Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.4.21.4 - trypsin and Organism(s) Bos taurus and UniProt Accession P00760

for references in articles please use BRENDA:EC3.4.21.4
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.4 Acting on peptide bonds (peptidases)
             3.4.21 Serine endopeptidases
                3.4.21.4 trypsin
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Bos taurus
UNIPROT: P00760 not found.
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Bos taurus
The expected taxonomic range for this enzyme is: Bacteria, Eukaryota
Reaction Schemes
preferential cleavage: Arg-/-, Lys-/-
Synonyms
trypsin, at-ii, cationic trypsinogen, beta-trypsin, trypsin-like enzyme, mesotrypsin, trypsin a, cationic trypsin, anionic trypsinogen, anionic trypsin, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
alpha-trypsin
Anionic trypsinogen
-
-
-
-
beta-trypsin
BPT
-
-
Brain trypsinogen
-
-
-
-
Cationic trypsinogen
-
-
-
-
cocoonase
-
-
-
-
gamma-trypsin
-
-
Mesotrypsinogen
-
-
-
-
parenzyme
-
-
-
-
parenzymol
-
-
-
-
pseudotrypsin
-
-
-
-
SET
-
-
-
-
sperm receptor hydrolase
-
-
-
-
tripcellim
-
-
-
-
TRP
-
-
trypsin I
-
-
trypsin type III
-
-
tryptar
-
-
-
-
tryptase
-
-
-
-
trypure
-
-
-
-
TrypZean
-
bovine-sequence trypsin solution produced from corn, commercial recombinant enzyme preparation
type I trypsin
-
-
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
preferential cleavage: Arg-/-, Lys-/-
show the reaction diagram
PATHWAY SOURCE
PATHWAYS
-
-
CAS REGISTRY NUMBER
COMMENTARY hide
9002-07-7
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
D-Phe-Pip-Arg 4-nitroanilide + H2O
?
show the reaction diagram
-
-
?
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Arg(NO2)-4-nitroanilide + H2O
?
show the reaction diagram
-
-
-
?
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Arg-4-nitroanilide + H2O
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Arg + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Har-4-nitroanilide + H2O
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Har + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Lys-4-nitroanilide + H2O
?
show the reaction diagram
-
-
-
?
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-N-omega-hydroxy-L-arginine-4-nitroanilide + H2O
?
show the reaction diagram
-
-
-
?
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Phe(p-CN)-4-nitroanilide + H2O
?
show the reaction diagram
-
-
-
?
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Phe(p-NH2)-4-nitroanilide + H2O
?
show the reaction diagram
-
-
-
?
acetyl-L-Phe-L-Ala-L-Thr-(4-guanidino)-L-Phe-NH-(3-carbamoyl-4-nitrophenol) + H2O
acetyl-L-Phe-L-Ala-L-Thr-(4-guanidino)-L-Phe + 5-amino-2-nitrobenzamide
show the reaction diagram
-
-
-
-
?
ANVIPFKVHFRAAFC + H2O
ANVIPFK + VHFR + AAFC
show the reaction diagram
-
-
-
-
?
apomyoglobin + H2O
?
show the reaction diagram
-
-
-
-
?
benzoyl-Arg ethyl ester + leucinamide
benzoyl-Arg leucinamide + ethanol
show the reaction diagram
-
-
-
?
benzoyl-Arg-p-nitroanilide + H2O
benzoyl-Arg + p-nitroaniline
show the reaction diagram
-
-
-
-
?
benzoyl-DL-Arg-4-nitroanilide + H2O
benzoyl-DL-Arg + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
benzoyl-L-Arg amide + H2O
?
show the reaction diagram
-
beta-trypsin is about 40% more active than alpha trypsin
-
-
?
benzoyl-L-Arg-4-nitroanilide + H2O
benzoyl-L-Arg + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
benzoyl-L-arginine-p-nitroanilide + H2O
benzoyl-L-arginine + p-nitroaniline
show the reaction diagram
-
-
-
-
?
benzyloxycarbonyl-L-Lys benzoyl ester + H2O
benzyloxycarbonyl-L-Lys + benzoate
show the reaction diagram
-
-
-
-
?
Benzyloxycarbonyl-Lys methyl ester + H2O
Benzyloxycarbonyl-Lys + methanol
show the reaction diagram
-
-
-
-
?
benzyloxycarbonyl-Lys p-nitrophenyl ester + H2O
benzyloxycarbonyl-Lys + p-nitrophenol
show the reaction diagram
-
-
-
-
?
benzyloxycarbonyl-Phe-Arg-7-amido-4-methylcoumarin + H2O
?
show the reaction diagram
-
-
-
?
beta-crystallin + H2O
?
show the reaction diagram
-
-
-
-
?
bovine heart cytochrome c + H2O
?
show the reaction diagram
-
-
-
-
?
bovine M-proinsulin + H2O
?
show the reaction diagram
-
insulin containing methionine at the N-terminus
cleaved at the K59R60-G61 bond of the C/A junction, but at the B/C junction cleavage occurs at the R31R32-E33 as well as the R31-R32E33 bond. Cleavage at the B/C junction is preferred (65%) over that at the C/A junction (35%)
-
?
Bovine serum albumin + H2O
?
show the reaction diagram
-
-
-
-
?
bovine serum albumin + H2O
LVVSTQTALA + ?
show the reaction diagram
-
-
-
-
?
calmodulin + H2O
?
show the reaction diagram
-
-
-
-
?
casein + H2O
?
show the reaction diagram
-
-
-
-
?
Cytochrome c + H2O
?
show the reaction diagram
-
-
-
-
?
D-Phe-Pip-Arg 4-nitroanilide + H2O
D-Phe-Pip-Arg + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
gamma-crystallin + H2O
?
show the reaction diagram
-
-
-
-
?
GERGFFYTPKT + H2O
?
show the reaction diagram
-
insulin-derived peptide
cleavage at bond K-T
-
?
GERGFFYTPKTRR + H2O
?
show the reaction diagram
-
insulin-derived peptide
cleavage at bond K-T
-
?
Hemoglobin + H2O
?
show the reaction diagram
-
-
-
-
?
human M-proinsulin + H2O
?
show the reaction diagram
-
insulin containing methionine at the N-terminus
cleavage at the R31R32-E33 and K64R65-G66 bonds, i.e. B/C and C/A junctions. Cleavage at the B/C junction is preferred (65%) over that at the C/A junction (35%)
-
?
insulin
?
show the reaction diagram
-
-
cleavage at bond K29-T30
-
?
L-Phe-L-Val-L-Ile-(3-carbamoyl-4-nitrophenyl)-L-Arg-amide + H2O
L-Phe-L-Val-L-Ile-L-Arg + 5-amino-2-nitrobenzamide
show the reaction diagram
-
-
-
-
?
L-Phe-L-Val-L-Ile-N-(3-carbamoyl-4-nitrophenyl)-L-Arg-amide + H2O
L-Phe-L-Val-L-Ile-L-Arg + 5-amino-2-nitrobenzamide
show the reaction diagram
-
-
-
-
?
L-Phe-L-Val-L-Ile-N-(3-carbamoyl-4-nitrophenyl)-L-Lys-amide + H2O
L-Phe-L-Val-L-Ile-L-Lys + 5-amino-2-nitrobenzamide
show the reaction diagram
-
-
-
-
?
L-Phe-L-Val-L-Pro-N-(3-carbamoyl-4-nitrophenyl)-L-Arg-amide + H2O
L-Phe-L-Val-L-Pro-L-Arg + 5-amino-2-nitrobenzamide
show the reaction diagram
-
-
-
-
?
L-Phe-L-Val-L-Pro-N-(3-carbamoyl-4-nitrophenyl)-L-Lys-amide + H2O
L-Phe-L-Val-L-Pro-L-Lys + 5-amino-2-nitrobenzamide
show the reaction diagram
-
-
-
-
?
L-Tat (47-58) + H2O
?
show the reaction diagram
-
trypsin significantly inactivates L-Tat (47-58)
-
-
?
M-diarginyl insulin + H2O
?
show the reaction diagram
-
insulin containing methionine at the N-terminus
cleavage at bond K29-T30
-
?
M-insulin
?
show the reaction diagram
-
insulin containing methionine at the N-terminus
cleavage at bond K29-T30
-
?
N-alpha-benzoyl-DL-Arg-4-nitroanilide + H2O
N-alpha-benzoyl-DL-Arg + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
N-alpha-benzoyl-DL-arginine-4-nitroanilide + H2O
N-alpha-benzoyl-DL-arginine + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
N-alpha-benzoyl-DL-arginine-p-nitroanilide + H2O
N-alpha-benzoyl-DL-arginine + p-nitroaniline
show the reaction diagram
-
-
-
-
?
N-alpha-benzoyl-L-Arg ethyl ester + H2O
N-alpha-benzoyl-L-Arg + ethanol
show the reaction diagram
-
-
-
-
?
N-alpha-benzoyl-L-Arg-4-nitroanilide + H2O
N-alpha-benzoyl-L-Arg + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
N-alpha-benzoyl-L-Arg-ethyl ester + H2O
N-alpha-benzoyl-L-Arg + ethanol
show the reaction diagram
-
-
-
-
?
N-alpha-benzoyl-L-arginine 4-nitroanilide + H2O
N-alpha-benzoyl-L-arginine + 4-nitroaniline
show the reaction diagram
-
-
-
?
N-alpha-benzoyl-L-arginine ethyl ester + H2O
?
show the reaction diagram
-
-
-
-
?
N-alpha-benzoyl-L-arginine ethyl ester + H2O
N-alpha-benzoyl-L-arginine + ethanol
show the reaction diagram
-
-
-
-
?
N-alpha-p-tosyl-L-arginine methyl ester + H2O
N-alpha-p-tosyl-L-arginine + methanol
show the reaction diagram
-
-
-
-
?
N-benzoyl-DL-Arg-4-nitroanilide + H2O
N-benzoyl-L-Arg + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
N-benzoyl-DL-arginine 4-nitroanilide + H2O
N-benzoyl-DL-arginine + 4-nitroaniline
show the reaction diagram
N-benzoyl-DL-arginyl-4-nitroanilide + H2O
?
show the reaction diagram
-
-
-
?
N-Benzoyl-L-Arg ethyl ester + H2O
?
show the reaction diagram
-
-
-
-
?
N-benzoyl-L-arginine-p-nitroanilide + H2O
N-benzoyl-L-arginine + p-nitroaniline
show the reaction diagram
-
-
-
-
?
N-benzyloxycarbonyl-L-lysine benzyl ester + H2O
N-benzyloxycarbonyl-L-lysine + toluene
show the reaction diagram
-
-
-
-
?
N-benzyloxycarbonyl-Phe-Arg-7-amido-4-methylcoumarin + H2O
N-benzyloxycarbonyl-Phe-Arg + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
Nafamostat + H2O
?
show the reaction diagram
-
extremely poor substrate
-
?
Nalpha-benzoyl-DL-Arg 2-naphthylamide + H2O
?
show the reaction diagram
-
-
-
-
?
Nalpha-Benzoyl-DL-Arg 4-nitroanilide + H2O
Nalpha-Benzoyl-DL-Arg + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
Nalpha-benzoyl-DL-Arg-p-nitroanilide + H2O
?
show the reaction diagram
-
-
-
-
?
Nalpha-benzoyl-L-arginine ethyl ester + H2O
Nalpha-benzoyl-L-arginine + ethanol
show the reaction diagram
-
-
-
-
?
p-amidinophenyl acetate + H2O
p-amidinophenol + acetate
show the reaction diagram
-
-
-
-
?
p-nitrophenyl acetate + H2O
p-nitrophenol + acetate
show the reaction diagram
-
-
-
-
?
p-nitrophenyl-p'-guanidino benzoate + H2O
p-nitrophenol + p-guanidinobenzoate
show the reaction diagram
-
beta-trypsin is more reactive than alpha-trypsin
-
-
?
p-tosyl-L-Arg methyl ester + H2O
?
show the reaction diagram
-
-
-
-
?
Pefachrome + H2O
?
show the reaction diagram
-
-
-
?
protease-activated receptor-1 + H2O
?
show the reaction diagram
-
activation
-
-
?
protease-activated receptor-2 + H2O
?
show the reaction diagram
-
activation
-
-
?
protease-activated receptor-3 + H2O
?
show the reaction diagram
-
activation
-
-
?
protease-activated receptor-4 + H2O
?
show the reaction diagram
-
activation
-
-
?
succinyl-L-Ala-L-Ala-L-Pro-L-Leu-7-amido-4-methylcoumarin + H2O
succinyl-L-Ala-L-Ala-L-Pro-L-Lys + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
superoxide dismutase 1 + H2O
?
show the reaction diagram
-
-
-
-
?
tert-butyloxycarbonyl-Phe-Ser-Arg-7-amido-4-methylcoumarin + H2O
?
show the reaction diagram
-
-
-
?
Tos-L-Arg-OMe + H2O
?
show the reaction diagram
-
-
-
-
?
tosyl-Gly-Pro-Arg-4-nitroanilide + H2O
?
show the reaction diagram
-
-
-
?
ubiquitin + H2O
?
show the reaction diagram
-
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
protease-activated receptor-1 + H2O
?
show the reaction diagram
-
activation
-
-
?
protease-activated receptor-2 + H2O
?
show the reaction diagram
-
activation
-
-
?
protease-activated receptor-3 + H2O
?
show the reaction diagram
-
activation
-
-
?
protease-activated receptor-4 + H2O
?
show the reaction diagram
-
activation
-
-
?
additional information
?
-
-
trypsin treatment increases zone of polarizing activity signaling of non-zone of polarizing activity tissue
-
-
?
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(2R,4R)-4-phenyl-1-[Nalpha-(7-methoxy-2-naphthalenesulfonyl)-L-arginyl]-2-piperidinecarboxylic acid
competitive, small molecular weight inhibitor without tryptase inhibitor activity
1-[N2-[(7-methoxynaphthalen-2-yl)sulfonyl]-L-arginyl]-4-phenylpiperidine-2-carboxylic acid
IC50: 0.0003 mM
antipain
IC50: 0.04 mM
leupeptin
IC50: 0.0002 mM
nafamostat mesilate
IC50: 0.00003 mM
Soybean trypsin inhibitor
IC50: 0.000009 mM
-
(4-(6-chloro-naphthalene-2-sulfonyl)-piperazin-1-yl)-(3,4,5-6-tetrahydro[2H-1,4']bipyridinyl-4yl)-methanone
-
-
2,7-bis(4-amidinobenzylidene)cycloheptan-1-one
-
unspecific strong inhibition
6-amidino-2-naphthol
-
mixed-type inhibition
acetonitrile
-
partial inhibition at 20% acetonitrile, a 5% aqueous acetonitrile solution less likely reduces the activity of the porous polymer monolith-immobilized trypsin
acyclic SFTI
-
i.e. oSFTI, modified sunflower trypsin inhibitor 1, SFTI-1, generated by Fmoc-based automated synthesis
acyclic sun flower trypsin inhibitor-1
-
-
-
alpha-1-antitrypsin
-
in gestational diabetes mellitus reduction of serum trypsin inhibitory capacity may be due to non-enzymatic glycosylation of alpha-1-antitrypsin or oxidation of methionine in the active site of alpha-1-antitrypsin
-
Apios Americana trypsin inhibitor
-
AATI, strong inhibitor, complete inhibition with Apios Americana trypsin inhibitor bound to trypsin in a 1:2 molar ratio
-
Aprotinin
AVNIPFKVHFRCKAAFC
-
a small trypsin inhibitor from the skin secretion of the frog Odorrana grahami, only inhibits the hydrolysis activity of trypsin on synthetic chromogenic substrate
benzamidine
benzylamine
-
-
benzyloxycarbonyl-amino(4-guanidinophenyl)methyl-bis(4-ethylphenyl)phosphonate
-
50% inhibition at 0.000017 mM, comparison with inhibitory effect on urokinase
benzyloxycarbonyl-amino(4-guanidinophenyl)methyl-bis(4-isopropylphenyl)phosphonate
-
50% inhibition at 0.000061 mM, comparison with inhibitory effect on urokinase
benzyloxycarbonyl-amino(4-guanidinophenyl)methyl-bis(4-methylthiophenyl)phosphonate
-
50% inhibition at 0.0000087 mM, comparison with inhibitory effect on urokinase
benzyloxycarbonyl-amino(4-guanidinophenyl)methyl-bis(4-t-butylphenyl)phosphonate
-
50% inhibition at 0.000088 mM, comparison with inhibitory effect on urokinase
bis(m-amidinosalicylidene-L-alaninato)iron(III)
-
-
bis(p-amidinosalicylidene-L-alaninato)iron(III)
-
-
-
black gram trypsin inhibitor 1
-
highly effective trypsin inhibitor, 87.5% of trypsin inhibitory activity of black gram trypsin inhibitor 1 is retained after treatment with 10 mM dithiothreitol for 2 hours, and the activity dwindles to 12.5% after treatment with 100 mM dithiothreitol for 2 hours
-
black gram trypsin inhibitor 2
-
highly effective trypsin inhibitor, the trypsin inhibitory activity of black gram trypsin inhibitor 2 is unaffected after exposure to 100 mM dithiothreitol for 2 hours
-
black gram trypsin inhibitor 3
-
highly effective trypsin inhibitor, in the presence of 10 mM dithiothreitol trypsin inhibitory of black gram trypsin inhibitor 3 drops to 57.1% after 1 h and becomes undetectable after 2 hours, while treatment of 100 mM dithiothreitol for 1 h has the same effect
-
Bovine pancreatic trypsin inhibitor
-
BPTI-20st
-
simplified variant of bovine pancreatic trypsin inhibitor containing 20 alanines, retains a wild type level of trypsin inhibitory activity
-
BPTI-[5,55]st
-
single-disulfide-bonded variant of bovine pancreatic trypsin inhibitor, retains a wild type level of trypsin inhibitory activity
-
cMCoTI-II
-
-
-
cyclic SFTI
-
i.e. cSFTI, modified sunflower trypsin inhibitor 1, SFTI-1, generated by Fmoc-based automated synthesis
DMTI-II
-
trypsin inhibitor from seeds of Dimorphandra mollis. The inhibitory activity is stable over a wide range and in the presence of DTT
-
DOTA-SFTI
-
modified sunflower trypsin inhibitor 1, SFTI-1, labeled, generated by Fmoc-based automated synthesis
Gly-L-Arg-(2-amino butanoyl)-L-Thr-Nphe-L-Ser-L-Ile-L-Pro-L-Pro-L-Ile-(2-amino butanoyl)-L-Phe-L-Pro-L-Asp
-
-
Gly-L-Arg-L-Cys-L-Thr-L-Lys-L-Ser-L-Ile-L-Pro-L-Pro-L-Ile-L-Cys-L-Phe-L-Pro-L-Asp
-
sun flower trypsin inhibitor SFTI-1
Glycine max trypsin inhibitor
-
from raw soymilk, inhibition kinetics, overview
-
I-ovalbumin
-
high affinity interaction of enzyme with I-ovalbumin, the product of a heating transition of ovalbumin which acts as a potent reversible serine proteinase inhibitor. Interaction is characterized by high kinetic association constants and low kinetic dissociation konstants
-
Kunitz domain 1 of tissue factor pathway inhibitor-2
-
-
-
Kunitz type trypsin inhibitor from Glycine max
-
isolated and purified from Korean large black soybeans cultivar, overview. Inhibits bovine trypsin, but also shows Anti-HIV reverse transcriptase activity, cytokine-inducing activity and antiproliferative activity on tumor cell lines
-
L-Lys-L-Cys-L-Thr-Nlys-L-Ser-L-Ile-L-Pro-L-Pro-L-Ile-L-Cys-L-Phe-L-Pro-L-Asp
-
-
leech-derived tryptase inhibitor
-
i.e. LDTI, purely competitive inhibitor
-
leupeptin
-
-
lily bulb trypsin inhibitor
-
-
-
LKGCWTKSIPPKPCFGK
-
-
low-molecular-mass trypsin inhibitor inhibitor type-2
-
from Sinapis alba, inhibitor consists of a peptide mixture, displaying Ile or Arg at position 43, Trp or kynurenine at position 44, and C-terminal ragged ends
-
m-amidinosalicylidene-L-alaninato(aqua)copper(II)
-
-
m-amidinosalicylidene-L-alaninato(aqua)copper(II) hydrochloride
-
-
-
m-guanidinosalicylidene-L-alaninato(aqua)copper(II)
-
-
mung bean trypsin inhibitor
-
synthesis and inhibitory activity of mutant inhibitor variants expressed in Escherichia coli, overview
-
mustard trypsin inhibitor 2
-
-
-
Nafamostat
-
potent inhibitor
oMCoTI-II
-
-
-
ovomucoid
-
-
-
p-amidinosalicylidene-L-alaninato(aqua)copper(II)
-
-
pancreatic secretory trypsin inhibitor
-
a Kazal-type specific trypsin inhibitor with narrow specificity for the inhibition of trypsin, with very little or no inhibitory capacity against other serine proteinases, even those exhibiting trypsin-like specificity
-
Pancreatic trypsin inhibitor
-
i.e. trasylol, kallikrein inactivator
-
Phaseolus vulgaris trypsin inhibitor
-
two different variants of 132 kDa and 118 kDA from navy beans and red kidney beans, respectively, isolated by heat treatment and ammonium sulfate fractionation
-
phenylbutylamine
-
-
Phenylethylamine
-
-
Phenylpropylamine
-
-
Plathymenia foliolosa trypsin inhibitor
-
PFTI
-
polylysine
-
immobilized enzyme
Putranjiva roxburghii trypsin inhibitor
-
highly potent inhibitor of bovine trypsin, trypsin inhibitory activity of Putranjiva roxburghii trypsin inhibitor is completely retained up to 70°C, above 70°C, there is a slight decrease in the inhibitory activity retaining almost 85% inhibitory activity up to 80°C, the inhibitory activity of Putranjiva roxburghii trypsin inhibitor falls sharply above 80°C with a loss of almost 80% inhibitory activity at 90°C, only a slight decrease of 5% in inhibitory activity is observed when Putranjiva roxburghii trypsin inhibitor is incubated for 2 h at 100 mM dithiothreitol
-
Sagittaria sagittifolia arrowhead protease inhibitor A
-
API-A
-
small glossy black soybean trypsin inhibitor
-
inhibitory activity is stable in the pH range 3-13 and in the temperature range 0-60°C, is inhibited by dithiothreitol (5-25 mM) in a dose-dependent manner
-
soybean Kunitz trypsin inhibitor
-
-
-
Soybean trypsin inhibitor
-
Spinacia oleracea trypsin inhibitor
-
high affinity between trypsin and Spinacia oleracea trypsin inhibitor
-
sun flower trypsin inhibitor-1
-
-
sunflower trypsin inhibitor 1
-
SFTI-1, binding and effects on human prostate cancer cells, overview
sunflower trypsin inhibitor-1
T5E/N18R/T20G/P21S/T22D/K31M mutant Schistocerca gregaria protease (trypsin) inhibitor 1
-
the mutant inhibitor is improved compared to the wild-type inhibitor protein
-
thionine
-
from cowpea, inhibits trypsin, no inhibition of chymotrypsin
TPI-1
-
-
-
TPI-2
-
-
-
tumor-associated trypsin inhibitor
-
specific inhibition of degradation of gelatin and collagen type II
-
Vigna angularis trypsin inhibitor
-
from adzuki beans, 13 kDa, isolated by heat treatment and ammonium sulfate fractionation
-
Vigna mungo trypsin inhibitor
-
purification of the Bowman-Birk proteinase inhibitor from the seeds of black gram, Vigna mungo cv. TAU-1. 8041.5 Da by mass spectrometry, pI 4.3-6.0, stable up to 80°C and at pH 2.0-12.0, analysis of the secondary structural conformation, overview, exhibts non-competitive-type inhibitory activity against both bovine pancreatic trypsin
-
[Abu(3, 11)]-sun flower trypsin inhibitor-1
-
-
-
[Arg5]-SFTI-1
-
a wild-type SFTI-1 analogue
[Lys5]-SFTI-1
-
a wild-type SFTI-1 analogue
[N,N'-bis(m-amidinosalicylidene)ethylenediaminato]copper(II)
-
-
-
[N,N'-bis(m-guanidinosalicylidene)ethylenediaminato]copper(II)
-
-
-
[Phe5]-SFTI-1
-
a wild-type SFTI-1 analogue
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
enterokinase
-
trypsin is activated with 100 U/l enterokinase
-
enteropeptidase
-
trypsinogen is activated through the cleavage of a peptide Val-Asp-Asp-Asp-Asp-Lys-Ile located on the N-terminus of the protein, the heptapetide is cleaved autocatalytically by its physiological activator, enteropeptidase
-
methyl-alpha-D-galactoside
-
1.2fold enhancement of activity at 0.2 M
methyl-alpha-D-mannoside
-
1.4fold enhancement of activity at 0.2 M
additional information
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.242
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Arg(NO2)-4-nitroanilide
-
-
0.015
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Arg-4-nitroanilide
-
-
0.236
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Har-4-nitroanilide
-
-
0.017
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Lys-4-nitroanilide
-
-
0.361
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Phe(p-CN)-4-nitroanilide
-
-
0.384
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Phe(p-NH2)-4-nitroanilide
-
-
0.0026 - 0.09
benzoyl-Arg ethyl ester
0.43
benzoyl-Arg-p-nitroanilide
-
at 25°C
0.2 - 0.44
benzoyl-L-arginine-p-nitroanilide
0.0285 - 0.125
Benzyloxycarbonyl-Lys methyl ester
0.01 - 1.6
benzyloxycarbonyl-Lys p-nitrophenyl ester
0.24
bovine serum albumin
-
-
-
0.1115
GERGFFYTPKT
-
pH 8.0, 37°C
0.0092
GERGFFYTPKTRR
-
pH 8.0, 37°C
0.115
human M-proinsulin
-
pH 8.0, 37°C
-
0.12
Insulin
-
pH 8.0, 37°C
-
0.03
L-Phe-L-Val-L-Ile-N-(3-carbamoyl-4-nitrophenyl)-L-Arg-amide
-
-
0.096
L-Phe-L-Val-L-Ile-N-(3-carbamoyl-4-nitrophenyl)-L-Lys-amide
-
-
0.044
L-Phe-L-Val-L-Pro-N-(3-carbamoyl-4-nitrophenyl)-L-Arg-amide
-
-
0.24
L-Phe-L-Val-L-Pro-N-(3-carbamoyl-4-nitrophenyl)-L-Lys-amide
-
-
0.0085
M-diarginyl insulin
-
pH 8.0, 37°C
-
0.12
M-insulin
-
pH 8.0, 37°C
-
32 - 35.5
N-alpha-benzoyl-L-Arg ethyl ester
2.7 - 3.2
N-alpha-benzoyl-L-arginine 4-nitroanilide
0.158
N-benzoyl-DL-Arg-4-nitroanilide
-
-
0.88
N-benzoyl-L-arginine-p-nitroanilide
-
in 67 mM sodium phosphate buffer, pH 7.6, at 25°C
0.08 - 22
N-benzyloxycarbonyl-L-lysine benzyl ester
0.0153
Nalpha-benzoyl-L-arginine ethyl ester
-
pH 8.0, 37°C
0.0012 - 0.168
Nalpha-benzyloxycarbonyl-Lys-p-nitrophenyl ester
0.0387
p-amidinophenyl acetate
-
-
21
p-nitrophenyl acetate
-
-
0.023 - 0.0844
Pefachrome
0.0305
tert-butyloxycarbonyl-Phe-Ser-Arg-7-amido-4-methylcoumarin
-
pH 8.0, 30°C
0.01 - 0.02
Tos-L-Arg-OMe
0.017 - 0.06
tosyl-Arg methyl ester
0.00017
tosyl-Gly-Pro-Arg-4-nitroanilide
-
pH 8.3
additional information
additional information
-
-
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1.4
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Arg(NO2)-4-nitroanilide
-
-
23
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Arg-4-nitroanilide
-
-
19
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Lys-4-nitroanilide
-
-
3.2
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-N-omega-hydroxy-L-arginine-4-nitroanilide
-
-
0.7
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Phe(p-CN)-4-nitroanilide
-
-
5.1
acetyl-Ala-Val-(L-alpha-aminobutyryl)-Pro-Phe(p-NH2)-4-nitroanilide
-
-
0.24 - 26.6
benzoyl-Arg ethyl ester
1.13
benzoyl-Arg-p-nitroanilide
-
at 25°C
0.3 - 2.43
benzoyl-L-arginine-p-nitroanilide
0.71 - 80
Benzyloxycarbonyl-Lys methyl ester
23 - 82
benzyloxycarbonyl-Lys p-nitrophenyl ester
0.313
GERGFFYTPKT
-
pH 8.0, 37°C
4.15
GERGFFYTPKTRR
-
pH 8.0, 37°C
11.65
human M-proinsulin
-
pH 8.0, 37°C
-
0.14
Insulin
-
pH 8.0, 37°C
-
3.2
L-Phe-L-Val-L-Ile-(3-carbamoyl-4-nitrophenyl)-L-Arg-amide
-
-
4.4
L-Phe-L-Val-L-Ile-N-(3-carbamoyl-4-nitrophenyl)-L-Arg-amide
-
-
27.4
L-Phe-L-Val-L-Pro-N-(3-carbamoyl-4-nitrophenyl)-L-Arg-amide
-
-
4
L-Phe-L-Val-L-Pro-N-(3-carbamoyl-4-nitrophenyl)-L-Lys-amide
-
-
1.1
M-diarginyl insulin
-
pH 8.0, 37°C
-
0.14
M-insulin
-
pH 8.0, 37°C
-
10.5 - 12.3
N-alpha-benzoyl-L-Arg ethyl ester
0.8
N-benzoyl-DL-Arg-4-nitroanilide
-
-
6.1
N-benzoyl-L-arginine-p-nitroanilide
-
in 67 mM sodium phosphate buffer, pH 7.6, at 25°C
8 - 84
N-benzyloxycarbonyl-L-lysine benzyl ester
16.5
Nalpha-benzoyl-L-arginine ethyl ester
-
pH 8.0, 37°C
0.013 - 0.13
Nalpha-benzyloxycarbonyl-Lys-p-nitrophenyl ester
14.7
tert-butyloxycarbonyl-Phe-Ser-Arg-7-amido-4-methylcoumarin
-
pH 8.0, 30°C
46.2 - 139
Tos-L-Arg-OMe
1.7 - 76
tosyl-Arg methyl ester
88
tosyl-Gly-Pro-Arg-4-nitroanilide
-
pH 8.3
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
3.2
GERGFFYTPKT
-
pH 8.0, 37°C
450
GERGFFYTPKTRR
-
pH 8.0, 37°C
102
human M-proinsulin
-
pH 8.0, 37°C
-
1.27
Insulin
-
pH 8.0, 37°C
-
130
M-diarginyl insulin, M-insulin
-
pH 8.0, 37°C
-
1100
Nalpha-benzoyl-L-arginine ethyl ester
-
pH 8.0, 37°C
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0001
(2R,4R)-4-phenyl-1-[Nalpha-(7-methoxy-2-naphthalenesulfonyl)-L-arginyl]-2-piperidinecarboxylic acid
pH 8.1, 37°C
0.0003 - 0.0009
2,7-bis(4-amidinobenzylidene)cycloheptan-1-one
0.00000015
acyclic SFTI
-
pH not specified in the publication, temperature not specified in the publication
0.000003
Apios Americana trypsin inhibitor
-
-
-
0.0004
AVNIPFKVHFRCKAAFC
-
in 50 mM Tris-HCl, pH 7.8, at 37°C
0.034 - 0.053
benzamidine
0.0018
bis(m-amidinosalicylidene-L-alaninato)iron(III)
-
-
0.0016
bis(p-amidinosalicylidene-L-alaninato)iron(III)
-
-
-
0.000000063
cMCoTI-II
-
pH not specified in the publication, temperature not specified in the publication
-
0.00000008
cyclic SFTI
-
pH not specified in the publication, temperature not specified in the publication
0.0000017
DMTI-II
-
-
-
0.0000003
DOTA-SFTI
-
pH not specified in the publication, temperature not specified in the publication
0.000013
Kunitz domain 1 of tissue factor pathway inhibitor-2
-
-
-
0.0028
m-amidinosalicylidene-L-alaninato(aqua)copper(II)
-
-
0.026
Nafamostat
-
-
0.00000043
oMCoTI-II
-
pH not specified in the publication, temperature not specified in the publication
-
0.0042
p-amidinosalicylidene-L-alaninato(aqua)copper(II)
-
-
0.00004
Plathymenia foliolosa trypsin inhibitor
-
at 37°C, in Tris-HCl buffer (100 mM), pH 8.0
-
0.000000014
Putranjiva roxburghii trypsin inhibitor
-
in 50 mM Tris-HCl buffer, pH 8.0 containing 20 mM CaCl2 and 0.001 N HCl, at 30°C
-
0.0023
Spinacia oleracea trypsin inhibitor
-
in 0.1 M Tris_HCl (pH 8.0) at 37°C
-
0.0003098
Vigna mungo trypsin inhibitor
-
pH 8.2, 37°C
-
0.0023 - 0.0134
[4-(6-chloro-naphthalene-2-sulfonyl)-piperazin-1-yl]-(3,4,5-6-tetrahydro-[2H-1,4']bipyridinyl-4yl)-methanone
0.00001
[Arg5]-SFTI-1
-
pH 8.1, 37°C
0.0000001
[Lys5]-SFTI-1
-
pH 8.1, 37°C
0.00022
[Phe5]-SFTI-1
-
pH 8.1, 37°C
additional information
additional information
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0003
1-[N2-[(7-methoxynaphthalen-2-yl)sulfonyl]-L-arginyl]-4-phenylpiperidine-2-carboxylic acid
Bos taurus
IC50: 0.0003 mM
0.04
antipain
Bos taurus
IC50: 0.04 mM
0.0002
leupeptin
Bos taurus
IC50: 0.0002 mM
0.00003
nafamostat mesilate
Bos taurus
IC50: 0.00003 mM
0.000009
Soybean trypsin inhibitor
Bos taurus
IC50: 0.000009 mM
-
0.0013
lily bulb trypsin inhibitor
Bos taurus
-
in 50 M Tris-HCl (pH 8.0), at 25°C
-
0.019
small glossy black soybean trypsin inhibitor
Bos taurus
-
in 0.1 M Tris-HCl (pH 7.4), at 37°C
-
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
7 - 8
-
hydrolysis of casein
7.6
-
assay at
7.8
-
assay at
8 - 10
-
the optimum pH for digestion with immobilized trypsin on porous polymer monoliths is in a pH range 8-10 and comparable with that found for its soluble counterpart
8.2
-
assay at
8.3
-
assay at
8.6
-
recombinant enzyme from Zea may
8.7
-
native bovine trypsin
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
6.9 - 10.2
-
pH 6.9: about 35% of maximal activity, pH 10.2: about 40-50% of maximal activity, native and recombinant enzyme
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
45
-
native enzyme
55
-
enzyme modified with sucrose
60
-
enzyme modified with monomeric glutaraldehyde
68
-
enzyme modified with polymeric glutaraldehyde
74 - 76
-
enzyme modified with oxidized sucrose polymers
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
TRY1_BOVIN
246
0
25785
Swiss-Prot
Secretory Pathway (Reliability: 2)
PDB
SCOP
CATH
UNIPROT
ORGANISM
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
23290
-
MALDI-TOF mass spectrometry
23300
-
MALDI-TOF mass spectrometry
23312
-
x * 23312, mass spectrometry
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
?
-
x * 23312, mass spectrometry
additional information
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
glycoprotein
proteolytic modification
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
comparison of five crystals of bovine trypsin obtained under analogous conditions. The Calpha and backbone atoms of the structures superpose very well. The occupancy of ligands in regions of low thermal motion is reproducible, whereas solvent molecules containing heavier atoms (such as sulfur) or those located on the surface can differ significantly. The coordination lengths of the calcium ion are conserved. A large proportion of the multiple conformations refine to similar occupancies and the residues adopt similar orientations. The protonation states of histidine residues and carboxylate moieties is consistent for all of the models. However, several features of residues or ligands located in flexible parts of the macromolecule may vary significantly, such as side-chain orientations and the occupancies of certain fragments
hanging-drop method
analysis of membrane crystallization technique of benzamidine inhibited enzyme. Study on parameters to gain high control on the final properties of the crystalline material
-
batch crystallization method, with 4 mM CaCl2, 90 mM benzamidine and 2.1 M ammonium sulfate
-
crystal structure of cancer chemopreventive Bowman-Birk inhibitor in ternary complex with bovine trypsin at 2.3 A resolution
-
crystal structure of the enzyme-benzylamine complex, enzyme-phenylethylamine complex and the enzyme-phenylbutylamine complex
-
crystallization of the mutant enzyme E97N/Y99L/S190A in presence of the inhibitors benzamidine, [4-(6-chloro-naphthalene-2-sulfonyl)-piperazin-1-yl]-(3,4,5-6-tetrahydro-[2H-1,4']bipyridinyl-4yl)-methanone or 2,7-bis(4-amidinobenzylidene)cycloheptan-1-one
-
hanging drop vapour diffusion method, trypsin complexed with p-amidinosalicylidene-L-alaninato(aqua)copper(II), m-amidinosalicylidene-L-alaninato(aqua)copper(II), bis(p-amidinosalicylidene-L-alaninato)iron(III) or bis(m-amidinosalicylidene-L-alaninato)iron(III). X-ray crystallographic analyses of complexes between bovine beta-trypsin and Schiff base copper(II) or iron(III) chelates
-
in complex with Sagittaria sagittifolia arrowhead protease inhibitor API-A, sitting drop vapour diffusion method, using 0.1 M sodium cacodylate pH 6.5, 0.2 M ammonium sulfate, and 20% PEG 8000
-
Kunitz domain 1, KD1, of tissue factor pathway inhibitor-2 in complex with trypsin
-
purified enzyme in complex with T5E/N18R/T20G/P21S/T22D/K31M mutant Schistocerca gregaria protease (trypsin) inhibitor 1, hanging drop vapor diffusion method, mixing of protein solution, containing 9.1 mg/ml protein complex in 0.5 mM MES, pH 6.0, and precipitant solution, containing 30% PEG 4000, 0.3 M ammonium acetate, 0.1 M sodium acetate, pH 4.6, in a 1:2.5 molar ratio, equilibration against precipitation solution, X-ray diffraction structure determination and analysis at 0.93 A resolution. modeling
-
X-ray crystal structure of beta-trypsin and alpha-trypsin
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
E97N/Y99L
-
Km value for Pefachrome is 1.5fold higher than the Km-value of the wild-type enzyme. The KI-value for benzamidine is 92% of the wild-type value, the KI-value for [4-(6-chloro-naphthalene-2-sulfonyl)-piperazin-1-yl]-(3,4,5-6-tetrahydro-[2H-1,4']bipyridinyl-4yl)-methanone is 17% of the wild-type value, the KI-value for 2,7-bis(4-amidinobenzylidene)cycloheptan-1-one is 1.75fold higher than the wild-type value
E97N/Y99L/S190A
-
Km value for Pefachrome is 3.7fold higher than the Km-value of the wild-type enzyme. The KI-value for benzamidine is 1.3fold higher than wild-type value, the KI-value for [4-(6-chloro-naphthalene-2-sulfonyl)-piperazin-1-yl]-(3,4,5-6-tetrahydro-[2H-1,4']bipyridinyl-4yl)-methanone is 6.7% of the wild-type value, the KI-value for 2,7-bis(4-amidinobenzylidene)cycloheptan-1-one is 2.25fold higher than the wild-type value
S190A
-
Km value for Pefachrome is 1.9fold higher than the Km-value of the wild-type enzyme. The KI-value for benzamidine is 87% of the wild-type value, the KI-value for [4-(6-chloro-naphthalene-2-sulfonyl)-piperazin-1-yl]-(3,4,5-6-tetrahydro-[2H-1,4']bipyridinyl-4yl)-methanone is 60% of the wild-type value, the KI-value for 2,7-bis(4-amidinobenzylidene)cycloheptan-1-one is 75% of the wild-type value
additional information
-
attachment of O-carboxymethyl-poly-beta-cyclodextrin with molecular weight of 13000 Da to surface of enzyme. Resulting neoglycoenzyme retains high proteolytic and esterolytic activity, optimum temperature is increased by 10°C, enzyme is more resistant to thermal inactivation and to denaturation by sodiumdodecyl sulfate
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
2.3
-
maximal sability
95427
5.2
-
pH 5.2 prevents autocatalytic hydrolysis of trypsin
699161
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
40
-
half-life of native enzyme: 29.4 h
45
-
wild-type, half-life 58 min, enzyme with O-carboxymethyl-poly-beta-cyclodextrin attached to surface, half-life 187 min
50
-
wild-type, half-life 16 min, enzyme with O-carboxymethyl-poly-beta-cyclodextrin attached to surface, half-life 97 min. Presence of 1 M NaCl, wild-type, half-life 41 min, enzyme with O-carboxymethyl-poly-beta-cyclodextrin attached to surface, half-life 48 min. Presence of 0.1 mM adamantan-1-ol, wild-type, half-life 14 min, enzyme with O-carboxymethyl-poly-beta-cyclodextrin attached to surface, half-life 29 min
60
-
wild-type, half-life 6 min, enzyme with O-carboxymethyl-poly-beta-cyclodextrin attached to surface, half-life 28 min
70
-
trypsin conjugated with mPEG 5000 having cyanurate linker demonstrates the best thermal stability at 70°C compared to the native enzyme
80
-
half-life of native enzyme: 126 s
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
radiation damage, a higher amount of absorbed dose and high beam intensity yield more radiation damage such as broken disulfide bonds, it appears that high intensity and not only the total X-ray dose is most harmful to protein crystals
aggregated trypsin-containing nanofibers demonstrate excellent enzymatic activity (300 times higher than monolayered nanofibers), long-term stability (i.e. negligible loss of activity over 1 year), and a high resistance to proteolysis by other proteases (such as alpha-chymotrypsin)
-
benzamidine minimizes the autolysis of trypsin
-
Ca2+ stabilizes
-
decreasing dielectric constant results from the stabilization of electrostatic energy for the formation of an oxyanion hole, and this stabilization is caused by the increase of electrostricted water around the charged tetrahedral transition state. The control of the solvent dielectric constant can stabilize the tetrahedral transition state, and this lowers the activation energy
-
denaturation in neutral solution: denaturation of alpha-trypsin is a strict second-order reaction, denaturation of beta-trypsin is not a pure second-order reaction at the same pH. Ca2+ retards the rate of beta-trypsin denaturation to a greater extent than that of alpha-trypsin. Denaturation of immobilized trypsin in alkaline solution is a first-order reaction, Ca2+ does not affect the rate of trypsin denaturation in alkaline solution
-
free trypsin shows rapid autolysis under common working conditions (37°C, pH 8.0), chitosan-coated maghemite nanoparticles may serve as a carrier for immobilization of raffinose-modified trypsin exhibiting the highest thermostability and being applicable for rapid protein digestion at 37-55°C
-
no loss of activity upon modification up to 75-85% with monomeric glutaraldehyde, polymeric glutaraldehyde, oxidized sucrose and oxidized sucrose polymers. Modified trypsin resists exposure to 8 M urea in the presence and absence of 5 mM 2-mercaptoethanol, native enzyme loses its activity in 20 and 120 min
-
sol-gel-entrapped trypsin activity is stable when sol-gel glasses are incubated at 25°C, pH 7.5, for several months. Trypsin immobilized in sol-gel glass by surface adsorption and incubated under the same conditions overnight is completely autodigested
-
stable in 70% methanol at 0°C and below, pH 6.4
-
the immobilized trypsin reactor on porous polymer monoliths maintains its activity for at least 80 h with a slight decrease from 80 to 67% in sequence coverage for bovine serum albumin during this time period
-
ORGANIC SOLVENT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SDS
-
trypsin is denatured in the range of 2.5-3.5 mM SDS
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
25°C, amidinated enzyme in solution at pH 8.5, more than 1 day, remains stable
-
4°C, 50 mM beta-alanine buffer, pH 3.0, with 20 mM CaCl2, about 10 months, 5% loss of activity
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
acetone precipitation and anhydrotrypsin-Sepharose column chromatography
-
further purification of the commercial preparation by gel filtration
-
gamma-trypsin
-
isolation of a bovine trypsin isoform from commercial sample
-
liquid-liquid extraction with polyethyleneglycol/sodium citrate aqueous two-phase systems, aqueous two-phase systems formed by PEG3350 and NaCit pH 5.2 show the best separation capability, the addition of NaCl up to a final concentration of 7% (w/w) and the decrease of top/bottom volume ratio to 0.1 leads to the recovery of 60% of pancreatic trypsin in a concentrated form in the top phase with a 3fold purification
-
nickel-agarose affinity resin column chromatography and Superdex 200 gel filtration
-
separation of serine proteases from a mixture by sunflower trypsin inhibitor-1 affinity chromatography
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
commercial-level production of trypsin in transgenic maize, functionally equivalent to native bovine pancreatic trypsin
-
expressed in Escherichia coli BL21 (DE3) cells
-
RENATURED/Commentary
ORGANISM
UNIPROT
LITERATURE
the denatured trypsin is diluted with 1 M diethanolamine or other solutions to a final concentration of 100 nM at pH 8.2, in the case of fully reduced trypsin, the refolding solution also contains 3 mM glutathione and 1 mM oxidized glutathione, the addition of 1.5 M urea resulted in even less recovered activity despite counteracting the formation of precipitates, refolding from fully reduced trypsin is achieved with a substantial approximate 86% recovery of protein yield
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
analysis
comparison of five crystals of bovine trypsin obtained under analogous conditions. The Calpha and backbone atoms of the structures superpose very well. The occupancy of ligands in regions of low thermal motion is reproducible, whereas solvent molecules containing heavier atoms (such as sulfur) or those located on the surface can differ significantly. The coordination lengths of the calcium ion are conserved. A large proportion of the multiple conformations refine to similar occupancies and the residues adopt similar orientations. The protonation states of histidine residues and carboxylate moieties is consistent for all of the models. However, several features of residues or ligands located in flexible parts of the macromolecule may vary significantly, such as side-chain orientations and the occupancies of certain fragments
analysis
medicine
-
commercial-level production of trypsin in transgenic maize, the availability of this reagent should allow for the replacement of animal-derived trypsin in the processing of pharmaceutical proteins
synthesis
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Bode, W.
Aktivierung, Aktivitt und Inhibierung des Rindertrypsins
Naturwissenschaften
66
251-258
1979
Bos taurus
Manually annotated by BRENDA team
Rick, W.
Trypsin
Methods Enzym. Anal. , 3rd Ed. (Bergmeyer, H. U. , ed. )
1
1052-1063
1974
Bos taurus
-
Manually annotated by BRENDA team
Tanizawa, K.; Kanaoka, Y.; Lawson, W.B.
Inverse substrates trypsin and trypsin-like enzymes
Acc. Chem. Res.
20
337-343
1987
Bos taurus
-
Manually annotated by BRENDA team
Compton, P.D.; Coll, R.J.; Fink, A.L.
Effects of methanol cryosolvents on the structural and catalytic properties of bovine trypsin
J. Biol. Chem.
261
1248-1252
1986
Bos taurus
Manually annotated by BRENDA team
Venkatesh, R.; Sundaram, P.V.
Modulation of stability properties of bovine trypsin after in vitro structural changes with a variety of chemical modifiers
Protein Eng.
11
691-698
1998
Bos taurus
Manually annotated by BRENDA team
Prestrelski, S.J.; Byler, D.M.; Liebman, M.N.
Comparison of various molecular forms of bovine trypsin: correlation of infrared spectra with X-ray crystal structures
Biochemistry
30
133-143
1991
Bos taurus
Manually annotated by BRENDA team
Shtelzer, S.; Rappoport, S.; Avnir, D.; Ottolenghi, M.; Braun, S.
Properties of trypsin and of acid phosphatase immobilized in sol-gel glass matrices
Biotechnol. Appl. Biochem.
15
227-235
1992
Bos taurus
Manually annotated by BRENDA team
Rodgers, K.J.; Melrose, J.; Ghosh, P.
Biotinylated trypsin and its application as a sensitive, versatile probe for the detection and characterisation of an ovine chondrocyte serine proteinase inhibitor using Western blotting
Electrophoresis
17
213-218
1996
Bos taurus
Manually annotated by BRENDA team
Blanco, R.M.; Alvaron, G.; Guisan, J.M.
Enzyme reaction engineering: design of peptide synthesis by stabilized trypsin
Enzyme Microb. Technol.
13
573-583
1991
Bos taurus
Manually annotated by BRENDA team
Foucault, G.; Seydoux, F.; Yon, J.
Comparative kinetic properties of alpha, beta and psi form of trypsin
Eur. J. Biochem.
47
295-302
1974
Bos taurus
Manually annotated by BRENDA team
Zhu, G.; Huang, Q.; Qian, M.; Jia, Y.; Tang, Y.
X-ray studies on two forms of bovine beta-trypsin crystals in neat cyclohexane
Biochim. Biophys. Acta
1429
142-150
1998
Bos taurus (P00760), Bos taurus
Manually annotated by BRENDA team
Wu, H.L.; Kundrot, C.; Bender, M.L.
The denaturation of trypsin
Biochem. Biophys. Res. Commun.
107
742-745
1982
Bos taurus
Manually annotated by BRENDA team
Leiros, H.K.; McSweeney, S.M.; Smalas, A.O.
Atomic resolution structures of trypsin provide insight into structural radiation damage
Acta Crystallogr. Sect. D
57
488-497
2001
salmon, Bos taurus (P00760)
Manually annotated by BRENDA team
Lesner, A.; Kupryszewski, G.; Rolka, K.
Chromogenic substrates of bovine beta-trypsin: the influence of an amino acid residue in P1 position on their interaction with the enzyme
Biochem. Biophys. Res. Commun.
285
1350-1353
2001
Bos taurus
Manually annotated by BRENDA team
Zablotna, E.; Kazmierczak, K.; Jaskiewicz, A.; Stawikowski, M.; Kupryszewski, G.; Rolka, K.
Chemical synthesis and kinetic study of the smallest naturally occurring trypsin inhibitor SFTI-1 isolated from sunflower seeds and its analogues
Biochem. Biophys. Res. Commun.
292
855-859
2002
Bos taurus
Manually annotated by BRENDA team
Park, H.; Chi, Y.M.
The enhancement of electrostriction caused by lowering the solvent dielectric constant leads to the decrease of activation energy in trypsin catalysis
Biochim. Biophys. Acta
1568
53-59
2001
Bos taurus
Manually annotated by BRENDA team
Erba, F.; Fiorucci, L.; Sommerhoff, C.P.; Coletta, M.; Ascoli, F.
Kinetic and thermodynamic analysis of leech-derived tryptase inhibitor interaction with bovine tryptase and bovine trypsin
Biol. Chem.
381
1117-1122
2000
Bos taurus
Manually annotated by BRENDA team
Rauh, D.; Reyda, S.; Klebe, G.; Stubbs, M.T.
Trypsin mutants for structure-based drug design: expression, refolding and crystallisation
Biol. Chem.
383
1309-1314
2002
Bos taurus
Manually annotated by BRENDA team
Woodard, S.L.; Mayor, J.M.; Bailey, M.R.; Barker, D.K.; Love, R.T.; Lane, J.R.; Delaney, D.E.; McComas-Wagner, J.M.; Mallubhotla, H.D.; Hood, E.E.; Dangott, L.J.; Tichy, S.E.; Howard, J.A.
Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants
Biotechnol. Appl. Biochem.
38
123-130
2003
Bos taurus
Manually annotated by BRENDA team
Ruoppolo, M.; Amoresano, A.; Pucci, P.; Pascarella, S.; Polticelli, F.; Trovato, M.; Menegatti, E.; Ascenzi, P.
Characterization of five new low-molecular-mass trypsin inhibitors from white mustard (Sinapis alba L.) seed
Eur. J. Biochem.
267
6486-6492
2000
Bos taurus
Manually annotated by BRENDA team
Hijikata-Okunomiya, A.; Tamao, Y.; Kikumoto, R.; Okamoto, S.
Selective inhibition of trypsin by (2R,4R)-4-phenyl-1-[Nalpha-(7-methoxy-2-naphthalenesulfonyl)-L-arginyl]-2-piperidinecarboxylic acid
J. Biol. Chem.
275
18995-18999
2000
Bos taurus (P00760)
Manually annotated by BRENDA team
Koepke, J.; Ermler, U.; Warkentin, E.; Wenzl, G.; Flecker, P.
Crystal structure of cancer chemopreventive Bowman-Birk inhibitor in ternary complex with bovine trypsin at 2.3.ANG. resolution. Structural basis of Janus-faced serine protease inhibitor specificity
J. Mol. Biol.
298
477-491
2000
Bos taurus
Manually annotated by BRENDA team
Toyota, E.; Ng, K.K.; Sekizaki, H.; Itoh, K.; Tanizawa, K.; James, M.N.
X-ray crystallographic analyses of complexes between bovine beta-trypsin and Schiff base copper(II) or iron(III) chelates
J. Mol. Biol.
305
471-479
2001
Bos taurus
Manually annotated by BRENDA team
Mello, G.C.; Oliva, M.L.V.; Sumikawa, J.T.; Machado, O.L.T.; Marangoni, S.; Novello, J.C.; Macedo, M.L.R.
Purification and characterization of a new trypsin inhibitor from Dimorphandra mollis seeds
J. Protein Chem.
20
625-632
2002
Bos taurus
Manually annotated by BRENDA team
Leiros, H.K.S.; Brandsdal, B.O.; Andersen, O.A.; Os, V.; Leiros, I.; Helland, R.; Otlewski, J.; Willassen, N.P.; Smalas, A.O.
Trypsin specificity as elucidated by LIE calculations, X-ray structures, and association constant measurements
Protein Sci.
13
1056-1070
2004
Bos taurus, salmon
Manually annotated by BRENDA team
Melo, F.R.; Rigden, D.J.; Franco, O.L.; Mello, L.V.; Ary, M.B.; Grossi de Sa, M.F.; Bloch, C.Jr.
Inhibition of trypsin by cowpea thionin: characterization, molecular modeling, and docking
Proteins Struct. Funct. Genet.
48
311-319
2002
Bos taurus
Manually annotated by BRENDA team
Ramjee, M.K.; Henderson, I.M.; McLoughlin, S.B.; Padova, A.
The kinetic and structural characterization of the reaction of nafamostat with bovine pancreatic trypsin
Thromb. Res.
98
559-569
2000
Bos taurus
Manually annotated by BRENDA team
Stenman, M.; Ainola, M.; Valmu, L.; Bjartell, A.; Ma, G.; Stenman, U.H.; Sorsa, T.; Luukkainen, R.; Konttinen, Y.T.
Trypsin-2 degrades human type II collagen and is expressed and activated in mesenchymally transformed rheumatoid arthritis synovitis tissue
Am. J. Pathol.
167
1119-1124
2005
Bos taurus, Homo sapiens
Manually annotated by BRENDA team
Zablotna, E.; Dysasz, H.; Lesner, A.; Jaskiewicz, A.; Kazmierczak, K.; Miecznikowska, H.; Rolka, K.
A simple method for selection of trypsin chromogenic substrates using combinatorial chemistry approach
Biochem. Biophys. Res. Commun.
319
185-188
2004
Bos taurus
Manually annotated by BRENDA team
Cuccioloni, M.; Sparapani, L.; Amici, M.; Lupidi, G.; Eleuteri, A.M.; Angeletti, M.
Kinetic and equilibrium characterization of the interaction between bovine trypsin and I-ovalbumin
Biochim. Biophys. Acta
1702
199-207
2004
Bos taurus
Manually annotated by BRENDA team
Sienczyk, M.; Oleksyszyn, J.
Inhibition of trypsin and urokinase by Cbz-amino(4-guanidinophenyl)methanephosphonate aromatic ester derivatives: the influence of the ester group on their biological activity
Bioorg. Med. Chem. Lett.
16
2886-2890
2006
Bos taurus
Manually annotated by BRENDA team
Ma, W.; Tang, C.; Lai, L.
Specificity of trypsin and chymotrypsin: loop-motion-controlled dynamic correlation as a determinant
Biophys. J.
89
1183-1193
2005
Bos taurus (P00760)
Manually annotated by BRENDA team
Villalonga, M.L.; Reyes, G.; Fragoso, A.; Cao, R.; Fernandez, L.; Villalonga, R.
Chemical glycosidation of trypsin with O-carboxymethyl-poly-beta-cyclodextrin: catalytic and stability properties
Biotechnol. Appl. Biochem.
41
217-223
2005
Bos taurus
Manually annotated by BRENDA team
Schmidt, A.E.; Chand, H.S.; Cascio, D.; Kisiel, W.; Bajaj, S.P.
Crystal structure of Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in complex with trypsin. Implications for KD1 specificity of inhibition
J. Biol. Chem.
280
27832-27838
2005
Bos taurus
Manually annotated by BRENDA team
Di Profio, G.; Curcio, E.; Drioli, E.
Trypsin crystallization by membrane-based techniques
J. Struct. Biol.
150
41-49
2005
Bos taurus
Manually annotated by BRENDA team
Liu, X.; Broshears, W.C.; Reilly, J.P.
Probing the structure and activity of trypsin with amidination
Anal. Biochem.
367
13-19
2007
Bos taurus
Manually annotated by BRENDA team
Toyota, E.; Iyaguchi, D.; Sekizaki, H.; Itoh, K.; Tanizawa, K.
Kinetic properties of three isoforms of trypsin isolated from the pyloric caeca of chum salmon (Oncorhynchus keta)
Biol. Pharm. Bull.
30
1648-1652
2007
Bos taurus, Oncorhynchus keta
Manually annotated by BRENDA team
Forbes, R.T.; Barry, B.W.; Elkordy, A.A.
Preparation and characterisation of spray-dried and crystallised trypsin: FT-Raman study to detect protein denaturation after thermal stress
Eur. J. Pharm. Sci.
30
315-323
2007
Bos taurus
Manually annotated by BRENDA team
Asgeirsson, B.; Cekan, P.
Microscopic rate-constants for substrate binding and acylation in cold-adaptation of trypsin I from Atlantic cod
FEBS Lett.
580
4639-4644
2006
Bos taurus, Gadus morhua
Manually annotated by BRENDA team
Santos, A.M.; Santana, M.A.; Gomide, F.T.; Miranda, A.A.; Oliveira, J.S.; Boas, F.A.; Vasconcelos, A.B.; Bemquerer, M.P.; Santoro, M.M.
Physical-chemical characterization and stability study of alpha-trypsin at pH 3.0 by differential scanning calorimetry
Int. J. Biol. Macromol.
42
278-284
2008
Bos taurus
Manually annotated by BRENDA team
Treetharnmathurot, B.; Ovartlarnporn, C.; Wungsintaweekul, J.; Duncan, R.; Wiwattanapatapee, R.
Effect of PEG molecular weight and linking chemistry on the biological activity and thermal stability of PEGylated trypsin
Int. J. Pharm.
357
252-259
2008
Bos taurus
Manually annotated by BRENDA team
Takekawa, H.; Ina, C.; Sato, R.; Toma, K.; Ogawa, H.
Novel carbohydrate-binding activity of pancreatic trypsins to N-linked glycans of glycoproteins
J. Biol. Chem.
281
8528-8538
2006
Bos taurus, Sus scrofa
Manually annotated by BRENDA team
Bengrine, A.; Li, J.; Hamm, L.L.; Awayda, M.S.
Indirect activation of the epithelial Na+ channel by trypsin
J. Biol. Chem.
282
26884-26896
2007
Bos taurus
Manually annotated by BRENDA team
Legowska, A.; Debowski, D.; Lesner, A.; Wysocka, M.; Rolka, K.
Introduction of non-natural amino acid residues into the substrate-specific P(1) position of trypsin inhibitor SFTI-1 yields potent chymotrypsin and cathepsin G inhibitors
Bioorg. Med. Chem.
17
3302-3307
2009
Bos taurus
Manually annotated by BRENDA team
Ye, X.; Bun Ng, T.
A trypsin-chymotrypsin inhibitor with antiproliferative activity from small glossy black soybeans
Planta Med.
75
550-556
2009
Bos taurus
Manually annotated by BRENDA team
Cheung, A.H.; Wong, J.H.; Ng, T.B.
Trypsin-chymotrypsin inhibitors from Vigna mungo seeds
Protein Pept. Lett.
16
277-284
2009
Bos taurus
Manually annotated by BRENDA team
Jiang, C.; Bao, R.; Chen, Y.
Expression, purification, crystallization and preliminary X-ray diffraction analysis of Sagittaria sagittifolia arrowhead protease inhibitor API-A in complex with bovine trypsin
Acta Crystallogr. Sect. F
64
1060-1062
2008
Bos taurus
Manually annotated by BRENDA team
Krenkova, J.; Lacher, N.A.; Svec, F.
Highly efficient enzyme reactors containing trypsin and endoproteinase LysC immobilized on porous polymer monolith coupled to MS suitable for analysis of antibodies
Anal. Chem.
81
2004-2012
2009
Bos taurus
Manually annotated by BRENDA team
Miao, A.; Dai, Y.; Ji, Y.; Jiang, Y.; Lu, Y.
Liquid-chromatographic and mass-spectrometric identification of lens proteins using microwave-assisted digestion with trypsin-immobilized magnetic nanoparticles
Biochem. Biophys. Res. Commun.
380
603-608
2009
Bos taurus
Manually annotated by BRENDA team
Kang, Z.; Jiang, J.H.; Wang, D.; Liu, K.; Du, L.F.
Kunitz-type trypsin inhibitor with high stability from Spinacia oleracea L. seeds
Biochemistry
74
102-109
2009
Bos taurus
Manually annotated by BRENDA team
Li, J.; Wu, J.; Wang, Y.; Xu, X.; Liu, T.; Lai, R.; Zhu, H.
A small trypsin inhibitor from the frog of Odorrana grahami
Biochimie
90
1356-1361
2008
Bos taurus
Manually annotated by BRENDA team
Oda, A.; Yamaotsu, N.; Hirono, S.; Takahashi, O.
Brownian dynamics simulations of a wild type and mutants of bovine pancreatic trypsin inhibitors
Biol. Pharm. Bull.
31
2182-2186
2008
Bos taurus
Manually annotated by BRENDA team
Kluchova, K.; Zboril, R.; Tucek, J.; Pecova, M.; Zajoncova, L.; Safarik, I.; Mashlan, M.; Markova, I.; Jancik, D.; Sebela, M.; Bartonkova, H.; Bellesi, V.; Novak, P.; Petridis, D.
Superparamagnetic maghemite nanoparticles from solid-state synthesis - Their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization
Biomaterials
30
2855-2863
2009
Bos taurus
Manually annotated by BRENDA team
Legowska, A.; Bulak, E.; Wysocka, M.; Jaskiewicz, A.; Lesner, A.; Debowski, D.; Rolka, K.
Peptomeric analogues of trypsin inhibitor SFTI-1 isolated from sunflower seeds
Bioorg. Med. Chem.
16
5644-5652
2008
Bos taurus
Manually annotated by BRENDA team
Izumikawa, N.; Nishikori, S.; Vestergaard, M.; Hamada, T.; Hagihara, Y.; Yumoto, N.; Shiraki, K.; Takagi, M.
Effect of phospholipids on conformational structure of bovine pancreatic trypsin inhibitor (BPTI) and its thermolabile mutants
Biopolymers
89
873-880
2008
Bos taurus
Manually annotated by BRENDA team
Zhang, Y.; Kouzuma, Y.; Miyaji, T.; Yonekura, M.
Purification, characterization, and cDNA cloning of a Bowman-Birk type trypsin inhibitor from Apios americana Medikus tubers
Biosci. Biotechnol. Biochem.
72
171-178
2008
Bos taurus
Manually annotated by BRENDA team
Ghosh, S.
Interaction of trypsin with sodium dodecyl sulfate in aqueous medium: a conformational view
Colloids Surf. B Biointerfaces
66
178-186
2008
Bos taurus
Manually annotated by BRENDA team
Stefanov, E.K.; Ferrage, J.M.; Parchim, N.F.; Lee, C.E.; Reginelli, A.D.; Tache, M.; Anderson, R.A.
Modification of the zone of polarizing activity signal by trypsin
Dev. Growth Differ.
51
123-133
2009
Bos taurus
Manually annotated by BRENDA team
Yaghmaei, M.; Hashemi, M.; Shikhzadeh, A.; Mokhtari, M.; Niazi, A.; Ghavami, S.
Serum trypsin inhibitory capacity in normal pregnancy and gestational diabetes mellitus
Diabetes Res. Clin. Pract.
84
201-204
2009
Bos taurus
Manually annotated by BRENDA team
Yang, L.; Fang, Z.; Dicke, M.; van Loon, J.J.; Jongsma, M.A.
The diamondback moth, Plutella xylostella, specifically inactivates Mustard Trypsin Inhibitor 2 (MTI2) to overcome host plant defence
Insect Biochem. Mol. Biol.
39
55-61
2009
Bos taurus, Plutella xylostella
Manually annotated by BRENDA team
Ramos, V.d.a..S.; Silva, G.d.e..S.; Freire, M.G.; Machado, O.L.; Parra, J.R.; Macedo, M.L.
Purification and characterization of a trypsin inhibitor from Plathymenia foliolosa seeds
J. Agric. Food Chem.
56
11348-11355
2008
Bos taurus
Manually annotated by BRENDA team
Swanson, K.C.; Kelly, N.; Salim, H.; Wang, Y.J.; Holligan, S.; Fan, M.Z.; McBride, B.W.
Pancreatic mass, cellularity, and alpha-amylase and trypsin activity in feedlot steers fed diets differing in crude protein concentration
J. Anim. Sci.
86
909-915
2008
Bos taurus
Manually annotated by BRENDA team
Ohshima, Y.; Suzuki, Y.; Nakatani, A.; Nohara, D.
Refolding of fully reduced bovine pancreatic trypsin
J. Biosci. Bioeng.
106
345-349
2008
Bos taurus
Manually annotated by BRENDA team
Nicoli, R.; Rudaz, S.; Stella, C.; Veuthey, J.L.
Trypsin immobilization on an ethylenediamine-based monolithic minidisk for rapid on-line peptide mass fingerprinting studies
J. Chromatogr. A
1216
2695-2699
2009
Bos taurus
Manually annotated by BRENDA team
Tubio, G.; Pico, G.A.; Nerli, B.B.
Extraction of trypsin from bovine pancreas by applying polyethyleneglycol/sodium citrate aqueous two-phase systems
J. Chromatogr. B
877
115-120
2009
Bos taurus
Manually annotated by BRENDA team
Muhlia-Almazan, A.; Sanchez-Paz, A.; Garcia-Carreno, F.L.
Invertebrate trypsins: a review
J. Comp. Physiol. B
178
655-672
2008
Astacus astacus, Asterias amurensis, Bos taurus, Musca domestica, Penaeus japonicus, Rhyzopertha dominica, Sesamia nonagrioides, Triatoma infestans, Penaeus paulensis, Diatraea saccharalis, Cancer pagurus, Rhynchophorus ferrugineus, Triops sp., Diaprepes abbreviatus (O76498), Stomoxys calcitrans (O76519), Stomoxys calcitrans (O76520), Aedes aegypti (P29786), Manduca sexta (P35045), Lepeophtheirus salmonis (Q7YSS9), Penaeus vannamei (Q9TY16)
Manually annotated by BRENDA team
Jung, H.J.; Jeong, K.S.; Lee, D.G.
Effective antibacterial action of tat (47-58) by increased uptake into bacterial cells in the presence of trypsin
J. Microbiol. Biotechnol.
18
990-996
2008
Bos taurus
Manually annotated by BRENDA team
Brzozowski, K.; Majewski, R.; Jaskiewicz, A.; Legowska, A.; Klaudel, L.; Rodziewicz-Motowidlo, S.; Rolka, K.
Conformational studies of [Abu(3, 11)]-SFTI-1, an analogue of the trypsin inhibitor isolated from sunflower seeds
J. Pept. Sci.
14
911-916
2008
Bos taurus
Manually annotated by BRENDA team
Bania, J.; Kubiak, A.; Wojtachnio, K.; Polanowski, A.
Pancreatic secretory trypsin inhibitor acts as an effective inhibitor of cysteine proteinases gingipains from Porphyromonas gingivalis
J. Periodont. Res.
43
232-236
2008
Bos taurus
Manually annotated by BRENDA team
Kalli, A.; Hakansson, K.
Comparison of the electron capture dissociation fragmentation behavior of doubly and triply protonated peptides from trypsin, Glu-C, and chymotrypsin digestion
J. Proteome Res.
7
2834-2844
2008
Bos taurus
Manually annotated by BRENDA team
Chaudhary, N.S.; Shee, C.; Islam, A.; Ahmad, F.; Yernool, D.; Kumar, P.; Sharma, A.K.
Purification and characterization of a trypsin inhibitor from Putranjiva roxburghii seeds
Phytochemistry
69
2120-2126
2008
Bos taurus
Manually annotated by BRENDA team
Hernandez-Nistal, J.; Martin, I.; Jimenez, T.; Dopico, B.; Labrador, E.
Two cell wall Kunitz trypsin inhibitors in chickpea during seed germination and seedling growth
Plant Physiol. Biochem.
47
181-187
2009
Bos taurus
Manually annotated by BRENDA team
Zhang, X.; Wang, H.; Ng, T.B.
Isolation and characterization of a novel trypsin inhibitor from fresh lily bulbs
Planta Med.
74
546-550
2008
Bos taurus
Manually annotated by BRENDA team
Islam, M.M.; Sohya, S.; Noguchi, K.; Yohda, M.; Kuroda, Y.
Crystal structure of an extensively simplified variant of bovine pancreatic trypsin inhibitor in which over one-third of the residues are alanines
Proc. Natl. Acad. Sci. USA
105
15334-15339
2008
Bos taurus
Manually annotated by BRENDA team
Kim, B.C.; Lopez-Ferrer, D.; Lee, S.M.; Ahn, H.K.; Nair, S.; Kim, S.H.; Kim, B.S.; Petritis, K.; Camp, D.G.; Grate, J.W.; Smith, R.D.; Koo, Y.M.; Gu, M.B.; Kim, J.
Highly stable trypsin-aggregate coatings on polymer nanofibers for repeated protein digestion
Proteomics
9
1893-1900
2009
Bos taurus
Manually annotated by BRENDA team
Liu, T.; Wang, S.; Chen, G.
Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis
Talanta
77
1767-1773
2009
Bos taurus
Manually annotated by BRENDA team
Mattson, K.J.; Devlin, B.R.; Loskutoff, N.M.
Comparison of a recombinant trypsin with the porcine pancreatic extract on sperm used for the in vitro production of bovine embryos
Theriogenology
69
724-727
2008
Bos taurus, Sus scrofa
Manually annotated by BRENDA team
Appavou, M.S.; Gibrat, G.; Bellissent-Funel, M.C.
Temperature dependence on structure and dynamics of Bovine Pancreatic Trypsin Inhibitor (BPTI): a neutron scattering study
Biochim. Biophys. Acta
1794
1398-1406
2009
Bos taurus
Manually annotated by BRENDA team
Iyaguchi, D.; Kawano, S.; Takada, K.; Toyota, E.
Structural basis for the design of novel Schiff base metal chelate inhibitors of trypsin
Bioorg. Med. Chem.
18
2076-2080
2010
Bos taurus
Manually annotated by BRENDA team
Qi, R.F.; Liu, Z.X.; Xu, S.Q.; Zhang, L.; Shao, X.X.; Chi, C.W.
Small peptides derived from the Lys active fragment of the mung bean trypsin inhibitor are fully active against trypsin
FEBS J.
277
224-232
2010
Bos taurus
Manually annotated by BRENDA team
Guerrero-Beltran, J.; Estrada-Giron, Y.; Swanson, B.; Barbosa-Canovas, G.
Pressure and temperature combination for inactivation of soymilk trypsin inhibitors
Food Chem.
116
676-679
2009
Bos taurus
Manually annotated by BRENDA team
Torbica, A.M.; Z?ivancev, D.R.; Nikolic, Z.T.; Dordevic, V.B.; Nikolovski, B.G.
Advantages of the lab-on-a-chip method in the determination of the Kunitz trypsin inhibitor in soybean varieties
J. Agric. Food Chem.
58
7980-7985
2010
Bos taurus
Manually annotated by BRENDA team
Fang, E.F.; Wong, J.H.; Ng, T.B.
Thermostable Kunitz trypsin inhibitor with cytokine inducing, antitumor and HIV-1 reverse transcriptase inhibitory activities from Korean large black soybeans
J. Biosci. Bioeng.
109
211-217
2010
Bos taurus
Manually annotated by BRENDA team
Pereira, H.J.; Salgado, M.C.; Oliveira, E.B.
Immobilized analogues of sunflower trypsin inhibitor-1 constitute a versatile group of affinity sorbents for selective isolation of serine proteases
J. Chromatogr. B
877
2039-2044
2009
Bos taurus
Manually annotated by BRENDA team
Wati, R.K.; Theppakorn, T.; Benjakul, S.; Rawdkuen, S.
Trypsin inhibitor from 3 legume seeds: fractionation and proteolytic inhibition study
J. Food Sci.
75
C223-C228
2010
Bos taurus
Manually annotated by BRENDA team
Garcia Boy, R.; Mier, W.; Nothelfer, E.M.; Altmann, A.; Eisenhut, M.; Kolmar, H.; Tomaszowski, M.; Kraemer, S.; Haberkorn, U.
Sunflower trypsin inhibitor 1 derivatives as molecular scaffolds for the development of novel peptidic radiopharmaceuticals
Mol. Imaging Biol.
12
377-385
2009
Bos taurus
Manually annotated by BRENDA team
Prasad, E.R.; Dutta-Gupta, A.; Padmasree, K.
Purification and characterization of a Bowman-Birk proteinase inhibitor from the seeds of black gram (Vigna mungo)
Phytochemistry
71
363-372
2010
Bos taurus
Manually annotated by BRENDA team
Wahlgren, W.Y.; Pal, G.; Kardos, J.; Porrogi, P.; Szenthe, B.; Patthy, A.; Graf, L.; Katona, G.
The catalytic aspartate is protonated in the Michaelis complex formed between trypsin and an in vitro evolved substrate-like inhibitor: a refined mechanism of serine protease action
J. Biol. Chem.
286
3587-3596
2011
Bos taurus
Manually annotated by BRENDA team
Kwong, K.; Nassenstein, C.; de Garavilla, L.; Meeker, S.; Undem, B.J.
Thrombin and trypsin directly activate vagal C-fibres in mouse lung via protease-activated receptor-1
J. Physiol.
588
1171-1177
2010
Bos taurus
Manually annotated by BRENDA team
Liebschner, D.; Dauter, M.; Brzuszkiewicz, A.; Dauter, Z.
On the reproducibility of protein crystal structures: five atomic resolution structures of trypsin
Acta Crystallogr. Sect. D
69
1447-1462
2013
Bos taurus (P00760), Bos taurus
Manually annotated by BRENDA team
Gardner, Q.A.; Younas, H.; Akhtar, M.
Studies on the regioselectivity and kinetics of the action of trypsin on proinsulin and its derivatives using mass spectrometry
Biochim. Biophys. Acta
1834
182-190
2013
Bos taurus
Manually annotated by BRENDA team
Atacan, K.; Oezacar, M.
Characterization and immobilization of trypsin on tannic acid modified Fe3O4 nanoparticles
Colloids Surf. B Biointerfaces
128
227-236
2015
Bos taurus
Manually annotated by BRENDA team
Lacerda, C.D.; Teixeira, A.E.; de Oliveira, J.S.; Silva, S.F.; Vasconcelos, A.V.; Gouveia, D.G.; da Silva, A.R.; Santoro, M.M.; dos Mares-Guia, M.L.; Santos, A.M.
Gamma trypsin: purification and physicochemical characterization of a novel bovine trypsin isoform
Int. J. Biol. Macromol.
70
179-186
2014
Bos taurus
Manually annotated by BRENDA team