANTES
molecular biology
-
anthrax lethal toxin treatment of neutrophils disrupts signaling to downstream MAPK targets in response to TLR stimulation. Following anthrax lethal toxin treatment, ERK family and p38 phosphorylation are nearly completely blocked, but signaling to JNK family members persists in vitro and ex vivo. In contrast to previous reports involving human neutrophils, anthrax lethal toxin treatment of murine neutrophils increases their production of superoxide in response to PMA or TLR stimulation in vitro or ex vivo. Although this enhanced superoxide production correlates with effects due to the lethal toxin-induced blockade of ERK signaling, it requires JNK signaling that remains largely intact despite the activity of anthrax lethal toxin
molecular biology
-
the effects of lethal toxin on the transcriptional regulation of the VCAM1 gene, which contains binding sites in its promoter region for NF-kappaB, IFN regulatory factor-1 (IRF-1), Sp1, GATA-2, and AP-1, in primary human endothelial cells is examined. Lethal toxin enhances cytokine-induced activation of NF-kappaB and IRF-1 which are key factors in the lethal toxin-mediated enhancement of TNF-induced VCAM-1 expression. Altering the activity of key transcription factors involved in host response to infection may be a critical mechanism by which lethal toxin contributes to anthrax pathogenesis
molecular biology
-
celastrol is identified as an inhibitor of lethal toxin-mediated macrophage lysis and suggests an inhibitory mechanism involving inhibition of the proteasome pathway
molecular biology
-
Bacillus anthracis represses the immune response, in part by altering chromatin accessibility of IL-8 promoter to NFkappaB in epithelial cells. This epigenetic reprogramming, in addition to previously reported effects of lethal toxin, represents an efficient strategy used by Bacillus anthracis for invading the host
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Vitale, G.; Bernardi, L.; Napolitani, G.; Mock, M.; Montecucco, C.
Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor
Biochem. J.
352
739-745
2000
Bacillus anthracis
brenda
Duesbery, N.S.; Webb, C.P.; Leppla, S.H.; Gordon, V.M.; Klimpel, K.R.; Copeland, T.D.; Ahn, N.G.; Oskarsson, M.K.; Fukasawa, K.; Paull, K.D.; Vande Woude, G.F.
Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor
Science
280
734-737
1998
Bacillus anthracis
brenda
Pannifer, A.D.; Wong, T.Y.; Schwarzenbacher, R.; Renatus, M.; Petosa, C.; Bienkowska, J.; Lacy, D.B.; Collier, R.J.; Park, S.; Leppla, S.H.; Hanna, P.; Liddington, R.C.
Crystal structure of the anthrax lethal factor
Nature
414
229-233
2001
Bacillus anthracis
brenda
Tonello, F.; Ascenzi, P.; Montecucco, C.
The metalloproteolytic activity of the anthrax lethal factor is substrate-inhibited
J. Biol. Chem.
278
40075-40078
2003
Bacillus anthracis
brenda
Pellizzari, R.; Guidi-Rontani, C.; Vitale, G.; Mock, M.; Montecucco, C.
Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNgamma-induced release of NO and TNFalpha
FEBS Lett.
462
199-204
1999
Bacillus anthracis
brenda
Rossetto, O.; de Bernard, M.; Pellizzari, R.; Vitale, G.; Caccin, P.; Schiavo, G.; Montecucco, C.
Bacterial toxins with intracellular protease activity
Clin. Chim. Acta
291
189-199
2000
Bacillus anthracis
brenda
Glomski, I.J.; Fritz, J.H.; Keppler, S.J.; Balloy, V.; Chignard, M.; Mock, M.; Goossens, P.L.
Murine splenocytes produce inflammatory cytokines in MyD88-dependent response to Bacillus anthracis spores
cell. Microbiol.
9
502-513
2007
Bacillus anthracis
brenda
Gubbins, M.J.; Berry, J.D.; Corbett, C.R.; Mogridge, J.; Yuan, X.Y.; Schmidt, L.; Nicolas, B.; Kabani, A.; Tsang, R.S.
Production and characterization of neutralizing monoclonal antibodies that recognize an epitope in domain 2 of Bacillus anthracis protective antigen
FEMS Immunol. Med. Microbiol.
47
436-443
2006
Bacillus anthracis
brenda
Bergman, N.H.; Passalacqua, K.D.; Gaspard, R.; Shetron-Rama, L.M.; Quackenbush, J.; Hanna, P.C.
Murine macrophage transcriptional responses to Bacillus anthracis infection and intoxication
Infect. Immun.
73
1069-1080
2005
Bacillus anthracis
brenda
Comer, J.E.; Galindo, C.L.; Chopra, A.K.; Peterson, J.W.
GeneChip analyses of global transcriptional responses of murine macrophages to the lethal toxin of Bacillus anthracis
Infect. Immun.
73
1879-1885
2005
Bacillus anthracis
brenda
Koya, V.; Moayeri, M.; Leppla, S.H.; Daniell, H.
Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge
Infect. Immun.
73
8266-8274
2005
Bacillus anthracis
brenda
Xu, L.; Frucht, D.M.
Bacillus anthracis: A multi-faceted role for anthrax lethal toxin in thwarting host immune defenses
Int. J. Biochem. Cell Biol.
39
20-24
2007
Bacillus anthracis
brenda
Baillie, L.W.J.
Past, imminent and future human medical countermeasures for anthrax
J. Appl. Microbiol.
101
594-606
2006
Bacillus anthracis
brenda
Cui, X.; Li, Y.; Li, X.; Haley, M.; Moayeri, M.; Fitz, Y.; Leppla, S.H.; Eichacker, P.Q.
Sublethal doses of Bacillus anthracis lethal toxin inhibit inflammation with lipopolysaccharide and Escherichia coli challenge but have opposite effects on survival
J. Infect. Dis.
193
829-840
2006
Bacillus anthracis
brenda
Gujraty, K.; Sadacharan, S.; Frost, M.; Poon, V.; kane, R.S.; Mogridge, J.
Functional characterization of peptide-based anthrax toxin inhibitors
Mol. Pharmacol.
2
367-372
2005
Bacillus anthracis
-
brenda
Boyden, E.D.; Dietrich, W.F.
Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin
Nat. Genet.
38
240-244
2006
Bacillus subtilis
brenda
Mendelson, I.; Gat, O.; Aloni-Grinstein, R.; Altboum, Z.; Inbar, I.; Kronman, C.; Bar-Haim, E.; Cohen, S.; Velan, B.; Shafferman, A.
Efficacious, nontoxigenic Bacillus anthracis spore vaccines based on strains expressing mutant variants of lethal toxin components
Vaccine
23
5688-5697
2005
Bacillus anthracis
brenda
Sloat, B.R.; Cui, Z.
Nasal immunozation with a dual antigen anthrax vaccine induced strong mucosal and systemic immune responses against toxins and bacilli
Vaccine
24
6405-6413
2006
Bacillus anthracis
brenda
Moayeri, M.; Robinson, T.M.; Leppla, S.H.; Karginov, V.A.
In vivo efficacy of beta-cyclodextrin derivatives against anthrax lethal toxin
Antimicrob. Agents Chemother.
52
2239-2241
2008
Bacillus anthracis
brenda
Chvyrkova, I.; Zhang, X.C.; Terzyan, S.
Lethal factor of anthrax toxin binds monomeric form of protective antigen
Biochem. Biophys. Res. Commun.
360
690-695
2007
Bacillus anthracis, Bacillus anthracis (Q52NH3)
brenda
Karginov, V.A.; Nestorovich, E.M.; Schmidtmann, F.; Robinson, T.M.; Yohannes, A.; Fahmi, N.E.; Bezrukov, S.M.; Hecht, S.M.
Inhibition of S. aureus alpha-hemolysin and B. anthracis lethal toxin by beta-cyclodextrin derivatives
Bioorg. Med. Chem.
15
5424-5431
2007
Bacillus anthracis
brenda
Gaddis, B.D.; Avramova, L.V.; Chmielewski, J.
Inhibitors of anthrax lethal factor
Bioorg. Med. Chem. Lett.
17
4575-4578
2007
Bacillus anthracis
brenda
Muehlbauer, S.M.; Evering, T.H.; Bonuccelli, G.; Squires, R.C.; Ashton, A.W.; Porcelli, S.A.; Lisanti, M.P.; Brojatsch, J.
Anthrax lethal toxin kills macrophages in a strain-specific manner by apoptosis or caspase-1-mediated necrosis
Cell Cycle
6
758-766
2007
Bacillus anthracis
brenda
Wickliffe, K.E.; Leppla, S.H.; Moayeri, M.
Anthrax lethal toxin-induced inflammasome formation and caspase-1 activation are late events dependent on ion fluxes and the proteasome
Cell. Microbiol.
10
332-343
2008
Bacillus anthracis
brenda
Rossi Paccani, S.; Tonello, F.; Patrussi, L.; Capitani, N.; Simonato, M.; Montecucco, C.; Baldari, C.T.
Anthrax toxins inhibit immune cell chemotaxis by perturbing chemokine receptor signalling
Cell. Microbiol.
9
924-929
2007
Bacillus anthracis
brenda
During, R.L.; Gibson, B.G.; Li, W.; Bishai, E.A.; Sidhu, G.S.; Landry, J.; Southwick, F.S.
Anthrax lethal toxin paralyzes actin-based motility by blocking Hsp27 phosphorylation
EMBO J.
26
2240-2250
2007
Bacillus anthracis
brenda
Kuzmic, P.; Cregar, L.; Millis, S.Z.; Goldman, M.
Mixed-type noncompetitive inhibition of anthrax lethal factor protease by aminoglycosides
FEBS J.
273
3054-3062
2006
Bacillus anthracis
brenda
Juris, S.J.; Melnyk, R.A.; Bolcome, R.E.; Chan, J.; Collier, R.J.
Cross-linked forms of the isolated N-terminal domain of the lethal factor are potent inhibitors of anthrax toxin
Infect. Immun.
75
5052-5058
2007
Bacillus anthracis
brenda
Liu, S.; Wang, H.; Currie, B.M.; Molinolo, A.; Leung, H.J.; Moayeri, M.; Basile, J.R.; Alfano, R.W.; Gutkind, J.S.; Frankel, A.E.; Bugge, T.H.; Leppla, S.H.
Matrix metalloproteinase-activated anthrax lethal toxin demonstrates high potency in targeting tumor vasculature
J. Biol. Chem.
283
529-540
2008
Bacillus anthracis
brenda
Chang, H.H.; Tsai, M.F.; Chung, C.P.; Chen, P.K.; Hu, H.I.; Kau, J.H.; Huang, H.H.; Lin, H.C.; Sun, D.S.
Single-step purification of recombinant anthrax lethal factor from periplasm of Escherichia coli
J. Biotechnol.
126
277-285
2006
Bacillus anthracis
brenda
Schepetkin, I.A.; Khlebnikov, A.I.; Kirpotina, L.N.; Quinn, M.T.
Novel small-molecule inhibitors of anthrax lethal factor identified by high-throughput screening
J. Med. Chem.
49
5232-5244
2006
Bacillus anthracis
brenda
Dalkas, G.A.; Papakyriakou, A.; Vlamis-Gardikas, A.; Spyroulias, G.A.
Low molecular weight inhibitors of the protease anthrax lethal factor
Mini Rev. Med. Chem.
8
290-306
2008
Bacillus anthracis
brenda
Alfano, R.W.; Leppla, S.H.; Liu, S.; Bugge, T.H.; Herlyn, M.; Smalley, K.S.; Bromberg-White, J.L.; Duesbery, N.S.; Frankel, A.E.
Cytotoxicity of the matrix metalloproteinase-activated anthrax lethal toxin is dependent on gelatinase expression and B-RAF status in human melanoma cells
Mol. Cancer Ther.
7
1218-1226
2008
Bacillus anthracis
brenda
Guichard, A.; Park, J.M.; Cruz-Moreno, B.; Karin, M.; Bier, E.
Anthrax lethal factor and edema factor act on conserved targets in Drosophila
Proc. Natl. Acad. Sci. USA
103
3244-3249
2006
Bacillus anthracis
brenda
Bolcome, R.E.; Sullivan, S.E.; Zeller, R.; Barker, A.P.; Collier, R.J.; Chan, J.
Anthrax lethal toxin induces cell death-independent permeability in zebrafish vasculature
Proc. Natl. Acad. Sci. USA
105
2439-2444
2008
Bacillus anthracis
brenda
Fink, S.L.; Bergsbaken, T.; Cookson, B.T.
Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms
Proc. Natl. Acad. Sci. USA
105
4312-4317
2008
Bacillus anthracis
brenda
Barson, H.V.; Mollenkopf, H.; Kaufmann, S.H.; Rijpkema, S.
Anthrax lethal toxin suppresses chemokine production in human neutrophil NB-4 cells
Biochem. Biophys. Res. Commun.
374
288-293
2008
Bacillus anthracis
brenda
Tan, Y.K.; Kusuma, C.M.; St John, L.J.; Vu, H.A.; Alibek, K.; Wu, A.
Induction of autophagy by anthrax lethal toxin
Biochem. Biophys. Res. Commun.
379
293-297
2009
Bacillus anthracis
brenda
Jung, K.H.; Seo, G.M.; Yoon, J.W.; Park, K.S.; Kim, J.C.; Kim, S.J.; Oh, K.G.; Lee, J.H.; Chai, Y.G.
Protein expression pattern of murine macrophages treated with anthrax lethal toxin
Biochim. Biophys. Acta
1784
1501-1506
2008
Bacillus anthracis
brenda
Gaddis, B.D.; Rubert Perez, C.M.; Chmielewski, J.
Inhibitors of anthrax lethal factor based upon N-oleoyldopamine
Bioorg. Med. Chem. Lett.
18
2467-2470
2008
Bacillus anthracis
brenda
Reig, N.; Jiang, A.; Couture, R.; Sutterwala, F.S.; Ogura, Y.; Flavell, R.A.; Mellman, I.; van der Goot, F.G.
Maturation modulates caspase-1-independent responses of dendritic cells to Anthrax lethal toxin
Cell. Microbiol.
10
1190-1207
2008
Bacillus anthracis
brenda
Wickliffe, K.E.; Leppla, S.H.; Moayeri, M.
Killing of macrophages by anthrax lethal toxin: involvement of the N-end rule pathway
Cell. Microbiol.
10
1352-1362
2008
Bacillus anthracis
brenda
Levin, T.C.; Wickliffe, K.E.; Leppla, S.H.; Moayeri, M.
Heat shock inhibits caspase-1 activity while also preventing its inflammasome-mediated activation by anthrax lethal toxin
Cell. Microbiol.
10
2434-2446
2008
Bacillus anthracis
brenda
Omland, K.S.; Brys, A.; Lansky, D.; Clement, K.; Lynn, F.; Lynn, F.
Interlaboratory comparison of results of an anthrax lethal toxin neutralization assay for assessment of functional antibodies in multiple species
Clin. Vaccine Immunol.
15
946-953
2008
Bacillus anthracis
brenda
Chou, P.J.; Newton, C.A.; Perkins, I.; Friedman, H.; Klein, T.W.
Suppression of dendritic cell activation by anthrax lethal toxin and edema toxin depends on multiple factors including cell source, stimulus used, and function tested
DNA Cell Biol.
27
637-648
2008
Bacillus anthracis
brenda
Shaw, C.A.; Starnbach, M.N.
Both CD4+ and CD8+ T cells respond to antigens fused to anthrax lethal toxin
Infect. Immun.
76
2603-2611
2008
Bacillus anthracis
brenda
Nour, A.M.; Yeung, Y.G.; Santambrogio, L.; Boyden, E.D.; Stanley, E.R.; Brojatsch, J.
Anthrax lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages
Infect. Immun.
77
1262-1271
2009
Bacillus anthracis
brenda
deCathelineau, A.M.; Bokoch, G.M.
Inactivation of rho GTPases by statins attenuates anthrax lethal toxin activity
Infect. Immun.
77
348-359
2009
Bacillus anthracis
brenda
Kocer, S.S.; Matic, M.; Ingrassia, M.; Walker, S.G.; Roemer, E.; Licul, G.; Simon, S.R.
Effects of anthrax lethal toxin on human primary keratinocytes
J. Appl. Microbiol.
105
1756-1767
2008
Bacillus anthracis
brenda
Xu, L.; Fang, H.; Frucht, D.M.
Anthrax lethal toxin increases superoxide production in murine neutrophils via differential effects on MAPK signaling pathways
J. Immunol.
180
4139-4147
2008
Bacillus anthracis
brenda
Warfel, J.M.; DAgnillo, F.
Anthrax lethal toxin enhances TNF-induced endothelial VCAM-1 expression via an IFN regulatory factor-1-dependent mechanism
J. Immunol.
180
7516-7524
2008
Bacillus anthracis
brenda
Alfano, R.W.; Leppla, S.H.; Liu, S.; Bugge, T.H.; Meininger, C.J.; Lairmore, T.C.; Mulne, A.F.; Davis, S.H.; Duesbery, N.S.; Frankel, A.E.
Matrix metalloproteinase-activated anthrax lethal toxin inhibits endothelial invasion and neovasculature formation during in vitro morphogenesis
Mol. Cancer Res.
7
452-461
2009
Bacillus anthracis
brenda
Chapelsky, S.; Batty, S.; Frost, M.; Mogridge, J.
Inhibition of anthrax lethal toxin-induced cytolysis of RAW264.7 cells by celastrol
PLoS ONE
3
e1421
2008
Bacillus anthracis
brenda
Raymond, B.; Batsche, E.; Boutillon, F.; Wu, Y.Z.; Leduc, D.; Balloy, V.; Raoust, E.; Muchardt, C.; Goossens, P.L.; Touqui, L.
Anthrax lethal toxin impairs IL-8 expression in epithelial cells through inhibition of histone H3 modification
PLoS Pathog.
5
e1000359
2009
Bacillus anthracis
brenda
Ha, S.D.; Ham, B.; Mogridge, J.; Saftig, P.; Lin, S.; Kim, S.O.
Cathepsin B-mediated autophagy flux facilitates the anthrax toxin receptor 2-mediated delivery of anthrax lethal factor into the cytoplasm
J. Biol. Chem.
285
2120-2129
2010
Bacillus anthracis
brenda
Pentelute, B.L.; Barker, A.P.; Janowiak, B.E.; Kent, S.B.; Collier, R.J.
A semisynthesis platform for investigating structure-function relationships in the N-terminal domain of the anthrax Lethal Factor
ACS Chem. Biol.
5
359-364
2010
Bacillus anthracis
brenda
Raymond, B.; Ravaux, L.; Memet, S.; Wu, Y.; Sturny-Leclere, A.; Leduc, D.; Denoyelle, C.; Goossens, P.L.; Paya, M.; Raymondjean, M.; Touqui, L.
Anthrax lethal toxin down-regulates type-IIA secreted phospholipase A(2) expression through MAPK/NF-kappaB inactivation
Biochem. Pharmacol.
79
1149-1155
2010
Bacillus anthracis
brenda
Ngai, S.; Batty, S.; Liao, K.C.; Mogridge, J.
An anthrax lethal factor mutant that is defective at causing pyroptosis retains proapoptotic activity
FEBS J.
277
119-127
2010
Bacillus anthracis
brenda
Kong, Y.; Guo, Q.; Yu, C.; Dong, D.; Zhao, J.; Cai, C.; Hou, L.; Song, X.; Fu, L.; Xu, J.; Chen, W.
Fusion protein of DELTA 27LFn and EFn has the potential as a novel anthrax toxin inhibitor
FEBS Lett.
583
1257-1260
2009
Bacillus anthracis
brenda
Zakharova, M.Y.; Kuznetsov, N.A.; Dubiley, S.A.; Kozyr, A.V.; Fedorova, O.S.; Chudakov, D.M.; Knorre, D.G.; Shemyakin, I.G.; Gabibov, A.G.; Kolesnikov, A.V.
Substrate recognition of anthrax lethal factor examined by combinatorial and pre-steady-state kinetic approaches
J. Biol. Chem.
284
17902-17913
2009
Bacillus anthracis
brenda
Chiu, T.L.; Solberg, J.; Patil, S.; Geders, T.W.; Zhang, X.; Rangarajan, S.; Francis, R.; Finzel, B.C.; Walters, M.A.; Hook, D.J.; Amin, E.A.
Identification of novel non-hydroxamate anthrax toxin lethal factor inhibitors by topomeric searching, docking and scoring, and in vitro screening
J. Chem. Inf. Model.
49
2726-2734
2009
Bacillus anthracis
brenda
Hu, H.; Leppla, S.H.
Anthrax toxin uptake by primary immune cells as determined with a lethal factor-beta-lactamase fusion protein
PLoS ONE
4
e7946
2009
Bacillus anthracis
brenda
Moayeri, M.; Crown, D.; Dorward, D.W.; Gardner, D.; Ward, J.M.; Li, Y.; Cui, X.; Eichacker, P.; Leppla, S.H.
The heart is an early target of anthrax lethal toxin in mice: a protective role for neuronal nitric oxide synthase (nNOS)
PLoS Pathog.
5
e1000456
2009
Bacillus anthracis
brenda
Abrami, L.; Kunz, B.; van der Goot, F.G.
Anthrax toxin triggers the activation of src-like kinases to mediate its own uptake
Proc. Natl. Acad. Sci. USA
107
1420-1424
2010
Bacillus anthracis
brenda
Dalkas, G.A.; Papakyriakou, A.; Vlamis-Gardikas, A.; Spyroulias, G.A.
Insights into the anthrax lethal factor-substrate interaction and selectivity using docking and molecular dynamics simulations
Protein Sci.
18
1774-1785
2009
Bacillus anthracis
brenda
Kuklenyik, Z.; Boyer, A.E.; Lins, R.; Quinn, C.P.; Gallegos-Candela, M.; Woolfitt, A.; Pirkle, J.L.; Barr, J.R.
Comparison of MALDI-TOF-MS and HPLC-ESI-MS/MS for endopeptidase activity-based quantification of anthrax lethal factor in serum
Anal. Chem.
83
1760-1765
2011
Bacillus anthracis
brenda
Li, F.; Terzyan, S.; Tang, J.
Subsite specificity of anthrax lethal factor and its implications for inhibitor development
Biochem. Biophys. Res. Commun.
407
400-405
2011
Bacillus anthracis
brenda
Saebel, C.E.; Carbone, R.; Dabous, J.R.; Lo, S.Y.; Siemann, S.
Preparation and characterization of cobalt-substituted anthrax lethal factor
Biochem. Biophys. Res. Commun.
416
106-110
2011
Bacillus anthracis
brenda
Dalkas, G.A.; Chasapis, C.T.; Gkazonis, P.V.; Bentrop, D.; Spyroulias, G.A.
Conformational dynamics of the anthrax lethal factor catalytic center
Biochemistry
49
10767-10769
2010
Bacillus anthracis (P15917)
brenda
Little, S.F.; Webster, W.M.; Fisher, D.E.
Monoclonal antibodies directed against protective antigen of Bacillus anthracis enhance lethal toxin activity in vivo
FEMS Immunol. Med. Microbiol.
62
11-22
2011
Bacillus anthracis, Bacillus anthracis BH450
brenda
Liu, T.; Milia, E.; Warburton, R.R.; Hill, N.S.; Gaestel, M.; Kayyali, U.S.
Anthrax lethal toxin disrupts the endothelial permeability barrier through blocking p38 signaling
J. Cell. Physiol.
227
1438-1445
2012
Bacillus anthracis
brenda
Thomas, J.; Epshtein, Y.; Chopra, A.; Ordog, B.; Ghassemi, M.; Christman, J.W.; Nattel, S.; Cook, J.L.; Levitan, I.
Anthrax lethal factor activates K+ channels to induce IL-1beta secretion in macrophages
J. Immunol.
186
5236-5243
2011
Bacillus anthracis
brenda
Vuyisich, M.; Sanders, C.; Graves, S.
Binding and cell intoxication studies of anthrax lethal toxin
Mol. Biol. Rep.
2012
1-7
2012
Bacillus anthracis
brenda
Guichard, A.; McGillivray, S.; Cruz-Moreno, B.; Van Sorge, N.; Nizet, V.; Bier, E.
Anthrax toxins cooperatively inhibit endocytic recycling by the Rab11/Sec15 exocyst
Nature
467
854-858
2010
Bacillus anthracis
brenda
Rivera, J.; Cordero, R.; Nakouzi, A.; Frases, S.; Nicola, A.; Casadevall, A.
Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins
Proc. Natl. Acad. Sci. USA
107
19002-19007
2010
Bacillus anthracis, Bacillus anthracis 34F2
brenda
Bromberg-White, J.; Lee, C.S.; Duesbery, N.
Consequences and utility of the zinc-dependent metalloprotease activity of anthrax lethal toxin
Toxins
2
1038-1053
2010
Bacillus anthracis
brenda
Xie, T.; Auth, R.D.; Frucht, D.M.
The effects of anthrax lethal toxin on host barrier function
Toxins
3
591-607
2011
Bacillus anthracis
brenda
Maize, K.; Kurbanov, E.; De La Mora-Rey, T.; Geders, T.; Hwang, D.; Walters, M.; Johnson, R.; Amin, E.; Finzel, B.
Anthrax toxin lethal factor domain 3 is highly mobile and responsive to ligand binding
Acta Crystallogr. Sect. D
70
2813-2822
2014
Bacillus anthracis (P15917)
brenda
Moayeri, M.; Crown, D.; Jiao, G.; Kim, S.; Johnson, A.; Leysath, C.; Leppla, S.
Small-molecule inhibitors of lethal factor protease activity protect against anthrax infection
Antimicrob. Agents Chemother.
57
4139-4145
2013
Bacillus anthracis, Bacillus anthracis (P15917)
brenda
Vourtsis, D.; Chasapis, C.; Pairas, G.; Bentrop, D.; Spyroulias, G.
NMR conformational properties of an Anthrax lethal factor domain studied by multiple amino acid-selective labeling
Biochem. Biophys. Res. Commun.
450
335-340
2014
Bacillus anthracis (P15917)
brenda
Montpellier, L.; Siemann, S.
Effect of pH on the catalytic function and zinc content of native and immobilized anthrax lethal factor
FEBS Lett.
587
317-321
2013
Bacillus anthracis (P15917)
brenda
Ouyang, W.; Torigoe, C.; Fang, H.; Xie, T.; Frucht, D.
Anthrax lethal toxin inhibits translation of hypoxia-inducible factor 1alpha and causes decreased tolerance to hypoxic stress
J. Biol. Chem.
289
4180-4190
2014
Bacillus anthracis
brenda
Antonelli, A.; Zhang, Y.; Golub, L.; Johnson, F.; Simon, S.
Inhibition of anthrax lethal factor by curcumin and chemically modified curcumin derivatives
J. Enzyme Inhib. Med. Chem.
29
663-669
2014
Bacillus anthracis
brenda
Lo, S.; Säbel, C.; Webb, M.; Walsby, C.; Siemann, S.
High metal substitution tolerance of anthrax lethal factor and characterization of its active copper-substituted analogue
J. Inorg. Biochem.
140
12-22
2014
Bacillus anthracis (P15917)
brenda
Liao, H.; Liu, H.; Chen, W.; Ho, Y.
Structure-based pharmacophore modeling and virtual screening to identify novel inhibitors for anthrax lethal factor
Med. Chem. Res.
23
3725-3732
2014
Bacillus anthracis (P15917)
-
brenda
Sun, C.; Fang, H.; Xie, T.; Auth, R.; Patel, N.; Murray, P.; Snoy, P.; Frucht, D.
Anthrax lethal toxin disrupts intestinal barrier function and causes systemic infections with enteric bacteria
PLoS ONE
7
e33583
2012
Bacillus anthracis, Bacillus anthracis (P15917)
brenda
Levinsohn, J.; Newman, Z.; Hellmich, K.; Fattah, R.; Getz, M.; Liu, S.; Sastalla, I.; Leppla, S.; Moayeri, M.
Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome
PLoS Pathog.
8
e1002638
2012
Bacillus anthracis (P15917)
brenda
Kassab, E.; Darwish, M.; Timsah, Z.; Liu, S.; Leppla, S.; Frankel, A.; Abi-Habib, R.
Cytotoxicity of anthrax lethal toxin to human acute myeloid leukemia cells is nonapoptotic and dependent on extracellular signal-regulated kinase 1/2 activity
Transl. Oncol.
6
25-32
2013
Bacillus anthracis (P15917)
brenda