Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.4.17.23 - angiotensin-converting enzyme 2 and Organism(s) Homo sapiens and UniProt Accession Q9BYF1

for references in articles please use BRENDA:EC3.4.17.23
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Homo sapiens
UNIPROT: Q9BYF1 not found.
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Homo sapiens
The enzyme appears in selected viruses and cellular organisms
Synonyms
angiotensin-converting enzyme 2, tmprss2, ace-2, angiotensin converting enzyme 2, hace2, angiotensin converting enzyme-2, sace2, ace 2, angiotensin converting enzyme ii, angiotensin-converting enzyme type 2, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
ACE-related carboxypeptidase
-
Ang converting enzyme 2
-
angiotensin converting enzyme 2
-
angiotensin converting enzyme II
-
angiotensin-converting enzyme
-
angiotensin-converting enzyme 2
-
angiotensin-converting enzyme homolog
-
angiotensin-converting enzyme homologue
-
angiotensin-converting enzyme type 2
-
angiotensin-converting enzyme-like protein
-
angiotensin-converting enzyme-related carboxypeptidase
-
angiotensinase
-
soluble angiotensin converting enzyme 2
-
ACE-2
-
-
angiotensin converting enzyme 2
angiotensin converting enzyme-2
-
-
angiotensin II converting enzyme 2
-
-
angiotensin-converting enzyme-2
-
-
hACE2
-
-
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
angiotensin II + H2O = angiotensin-(1-7) + L-phenylalanine
show the reaction diagram
ACE2 catalytic efficiency is 400-fold higher with angiotensin II (1–8) as a substrate than with angiotensin I (1–10). ACE2 also efficiently hydrolyzes des-Arg9-bradykinin, but it does not hydrolyze bradykinin
angiotensin II + H2O = angiotensin-(1-7) + L-phenylalanine
show the reaction diagram
a transmembrane glycoprotein with an extracellular catalytic domain. ACE2 functions as a carboxypeptidase, cleaving a single C-terminal residue from a distinct range of substrates
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis of peptide bond
CAS REGISTRY NUMBER
COMMENTARY hide
328404-18-8
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
(7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH + H2O
(7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro + N6-(2,4-dinitrophenyl)-L-Lys
show the reaction diagram
-
-
-
?
(7-methoxycoumarin-4-yl)acetyl-APK(2,4-dinitrophenyl) + H2O
(7-methoxycoumarin-4-yl)acetyl-AP + N6-(2,4-dinitrophenyl)-L-lysine
show the reaction diagram
-
-
-
?
(7-methoxycoumarin-4-yl)acetyl-APK(2,4-dinitrophenyl)-OH + H2O
(7-methoxycoumarin-4-yl)acetyl-AP + N6-(2,4-dinitrophenyl)-L-lysine
show the reaction diagram
(7-methoxycoumarin-4-yl)acetyl-YVADAPK(2,4-dinitrophenyl)-OH + H2O
(7-methoxycoumarin-4-yl)acetyl-YVADAP + N6-(2,4-dinitrophenyl)-L-lysine
show the reaction diagram
angiotensin I + H2O
angiotensin-(1-9) + Leu
show the reaction diagram
angiotensin I + H2O
DRVYIHPFH + L-Leu
show the reaction diagram
-
-
-
?
angiotensin II + H2O
angiotensin(1-7) + L-Phe
show the reaction diagram
angiotensin II + H2O
angiotensin-(1-7) + Phe
show the reaction diagram
angiotensin II + H2O
DRVYIHP + L-Phe
show the reaction diagram
-
-
-
?
angiotensin-(3-8) + H2O
angiotensin-(3-7) + Phe
show the reaction diagram
-
-
-
ir
angiotensin-(4-8) + H2O
angiotensin-(4-7) + Phe
show the reaction diagram
-
-
-
ir
angiotensin-(5-8) + H2O
angiotensin-(5-7) + Phe
show the reaction diagram
-
-
-
ir
apelin 17 + H2O
?
show the reaction diagram
-
-
-
?
apelin-13 + H2O
apelin-12 + Phe
show the reaction diagram
-
-
-
?
apelin-36 + H2O
apelin-35 + Phe
show the reaction diagram
-
-
-
?
des-Arg9-bradykinin + H2O
?
show the reaction diagram
ACE2 cleavage of des-Arg9-bradykinin substrate analogue is markedly accelerated by SARS-CoV-2 infection
-
-
?
dynorphin A 1-13 + H2O
dynorphin A 1-12 + Lys
show the reaction diagram
-
-
-
ir
ghrelin + H2O
ghrelin minus C-terminal amino acid + arginine
show the reaction diagram
-
-
-
ir
KRPPGSPF + H2O
KRPPGSP + Phe
show the reaction diagram
i.e. Lys-des-Arg-bradykinin
-
-
ir
neocasomorphin + H2O
neocasomorphin minus C-terminal amino acid + isoleucine
show the reaction diagram
-
-
-
ir
neurotensin-(1-8) + H2O
neurotensin-(1-7) + arginine
show the reaction diagram
-
-
-
ir
pyr-apelin 13 + H2O
?
show the reaction diagram
-
-
-
?
QRPRLSHKGPMPF + H2O
QRPRLSHKGPMP + L-Phe
show the reaction diagram
i.e. apein(1-13)
-
-
?
RPPGSPF + H2O
RPPGSP + Phe
show the reaction diagram
SARS-coronavirus S1 protein + H2O
?
show the reaction diagram
-
-
-
?
TBC5046 + H2O
o-aminobenzoic acid-des-Arg-bradykinin-(1-7) + 3-nitrophenylalanine
show the reaction diagram
synthetic fluorogenic peptide, i.e. des-Arg-bradykinin with N-terminal o-aminobenzoic acid and a 3-nitrophenylalanine instead of Phe at the C-terminus
-
-
ir
YGGFLRRIRPKLK + H2O
YGGFLRRIRPKL + L-Lys
show the reaction diagram
i.e. dynorphin A 1-13
-
-
?
YPVEPFI + H2O
YPVEPF + Ile
show the reaction diagram
i.e. beta-casomorphin
-
-
ir
(7-methoxycoumarin-4-yl)-acetyl-Ala-Pro-Lys(2,4-dinitrophenyl) + H2O
(7-methoxycoumarin-4-yl)-acetyl-Ala-Pro + N6-(2,4-dinitrophenyl)-L-Lys
show the reaction diagram
-
-
-
-
?
(7-methoxycoumarin-4-yl)-acetyl-APK(2,4-dinitrophenyl) + H2O
(7-methoxycoumarin-4-yl)-acetyl-AP + N6-(2,4-dinitrophenyl)-L-Lys
show the reaction diagram
-
-
-
-
?
(7-methoxycoumarin-4-yl)-acetyl-YVADAPK-(2,4-dinitrophenyl)-OH + H2O
(7-methoxycoumarin-4-yl)-acetyl-YVADAP + N6-(2,4-dinitrophenyl)-L-Lys
show the reaction diagram
-
-
-
-
?
(7-methoxycoumarin-4-yl)acetyl-Ala-Pro-Lys(2,4-dinitrophenyl) + H2O
(7-methoxycoumarin-4-yl)acetyl-Ala-Pro + N6-(2,4-dinitrophenyl)-L-lysine
show the reaction diagram
-
-
-
-
?
(7-methoxycoumarin-4-yl)acetyl-APK(2,4-dinitrophenyl) + H2O
(7-methoxycoumarin-4-yl)acetyl-AP + N6-(2,4-dinitrophenyl)-L-lysine
show the reaction diagram
-
-
-
-
?
(7-methoxycoumarin-4-yl)acetyl-APK-(2,4-dinitrophenyl)-OH + H2O
?
show the reaction diagram
-
-
-
-
?
(7-methoxycoumarin-4-yl)acetyl-APK-2,4-dinitrophenyl + H2O
(7-methoxycoumarin-4-yl)acetyl-AP + N6-(2,4-dinitrophenyl)-L-lysine
show the reaction diagram
-
-
-
-
?
(des-Arg9)-bradykinin + H2O
?
show the reaction diagram
-
-
-
-
?
angiotensin I + H2O
angiotensin-(1-9) + Leu
show the reaction diagram
angiotensin II + H2O
angiotensin(1-7) + L-Phe
show the reaction diagram
angiotensin II + H2O
angiotensin-(1-7) + L-Phe
show the reaction diagram
angiotensin II + H2O
angiotensin-(1-7) + Phe
show the reaction diagram
angiotensin IV + H2O
VYIHP + Phe
show the reaction diagram
-
-
-
-
?
apelin-13 + H2O
?
show the reaction diagram
-
-
-
-
?
apelin-13 + H2O
QRPRLSHKGPMP + Phe
show the reaction diagram
-
-
-
-
?
apelin-36 + H2O
?
show the reaction diagram
-
-
-
-
?
beta-casomorphin + H2O
YPFVEP + Ile
show the reaction diagram
-
-
-
-
?
des-Arg9-bradykinin + H2O
RPPGFSP + Phe
show the reaction diagram
-
-
-
-
?
dynorphin A(1-13) + H2O
YGGFLRRIRPKL + Lys
show the reaction diagram
-
-
-
-
?
ghrelin + H2O
?
show the reaction diagram
-
-
-
-
?
Lys-des-Arg9 bradykinin + H2O
KRPPGFSP + Phe
show the reaction diagram
-
-
-
-
?
neurotensin(1-11) + H2O
pELYENKPRRP + Tyr
show the reaction diagram
-
-
-
-
?
neurotensin(1-8) + H2O
pELYENKP + Arg
show the reaction diagram
-
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
angiotensin I + H2O
angiotensin-(1-9) + Leu
show the reaction diagram
angiotensin I + H2O
DRVYIHPFH + L-Leu
show the reaction diagram
-
-
-
?
angiotensin II + H2O
angiotensin(1-7) + L-Phe
show the reaction diagram
angiotensin II + H2O
angiotensin-(1-7) + Phe
show the reaction diagram
the major role of ACE2 in Ang peptides metabolism is the production of Ang-(1-7). ACE2 also participates in the metabolism of other peptides non related to the renin-angiotensin system: apelin-13, neurotensin, kinetensin, dynorphin, [des-Arg9]-bradykinin, and [Lys-des-Arg9]-bradykinin
-
-
?
angiotensin II + H2O
DRVYIHP + L-Phe
show the reaction diagram
-
-
-
?
QRPRLSHKGPMPF + H2O
QRPRLSHKGPMP + L-Phe
show the reaction diagram
i.e. apein(1-13)
-
-
?
YGGFLRRIRPKLK + H2O
YGGFLRRIRPKL + L-Lys
show the reaction diagram
i.e. dynorphin A 1-13
-
-
?
angiotensin II + H2O
angiotensin(1-7) + L-Phe
show the reaction diagram
angiotensin II + H2O
angiotensin-(1-7) + L-Phe
show the reaction diagram
-
the enzyme is involved in the renin angiotensin system
-
-
?
angiotensin II + H2O
angiotensin-(1-7) + Phe
show the reaction diagram
-
the uteroplacental location of angiotensin (1-7) and ACE2 in pregnancy suggests an autocrine function of angiotensin(1-7) in the vasoactive regulation that characterizes placentation and establishes pregnancy
-
-
?
additional information
?
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
F-
enhances activity by about 10fold
Zinc
-
zinc carboxypeptidase
Zn2+
-
dependent
additional information
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(2S)-3-(biphenyl-4-yl)-2-((3S)-2-mercapto-3-methylpentanamido)propanoic acid
-
(2S)-3-biphenyl-4-yl-2-[(2-methyl-2-sulfanylpropanoyl)amino]propanoic acid
-
(2S)-3-biphenyl-4-yl-2-[(2-sulfanylpropanoyl)amino]propanoic acid
-
(2S)-3-biphenyl-4-yl-2-[(sulfanylacetyl)amino]propanoic acid
-
(2S)-3-biphenyl-4-yl-2-[[(2R)-2-sulfanylbutanoyl]amino]propanoic acid
-
(2S)-3-biphenyl-4-yl-2-[[(2R)-3-methyl-2-sulfanylbutanoyl]amino]propanoic acid
-
(2S)-3-biphenyl-4-yl-2-[[(2R)-3-phenyl-2-sulfanylpropanoyl]amino]propanoic acid
-
(2S)-3-biphenyl-4-yl-2-[[(2S)-2-phenyl-2-sulfanylacetyl]amino]propanoic acid
-
(2S)-3-biphenyl-4-yl-2-[[(2S)-2-sulfanylhexanoyl]amino]propanoic acid
-
(2S)-3-biphenyl-4-yl-2-[[(2S)-3-phenyl-2-sulfanylpropanoyl]amino]propanoic acid
-
(2S)-3-biphenyl-4-yl-2-[[cyclobutyl(sulfanyl)acetyl]amino]propanoic acid
-
(S)-3-(biphenyl-4-yl)-2-((2R,3R)-2-mercapto-3-methylpentanamido)propanoic acid
-
(S)-3-(biphenyl-4-yl)-2-((R)-2-cyclohexyl-2-mercaptoacetamido)propanoic acid
-
(S)-3-(biphenyl-4-yl)-2-((R)-2-cyclopentyl-2-mercaptoacetamido)propanoic acid
-
(S)-3-(biphenyl-4-yl)-2-((R)-2-mercapto-3-(naphthalen-2-yl)propanamido)propanoic acid
-
(S)-3-(biphenyl-4-yl)-2-((R)-2-mercapto-4,4-dimethylpentanamido)propanoic acid
-
(S)-3-(biphenyl-4-yl)-2-((R)-2-mercapto-4-methylpentanamido)propanoic acid
-
(S)-3-(biphenyl-4-yl)-2-((R)-2-mercapto-4-phenylbutanamido)propanoic acid
-
(S)-3-(biphenyl-4-yl)-2-((R)-3-cyclohexyl-2-mercaptopropanamido)propanoic acid
-
(S,S)-2-{1-carboxy-2-[3-(3,5-dichlorobenzyl)-3H-imidazol-4-yl]-ethylamino}-4-methylpentanoic acid
i.e MLN-4760
10-hydroxyusambarensine
binding energy -10.4 kcal/mol, and binding energy to SARS-CoV-2 spike protein is -9.4 kcal/mol
-
2-benzyl-3-(hydroxy-pyrrolidin-2-yl-phosphinoyl)-propionic acid
-
2-benzyl-3-[(1-benzyloxycarbonylamino-2-phenyl-ethyl)-hydroxy-phosphinoyl]-propionic acid
-
2-benzyl-3-[(1-benzyloxycarbonylamino-3-methyl-butyl)-hydroxy-phosphinoyl]-propionic acid
-
2-benzyl-3-[(1-benzyloxycarbonylamino-ethyl)-hydroxy-phosphinoyl]-propionic acid
-
2-methylphenyl-benzylsuccinic acid
-
2-[(2-carboxy-3-phenyl-propyl)-hydroxy-phosphinoyl]-pyrrolidine-1-carboxylic acid benzyl ester
-
2-[(2-carboxy-4-methyl-pentyl)-hydroxy-phosphinoyl]-pyrrolidine-1-carboxylic acid benzyl ester
-
2-[(2-carboxy-propyl)-hydroxy-phosphinoyl]-pyrrolidine-1-carboxylic acid benzyl ester
-
3,4-dimethylphenyl-benzylsuccinic acid
-
3,5-dichloro-benzylsuccinate
-
3,5-dimethylphenyl-benzylsuccinic acid
-
3-([1-[2-acetylamino-3-(1H-imidazol-4-yl)-propionylamino]-3-methyl-butyl]-hydroxy-phosphinoyl)-2-(3-phenyl-isoxazol-5-ylmethyl)-propionic acid
-
3-([1-[2-acetylamino-3-(1H-imidazol-4-yl)-propionylamino]-3-methyl-butyl]-hydroxy-phosphinoyl)-2-benzyl-propionic acid
-
3-([1-[2-acetylamino-3-(1H-imidazol-4-yl)-propionyl]-pyrrolidin-2-yl]-hydroxy-phosphinoyl)-2-(3-phenyl-isoxazol-5-ylmethyl)-propionic acid
-
3-([1-[2-acetylamino-3-(1H-imidazol-4-yl)-propionyl]-pyrrolidin-2-yl]-hydroxy-phosphinoyl)-2-benzyl-propionic acid
-
3-([1-[2-acetylamino-3-(4-hydroxy-phenyl)-propionyl]-pyrrolidin-2-yl]-hydroxy-phosphinoyl)-2-benzyl-propionic acid
-
3-methylphenyl-benzylsuccinic acid
-
3-[(1-amino-2-phenyl-ethyl)-hydroxy-phosphinoyl]-2-benzylpropionic acid
-
3-[(1-amino-3-methyl-butyl)-hydroxy-phosphinoyl]-2-benzylpropionic acid
-
3-[(1-amino-ethyl)-hydroxy-phosphinoyl]-2-benzyl-propionic acid
-
3-[[1-(2-acetylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-hydroxy-phosphinoyl]-2-benzyl-propionic acid
-
3-[[1-(2-acetylamino-3-phenyl-propionyl)-pyrrolidin-2-yl]-hydroxy-phosphinoyl]-2-benzyl-propionic acid
-
3-[[1-(2-acetylamino-4-methyl-pentanoyl)-pyrrolidin-2-yl]-hydroxy-phosphinoyl]-2-(3-phenyl-isoxazol-5-ylmethyl)-propionic acid
-
3-[[1-(2-acetylamino-4-methyl-pentanoyl)-pyrrolidin-2-yl]-hydroxy-phosphinoyl]-2-benzyl-propionic acid
-
3-[[1-(2-acetylamino-4-methyl-pentanoylamino)-2-phenylethyl]-hydroxy-phosphinoyl]-2-benzyl-propionic acid
-
3-[[1-(2-acetylamino-6-amino-hexanoyl)-pyrrolidin-2-yl]-hydroxy-phosphinoyl]-2-benzyl-propionic acid
-
3-[[1-(2-acetylamino-propionyl)-pyrrolidin-2-yl]-hydroxyphosphinoyl]-2-benzyl-propionic acid
-
4-acetylamino-5-[2-[(2-carboxy-3-phenyl-propyl)-hydroxyphosphinoyl]-pyrrolidin-1-yl]-5-oxo-pentanoic acid
-
4-methylphenyl-benzylsuccinic acid
-
4-nitrophenyl-benzylsuccinic acid
-
6-gingerol
inhibition of the ACE2 enzyme
Ac-GDYSHCSPLRYYPWWKCTYPDPEGGG-NH2
strong inhibition, most potent inhibitory peptide, i.e. DX600
amentoflvaone
inhibitor of SARS-CoV-2-(receptor binding domain):ACE2 complex
-
Amphotericin B
binding affinity -10.50 kcal/mol, favorable binding modes, critical interactions, and pharmaceutical properties
andrographolide
inhibition of the ACE2 enzyme
angiotensin I
-
apigenin
inhibition of the ACE2 enzyme
arbidol
inhibitor of SARS-CoV-2-(receptor binding domain):ACE2 complex
-
artemisnin
inhibition of the ACE2 enzyme
-
asparoside C
inhibitor of SARS-CoV-2-(receptor binding domain):ACE2 complex
-
AY-NH2
inhibitor of SARS-CoV-2-(receptor binding domain):ACE2 complex
-
benzyl (6aS,9aS)-10-benzyl-4-[benzyl(methyl)amino]-8-(cyclopropanecarbonyl)-6a,7,8,9,9a,10-hexahydrocyclopenta[b]pyrimido[4,5-e][1,4]diazepine-6(5H)-carboxylate
inhibits the protein-protein interaction between ACE2 and the receptor-binding domain of SARS-CoV-2 spike protein and suppresses SARS-CoV-2 infection in cultured cells by inhibiting viral entry via the modulation of ACE2. The compound does not have any adverse effect on ACE2 function
-
benzyl (6aS,9aS)-4-[benzyl(methyl)amino]-10-[(4-chlorophenyl)methyl]-8-(cyclopropanecarbonyl)-6a,7,8,9,9a,10-hexahydrocyclopenta[b]pyrimido[4,5-e][1,4]diazepine-6(5H)-carboxylate
inhibits the protein-protein interaction between ACE2 and the receptor-binding domain of SARS-CoV-2 spike protein and suppresses SARS-CoV-2 infection in cultured cells by inhibiting viral entry via the modulation of ACE2. The compound does not have any adverse effect on ACE2 function
-
benzyl (6aS,9aS)-4-[benzyl(methyl)amino]-8-(cyclopropanecarbonyl)-10-[(4-methylphenyl)methyl]-6a,7,8,9,9a,10-hexahydrocyclopenta[b]pyrimido[4,5-e][1,4]diazepine-6(5H)-carboxylate
inhibits the protein-protein interaction between ACE2 and the receptor-binding domain of SARS-CoV-2 spike protein and suppresses SARS-CoV-2 infection in cultured cells by inhibiting viral entry via the modulation of ACE2. The compound does not have any adverse effect on ACE2 function
-
Benzylsuccinic acid
-
Berberine
inhibition of the ACE2 enzyme
beta-sitosterol
inhibition of the ACE2 enzyme
bis-demethoxy curcumin
inhibitor of SARS-CoV-2-(receptor binding domain):ACE2 complex
cepharanthine
potential inhibitor of the SARS-CoV-2-S protein:ACE2 complex
chebulagic acid
inhibitor of SARS-CoV-2-(receptor binding domain):ACE2 complex
-
chrysin
shows a strong affinity for the active site of ACE2, ACE2-inhibitor complexes display structural stability with suitable binding energies. The interaction of chrysin with Phe40, Asp350, and Gly352 on ACE2 can interfere with the binding of SARS-CoV-2
crisimaritin
inhibition of the ACE2 enzyme
-
cryptoquindoline
binding energy -9.9 kcal/mol, and binding energy to SARS-CoV-2 spike protein is -9.5 kcal/mol
-
cryptospirolepine
binding energy -10.7 kcal/mol, and binding energy to SARS-CoV-2 spike protein is -10.6 kcal/mol
-
cucurbitacin B
inhibition of the ACE2 enzyme
curcumin
inhibition of the ACE2 enzyme
cyclohexyl-benzylsuccinic acid
-
cynaropicrin
inhibition of the ACE2 enzyme
darunavir
inhibitor of SARS-CoV-2-(receptor binding domain):ACE2 complex
denopamine
inhibitor of SARS-CoV-2-(receptor binding domain):ACE2 complex
dicyclohexyl-benzylsuccinic acid
-
digitoxin
binding affinity -11.25 kcal/mol, favorable binding modes, critical interactions, and pharmaceutical properties
dithymoquinone
inhibitor of SARS-CoV-2-(receptor binding domain):ACE2 complex
-
EDTA
no inhibition by benzylsuccinate, no inhibition by lisinopril, no inhibition by captopril, no inhibition by enalaprilat
ergoloid
potential inhibitor of the SARS-CoV-2-S protein:ACE2 complex
-
eriodictyol
potential inhibitor of the SARS-CoV-2-S protein:ACE2 complex
Evans blue
inhibits viral replication in a Vero-E6 cell-based SARS-CoV-2 infection assay
favipiravir
potential inhibitor of the SARS-CoV-2-S protein:ACE2 complex
glycyrrhizinate
binding affinity -11.75 kcal/mol, favorable binding modes, critical interactions, and pharmaceutical properties
hesperidin
hispudulin
inhibition of the ACE2 enzyme
-
hydroxychloroquine
hypericin
potential inhibitor of the SARS-CoV-2-S protein:ACE2 complex
isocryptolepine
binding energy to SARS-CoV-2 spike protein is -9.7 kcal/mol
-
isoniazid pyruvate
potential inhibitor of the SARS-CoV-2-S protein:ACE2 complex
-
isothymol
inhibition of the ACE2 enzyme
-
ivermectin
lumacaftor
inhibits viral replication in a Vero-E6 cell-based SARS-CoV-2 infection assay
-
luteolin
shows a strong affinity for the active site of ACE2, ACE2-inhibitor complexes display structural stability with suitable binding energies
menthol
potential inhibitor of the SARS-CoV-2-S protein:ACE2 complex
methylene blue
binding energy -4.89 kcal/mol, KD value 0.621mM
MLN-4760
N-acetyl-D-glucosamine
binding energy -5.6 kcal/mol
N-[(1S)-1-carboxy-3-methylbutyl]-3-(3,5-dichlorobenzyl)-L-histidine
enzyme-specific inhibitor
naringin
inhibition of the ACE2 enzyme
neoandrographolide
inhibitor of SARS-CoV-2-(receptor binding domain):ACE2 complex
Nitrofurantoin
potential inhibitor of the SARS-CoV-2-S protein:ACE2 complex
orientin
inhibition of the ACE2 enzyme
paritaprevir
inhibition of the ACE2 enzyme
phenylbenzylsuccinic acid
-
piceatannol
inhibitor of SARS-CoV-2-(receptor binding domain):ACE2 complex
pimozide
effectively binds to the ACE2 binding site for SARS-CoV-2 spike protein, does not show stability during molecular dynamics simulation
pseudojervine
inhibitor of SARS-CoV-2-(receptor binding domain):ACE2 complex
-
quercetin
quercetin-3-O-galatosyl-rhamnosyl-glucoside
inhibitor of SARS-CoV-2-(receptor binding domain):ACE2 complex
-
Quinacrine
KD value 0.102 mM
Rapamycin
binding affinity -10.57 kcal/mol, favorable binding modes, critical interactions, and pharmaceutical properties
raspberry ketone
potential inhibitor of the SARS-CoV-2-S protein:ACE2 complex
-
rifaximin
binding affinity -10.54 kcal/mol, favorable binding modes, critical interactions, and pharmaceutical properties
-
rutin
inhibition of the ACE2 enzyme
rutin DAB10
inhibitor of SARS-CoV-2-(receptor binding domain):ACE2 complex
-
saikosaponin A
inhibition of the ACE2 enzyme
sennoside A
binding energy -4.51 kcal/mol, KD value 0.041 mM
sodium lifitegrast
inhibits viral replication in a Vero-E6 cell-based SARS-CoV-2 infection assay
-
spinochrome A
inhibitor of SARS-CoV-2-(receptor binding domain):ACE2 complex
-
strychnopentamine
binding energy -9.9 kcal/mol
-
sunitinib
KD value 0.781 mM
thymoquinone
potential inhibitor of the SARS-CoV-2-S protein:ACE2 complex
Ursodeoxycholic acid
effectively binds to the ACE2 binding site for SARS-CoV-2 spike protein, does not show stability during molecular dynamics simulation
varenicline
binding energy -4.42 kcal/mol, KD value 0.017 mM
-
vitexin
inhibition of the ACE2 enzyme
(S,S)-2-[1-carboxy-2-[3-(3,5-dichlorobenzyl)-3H-inidazol-4-yl]-ethylamino]-4-methylpentanoic acid
-
MLN-4760
1,3,8-trihydroxy-6-methylanthraquinone
-
1,3,8-trihydroxy-6-methylanthraquinone (emodin) blocks interaction between the SARS corona virus spike protein and its receptor angiotensin-converting enzyme 2, 94.12% inhibition at 0.05 mM
1,4-bis-(1-anthraquinonylamino)-anthraquinone
-
slight inhibition
1,8,dihydroxy-3-carboxyl-9,10-anthraquinone
-
1,8,dihydroxy-3-carboxyl-9,10-anthraquinone (rhein) exhibits slight inhibition
1N-08795
-
90% inhibition at 0.2 mM
1N-26923
-
93% inhibition at 0.2 mM
1N-27714
-
89% inhibition at 0.2 mM
1N-28616
-
93% inhibition at 0.2 mM
1S-90995
-
11% inhibition at 0.2 mM
1S-91206
-
75% inhibition at 0.2 mM
3S-95223
-
40% inhibition at 0.2 mM
4S-14713
-
70% inhibition at 0.2 mM
4S-16659
-
76% inhibition at 0.2 mM
5,7-dihydroxyflavone
-
5,7-dihydroxyflavone (chrysin) is a weak inhibitor
5115980
-
1% inhibition at 0.2 mM
7490938
-
20% inhibition at 0.2 mM
7850455
-
20% inhibition at 0.2 mM
7857351
-
27% inhibition at 0.2 mM
7870029
-
11% inhibition at 0.2 mM
Ac-GDYSHCSPLRYYPWWPDPEGGG-NH2
-
i.e. DX600
angiotensin I
-
-
angiotensin II C-terminal analogs
-
screening of a library of angiotensin II C-terminal analogs identifies a number of tetrapeptides with increased ACE2 inhibition, and identifies residues critical to the binding of angiotensin II to the active site of ACE2
-
anthraquinone
-
slight inhibition
Cu2+
-
69% inhibition at 0.01 mM
DRVYIYbetaPF
-
angiotensin II chimera prepared by combining key elements of ACE2 binding and proteolytic stability, 90% inhibition at 10 microM and complete resistance to cleavage over 5 h
DRVYIYPF
-
angiotensin II chimera prepared by combining key elements of ACE2 binding and proteolytic stability, 96% inhibition at 10 microM and 18% cleavage over 5h
DX600
MLN 4760
-
IC50: 3 nM
MLN-4760
MLN4760
-
-
PHVF
-
angiotensin II analog, shows almost saturating levels of inhibition at the screening concentration of 100 microm
Pro-Phe
PYPF
-
angiotensin II analog, shows almost saturating levels of inhibition at the screening concentration of 100 microm
PYVF
-
angiotensin II analog, shows almost saturating levels of inhibition at the screening concentration of 100 microm
T0507-4963
-
41% inhibition at 0.2 mM
T0513-5544
-
4% inhibition at 0.2 mM
T0515-3007
-
13% inhibition at 0.2 mM
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
SARS-CoV-2
ACE2 cleavage of des-Arg9-bradykinin substrate analogue is markedly accelerated by SARS-CoV-2 infection, while cleavage of angiotensin II analogue is minimally affected by the binding of spike protein
-
additional information
ACE2 activity is not regulated by ibuprofen, flurbiprofen, etoricoxib or paracetamol
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.147
(7-methoxycoumarin-4-yl)acetyl-APK(2,4-dinitrophenyl)-OH
pH 6.5, room temperature
0.0091
angiotensin 3-8
pH 7.4, 37°C
0.0126
angiotensin 4-8
pH 7.4, 37°C
0.0245
angiotensin 5-8
pH 7.4, 37°C
0.0069
angiotensin I
-
0.005 - 0.0586
angiotensin II
0.0868
angiotensin I
-
37°C, pH 7.4
0.0057
angiotensin II
-
37°C, pH 7.4
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
6840
(7-methoxycoumarin-4-yl)acetyl-APK(2,4-dinitrophenyl)-OH
pH 6.5, room temperature
162
angiotensin 3-8
pH 7.4, 37°C
84
angiotensin 4-8
pH 7.4, 37°C
1518
angiotensin 5-8
pH 7.4, 37°C
2
angiotensin I
1110
angiotensin II
pH 7.4, 37°C
2.9
angiotensin I
-
37°C, pH 7.4
12.8
angiotensin II
-
37°C, pH 7.4
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0000015
(2S)-3-(biphenyl-4-yl)-2-((3S)-2-mercapto-3-methylpentanamido)propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.0023
(2S)-3-biphenyl-4-yl-2-[(2-methyl-2-sulfanylpropanoyl)amino]propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.0000069
(2S)-3-biphenyl-4-yl-2-[(2-sulfanylpropanoyl)amino]propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.00032
(2S)-3-biphenyl-4-yl-2-[(sulfanylacetyl)amino]propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.0000014
(2S)-3-biphenyl-4-yl-2-[[(2R)-2-sulfanylbutanoyl]amino]propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.0000015
(2S)-3-biphenyl-4-yl-2-[[(2R)-3-methyl-2-sulfanylbutanoyl]amino]propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.000086
(2S)-3-biphenyl-4-yl-2-[[(2R)-3-phenyl-2-sulfanylpropanoyl]amino]propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.000084
(2S)-3-biphenyl-4-yl-2-[[(2S)-2-phenyl-2-sulfanylacetyl]amino]propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.0000018
(2S)-3-biphenyl-4-yl-2-[[(2S)-2-sulfanylhexanoyl]amino]propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.0014
(2S)-3-biphenyl-4-yl-2-[[(2S)-3-phenyl-2-sulfanylpropanoyl]amino]propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.0000024
(2S)-3-biphenyl-4-yl-2-[[cyclobutyl(sulfanyl)acetyl]amino]propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.0000016
(S)-3-(biphenyl-4-yl)-2-((2R,3R)-2-mercapto-3-methylpentanamido)propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.000065
(S)-3-(biphenyl-4-yl)-2-((R)-2-cyclohexyl-2-mercaptoacetamido)propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.0000018
(S)-3-(biphenyl-4-yl)-2-((R)-2-cyclopentyl-2-mercaptoacetamido)propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.00055
(S)-3-(biphenyl-4-yl)-2-((R)-2-mercapto-3-(naphthalen-2-yl)propanamido)propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.0000071
(S)-3-(biphenyl-4-yl)-2-((R)-2-mercapto-4,4-dimethylpentanamido)propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.0000014
(S)-3-(biphenyl-4-yl)-2-((R)-2-mercapto-4-methylpentanamido)propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.00086
(S)-3-(biphenyl-4-yl)-2-((R)-2-mercapto-4-phenylbutanamido)propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.00042
(S)-3-(biphenyl-4-yl)-2-((R)-3-cyclohexyl-2-mercaptopropanamido)propanoic acid
apparent value, in (7-methoxycoumarin-4-yl)-acetyl-Tyr-Val-Ala-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH as substrate in 0.001 mM Zn(OAc)2, 0.1 mM TCEP, 50 mM HEPES, 0.3 mM CHAPS, and 300 mM NaCl, at pH 7.5
0.00581
10-hydroxyusambarensine
pH not specified in the publication, temperature not specified in the publication
-
0.01
2-benzyl-3-(hydroxy-pyrrolidin-2-yl-phosphinoyl)-propionic acid
Ki above 0.01 mM
0.01
2-benzyl-3-[(1-benzyloxycarbonylamino-2-phenyl-ethyl)-hydroxy-phosphinoyl]-propionic acid
Ki above 0.01 mM
0.008
2-benzyl-3-[(1-benzyloxycarbonylamino-3-methyl-butyl)-hydroxy-phosphinoyl]-propionic acid
-
0.01
2-benzyl-3-[(1-benzyloxycarbonylamino-ethyl)-hydroxy-phosphinoyl]-propionic acid
Ki above 0.01 mM
0.0003
2-[(2-carboxy-3-phenyl-propyl)-hydroxy-phosphinoyl]-pyrrolidine-1-carboxylic acid benzyl ester
-
0.003
2-[(2-carboxy-4-methyl-pentyl)-hydroxy-phosphinoyl]-pyrrolidine-1-carboxylic acid benzyl ester
-
0.003
2-[(2-carboxy-propyl)-hydroxy-phosphinoyl]-pyrrolidine-1-carboxylic acid benzyl ester
-
0.00022
3-([1-[2-acetylamino-3-(1H-imidazol-4-yl)-propionylamino]-3-methyl-butyl]-hydroxy-phosphinoyl)-2-(3-phenyl-isoxazol-5-ylmethyl)-propionic acid
-
0.0008
3-([1-[2-acetylamino-3-(1H-imidazol-4-yl)-propionylamino]-3-methyl-butyl]-hydroxy-phosphinoyl)-2-benzyl-propionic acid
-
0.0000004
3-([1-[2-acetylamino-3-(1H-imidazol-4-yl)-propionyl]-pyrrolidin-2-yl]-hydroxy-phosphinoyl)-2-(3-phenyl-isoxazol-5-ylmethyl)-propionic acid
-
0.0000021
3-([1-[2-acetylamino-3-(1H-imidazol-4-yl)-propionyl]-pyrrolidin-2-yl]-hydroxy-phosphinoyl)-2-benzyl-propionic acid
-
0.0000052
3-([1-[2-acetylamino-3-(4-hydroxy-phenyl)-propionyl]-pyrrolidin-2-yl]-hydroxy-phosphinoyl)-2-benzyl-propionic acid
-
0.01
3-[(1-amino-2-phenyl-ethyl)-hydroxy-phosphinoyl]-2-benzylpropionic acid
Ki above 0.01 mM
0.01
3-[(1-amino-3-methyl-butyl)-hydroxy-phosphinoyl]-2-benzylpropionic acid
Ki above 0.01 mM
0.01
3-[(1-amino-ethyl)-hydroxy-phosphinoyl]-2-benzyl-propionic acid
Ki above 0.01 mM
0.00000035
3-[[1-(2-acetylamino-3-methyl-butyryl)-pyrrolidin-2-yl]-hydroxy-phosphinoyl]-2-benzyl-propionic acid
-
0.0000052
3-[[1-(2-acetylamino-3-phenyl-propionyl)-pyrrolidin-2-yl]-hydroxy-phosphinoyl]-2-benzyl-propionic acid
-
0.00000125
3-[[1-(2-acetylamino-4-methyl-pentanoyl)-pyrrolidin-2-yl]-hydroxy-phosphinoyl]-2-(3-phenyl-isoxazol-5-ylmethyl)-propionic acid
-
0.0000066
3-[[1-(2-acetylamino-4-methyl-pentanoyl)-pyrrolidin-2-yl]-hydroxy-phosphinoyl]-2-benzyl-propionic acid
-
0.00092
3-[[1-(2-acetylamino-4-methyl-pentanoylamino)-2-phenylethyl]-hydroxy-phosphinoyl]-2-benzyl-propionic acid
-
0.0000065
3-[[1-(2-acetylamino-6-amino-hexanoyl)-pyrrolidin-2-yl]-hydroxy-phosphinoyl]-2-benzyl-propionic acid
-
0.0000075
3-[[1-(2-acetylamino-propionyl)-pyrrolidin-2-yl]-hydroxyphosphinoyl]-2-benzyl-propionic acid
-
0.000007
4-acetylamino-5-[2-[(2-carboxy-3-phenyl-propyl)-hydroxyphosphinoyl]-pyrrolidin-1-yl]-5-oxo-pentanoic acid
-
0.0028
Ac-GDYSHCSPLRYYPWWKCTYPDPEGGG-NH2
pH 8.0, room temperature with substrate angiotensin I, pH 7.4, room temperature with substrate (7-methoxycoumarin-4-yl)acetyl-YVADAPK(2,4-dinitrophenyl)-OH
0.0022
angiotensin I
-
0.00267
cryptospirolepine
pH not specified in the publication, temperature not specified in the publication
-
0.0256
MLN-4760
pH not specified in the publication, temperature not specified in the publication
0.0657
N-acetyl-D-glucosamine
pH not specified in the publication, temperature not specified in the publication
0.00445
strychnopentamine
pH not specified in the publication, temperature not specified in the publication
-
0.000044
(S,S)-2-[1-carboxy-2-[3-(3,5-dichlorobenzyl)-3H-inidazol-4-yl]-ethylamino]-4-methylpentanoic acid
-
-
0.0022
angiotensin I
-
-
0.0000028
DX600
-
-
additional information
additional information
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.577
methylene blue
Homo sapiens
predicted value, pH not specified in the publication, temperature not specified in the publication
0.494
sennoside A
Homo sapiens
predicted value, pH not specified in the publication, temperature not specified in the publication
0.27
varenicline
Homo sapiens
predicted value, pH not specified in the publication, temperature not specified in the publication
-
0.2
1,3,8-trihydroxy-6-methylanthraquinone
Homo sapiens
-
-
0.096
1N-08795
Homo sapiens
-
-
0.134
1N-26923
Homo sapiens
-
-
0.116
1N-28616
Homo sapiens
-
-
0.08 - 4
1S-91206
Homo sapiens
-
-
0.179
4S-14713
Homo sapiens
-
-
0.062
4S-16659
Homo sapiens
-
-
0.005
Cu2+
Homo sapiens
-
-
0.00001
DX600
Homo sapiens
-
IC50: 10 nM
0.000003
MLN 4760
Homo sapiens
-
IC50: 3 nM
0.00000044
MLN-4760
Homo sapiens
-
i.e. (SS) 2-[(1)-carboxy-2-[3-(3,5-dichlorobenzyl)-3H-imidazol-4-yl]ethylamino]-4-methyl-pentanoic acid, IC50: 0.44 nM
0.15
Pro-Phe
Homo sapiens
-
IC50: 0.15 mM
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
-
ACE2 activity shows a tendency to decrease in the serum of Alzheimer disease patients compared with normal controls
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
7.4
assay at
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
4.5 - 8
activity drops sharply at pH 8.0, substantial activity at pH 4.5-6.5, inactive at pH 9.0
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
22
room temperature, assay at
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
83% of ACE2-expressing cells are alveolar epithelial type II cells
Manually annotated by BRENDA team
non-diseased mammary arteries and atherosclerotic carotid arteries. Total vessel wall expression of ACE and ACE2 is similar during all stages of atherosclerosis. The observed ACE2 protein is enzymatically active and activity is lower in the stable advanced atherosclerotic lesions, compared to early and ruptured atherosclerotic lesions
Manually annotated by BRENDA team
ACE2 and transmembrane protease TMPRSS2 are expressed in capillaries
Manually annotated by BRENDA team
ACE2 mRNA is expressed in early and advanced human carotid atherosclerotic lesions
Manually annotated by BRENDA team
cardiac fibroblast
Manually annotated by BRENDA team
ACE2 and transmembrane protease TMPRSS2 are stained in the neuronal cell body of trigeminal ganglia
Manually annotated by BRENDA team
predominantly expressed in intestines, testis, and kidney
Manually annotated by BRENDA team
within oral mucosa
Manually annotated by BRENDA team
classical, CD14++CD16- cells
Manually annotated by BRENDA team
ACE2 and transmembrane proteaseTMPRSS2 are strongly expressed in the intermediate layer of the squamous epithelia of tongue papillae and buccal mucosa
Manually annotated by BRENDA team
non-malignant tissues surrounding invasive pancreatic ductal adenocarcinoma
Manually annotated by BRENDA team
ACE2 and transmembrane protease TMPRSS2 are coexpressed in the ductal epithelium and acinar cells of salivary glands
Manually annotated by BRENDA team
ACE2- and transmembrane protease TMPRSS2-positive cells are observed in the taste buds of the tongue
Manually annotated by BRENDA team
ACE2- and transmembrane protease TMPRSS2-positive cells are observed in the taste buds of the tongue
Manually annotated by BRENDA team
total vessel wall expression of ACE and ACE2 is similar during all stages of atherosclerosis. The observed ACE2 protein is enzymatically active and activity is lower in the stable advanced atherosclerotic lesions, compared to early and ruptured atherosclerotic lesions
Manually annotated by BRENDA team
-
coronary sinus blood, evidence against a major role for angiotensin converting enzyme-related carboxypeptidase in angiotensin peptide metabolism in the human coronary circulation
Manually annotated by BRENDA team
-
cardiac blood vessel
Manually annotated by BRENDA team
-
expressed ACE2 to a high level, has not been shown to be infected by SARS-CoV. Presence of ACE2 alone is not sufficient for maintaining viral infection. Other virus receptors or coreceptors may be required in different tissues
Manually annotated by BRENDA team
-
surface enterocytes of the small intestine
Manually annotated by BRENDA team
-
the enzyme is upregulated in fibrotic liver
Manually annotated by BRENDA team
-
decreased ACE2 expression, expression profile in relation to clinicopathological factors, e.g. smoking, overview
Manually annotated by BRENDA team
-
expression of ACE2 is similar in samples obtained from normal term or preeclamptic pregnancies, except for increased expression of ACE2 in umbilical arterial endothelium in preeclampsia. The uteroplacental location of angiotensin (1-7) and ACE2 in pregnancy suggests an autocrine function of angiotensin(1-7) in the vasoactive regulation that characterizes placentation and establishes pregnancy
Manually annotated by BRENDA team
-
-
Manually annotated by BRENDA team
-
surface enterocytes
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
ACE2 exists as bothmembrane bound and soluble forms, the latter being generated by proteolytic cleavage of the ectodomain by the tumor necrosis factor convertase ADAM17
Manually annotated by BRENDA team
the full-length enzyme (ACE2) contains a structural transmembrane domain, which anchors its extracellular domain to the plasma membrane
Manually annotated by BRENDA team
additional information
transmembrane domain
-
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
drug target
evolution
malfunction
loss of ACE2 function is implicated in severe acute respiratory syndrome, SARS, pathogenesis
metabolism
physiological function
malfunction
metabolism
-
ACE2 ia a component of the renin-angiotensin system, RAS
physiological function
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
ACE2_HUMAN
805
1
92463
Swiss-Prot
Secretory Pathway (Reliability: 1)
PDB
SCOP
CATH
UNIPROT
ORGANISM
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
87000
gel filtration
89600
recombinant enzyme, MALDI-TOF mass spectrometry
90000
recombinant His-tagged enzyme, SDS-PAGE
92460
DNA sequence determination
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
monomer
1 * 87000, mass photometry, purified ACE2 ectodomain
tetramer
a super-potent tetravalent form of ACE2 is produced by protein engineering technology, that couples to the human immunoglobulin gamma1 Fc region, using a self-assembling, tetramerization domain from p53 protein. This high molecular weight Quad protein (ACE2-Fc-TD) retains binding to the SARS-CoV-2 receptor binding spike protein and can form a complex with the spike protein plus anti-viral antibodies. The ACE2-Fc-TD acts as a powerful decoy protein that out-performs soluble monomeric and dimeric ACE2 proteins and blocks both SARS-CoV-2 pseudovirus and SARS-CoV-2 virus infection with greatly enhanced efficacy
additional information
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
glycoprotein
proteolytic modification
ACE2 is is shed from human airway epithelia, constitutive generation of soluble ACE2 is inhibited by ADAM17 inhibitor DPC 333, i.e. (2R)-2-[(3R)-3-amino-3(4-[2-methyl-(4-quinolinyl) methoxy] phenyl)-2-oxopyrrolidinyl]-N-hydroxy-4-methylpentanamide, but not by while ADAM10 inhibitor GI254023, while phorbol ester, ionomycin, endotoxin, and IL-1beta and TNFalpha acutely induce ACE2 release, thus, the regulation of ACE2 cleavage involves a disintegrin and metalloprotease 17, ADAM17, and ADAM10, overview. The ACE2 ectodomain regulates its release and residue L584 might be part of a putative sheddase recognition motif
glycoprotein
-
-
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
cryo-electron microscopy structure of ACE2 in complex with the SARS-CoV-2 Omicron variant spike protein reveals new salt bridges and hydrogen bonds formed by mutated residues Arg493, Ser496, and Arg498 in the receptor binding domain of spike protein. These interactions compensate for other Omicron mutations known to reduce ACE2 binding affinity, resulting in similar biochemical ACE2 binding affinities for the Delta and Omicron variants. Pseudoviruses that display the Omicron spike protein exhibit increased antibody evasion
crystal structure of a complex of soluble angiotensin-converting enzyme 2 (ACE2), residues 19 to 615 and SARS-CoV spike protein receptor binding domain (RBD), residues 306 to 575. Crystals in space group P21, a = 82.3 A, b = 119.4 A, c = 113.2 A, beta = 91.2°, with two complexes per asymmetric unit, are grown at room temperature from a mother liquor containing 24% polyethylene glycol 6000, 150 mM NaCl, 100 mM Tris at pH 8.2, and 10% ethylene glycol. The crystal structure at 2.9 A resolution of the RBD of the SARS-CoV spike protein bound with the peptidase domain of human ACE2 shows that the RBD presents a gently concave surface, which cradles the N-terminal lobe of the peptidase
hanging drop vapor diffusion at 16-18°C, crystal structures of the native and inhibitor(MLN-4760)-bound forms of the ACE2 extracellular domains are solved to 2.2 and 3.0 A resolution, respectively
hanging drop vapor diffusion at 16-18°C, crystal structures of the native and inhibitor-bound forms of the ACE2 extracellular domains are solved to 2.2 A and 3.0 A resolution
interaction of ACE2 and the receptor-binding domain of SARS-CoV-2 spike protein. The omicron variant interacts with the ACE2 receptor with strong affinity involving unique amino acid residues than most of the SARS-CoV-2 variants suggesting increased infectivity and immune/vaccine evasion potential of the variant. The Lamda variant (C.37) interacts with ACE2 with higher affinity using identical receptor-binding domain residues as the omicron
modeling of the interaction with SARS-CoV-2 variants Delta plus, Iota, Kappa, Mu, Lambda, and C.1.2. Differences in the interactions between the RBD and hACE2 include hydrogen bonding, salt bridge interactions, non-bonded interactions, and binding free energy differences. All mutations in the spike protein increased the contagiousness of SARS-CoV-2 variants
molecular dynamics simulations of differently glycosylated ACE2 variants and their interaction with SARS-CoV-2 spike protein. Presence of the glycans results in stronger and longer ranged interactions that get extended by a catch-slip mechanism between the glycans. The glycans also strengthen and extend the existing protein-protein interactions
structure of the complex with SARS-CoV-2 receptor-binding domains of variants omicron and delta. The substitutions in omicron receptor-binding domian lead to changes of electrostatic charges. Compared with other variant receptor-binding domains, the binding surface of omicron receptor-binding domain has the largest-scale positive charge region. T478K, Q493R, and Q498R substitutions significantly increase positive changes, and E484A decreases the negative charges
structure of the SARS-CoV-2 chimeric receptor binding domain with human ACE2 complex. Residues Ser19, Gln24, Thr27, Phe28, His34, Glu35, Asp38, Tyr41, Gln42, Leu45, Tyr83, Asn330, Lys353, Gly354, Asp355, and Arg357 have a critical role in the binding regions. SARS-CoV has relatively similar interaction binding sites to SARS-CoV-2 except for Ser19, Leu45, Leu79, Gln325, Gly326, and Glu329 which are not involved in the interaction in SARS-CoV-2
the SARS-CoV-2 S/receptor-binding domain binding interface with ACE2 contains in total 17 residues of receptor-binding domain and 16 residues of ACE2 as interfacial residues in the protein-protein complex, forming H-bond, one salt bridge, and several van der Waals interactions. The receptor-binding domain of the spike protein has the highest affinity towards ACE2 in comparison to its two inhibitors B38 monoclonal antibody followed by Ty1 alpaca nanobody
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
analysis
receptor binding domain-ACE2 binding assay based on time-resolved FRET, which reliably monitors the interaction in a physiologically relevant and cellular context. The modular assay can monitor the impact of different cellular components, such as heparan sulfate, lipids, and membrane proteins on the receptor binding domain-ACE2 interaction and it can be extended to the full-length spike protein. The assay is high throughput compatible and can detect small-molecule competitive and allosteric modulators of the receptor binding domain-ACE2 interaction
D206G
deleterious missense variant
D355N
variant exhibits lower binding to SARS-CoV-2 S protein
D38V
variant exhibits lower binding to SARS-CoV-2 S protein
D509Yr
variant exhibits lower binding to SARS-CoV-2 S protein
E23K
the variant in the binding region increases disease susceptibility towards SARS-CoV-2
E329G
variant shows a strong binding affinity with SARS-CoV-2 spike protein variants with very strong E329G-V483A, E329G-G476S, strong E329G-A419S, E329G-A348T and moderate E329G-S383C,E329G-F486L interaction
E37K
non-synonymous single nucleotide polymorphism
E484K
mutation forms high-affinity complexes (~40% more than wild-type)
E484K/N501Y
variant possesses both enhanced affinity and antibody resistance
F72V
variant exhibits lower binding to SARS-CoV-2 S protein
G211R
G326E
variant exhibits lower binding to SARS-CoV-2 S protein
G352V
variant exhibits lower binding to SARS-CoV-2 S protein
G726R
non-synonymous single nucleotide polymorphism
H34R
variant exhibits lower binding to SARS-CoV-2 S protein
H378R
I21V
the variant in the binding region increases disease susceptibility towards SARS-CoV-2
I468V
deleterious missense variant
K31R
variant exhibits lower binding to SARS-CoV-2 S protein
K341R
deleterious missense variant
K417T/E484K/N501Y
variant possesses both enhanced affinity and antibody resistance
K481Q
angiotensin I cleavage activity is 21% of wild-type activity, angiotensin II cleavage activity is 71.8% of wild-type activity
K68E
variant exhibits lower binding to SARS-CoV-2 S protein
L584A
the point mutation in the ACE2 ectodomain markedly attenuates shedding. The resultant ACE2-L584A mutant trafficks to the cell membrane and facilitates SARS-CoV entry into target cells
L595V
non-synonymous single nucleotide polymorphism
L731F
deleterious missense variant
L79I
mutation increases binding of SARS-CoV-2 spike protein
M62V
variant exhibits lower binding to SARS-CoV-2 S protein
N33I
variant exhibits lower binding to SARS-CoV-2 S protein
N501Y
mutation forms high-affinity complexes (~40% more than wild-type)
N51S
variant exhibits lower binding to SARS-CoV-2 S protein
N580A
the mutation in the ectodomain has no effect on sACE2 release
N64K
the variant in the binding region increases disease susceptibility towards SARS-CoV-2
N720D
P263S
non-synonymous single nucleotide polymorphism
P284S
non-synonymous single nucleotide polymorphism
P583A
the mutation in the ectodomain has no effect on sACE2 release
Q102P
the variant in the binding region increases disease susceptibility towards SARS-CoV-2
Q35K
variant exhibits lower binding to SARS-CoV-2 S protein
Q37K
variant exhibits lower binding to SARS-CoV-2 S protein
Q388L
variant exhibits lower binding to SARS-CoV-2 S protein
Q42L
mutation increases binding of SARS-CoV-2 spike protein
R169Q
angiotensin I cleavage activity is 5.2% of wild-type activity, angiotensin II cleavage activity is 1.1% of wild-type activity. The mutant enzyme does not show any activity with angiotensin I in the absence of chloride ions
R169QK481QR514Q
angiotensin I cleavage activity is 53.2% of wild-type activity, angiotensin II cleavage activity is 203.4% of wild-type activity
R219C
deleterious missense variant
R219H
deleterious missense variant
R514Q
angiotensin I cleavage activity is 52% of wild-type activity, angiotensin II cleavage activity is 179.3% of wild-type activity, enhancement of angiotensin II cleavage is a result of a 2.5-fold increase in Vmax compared with the wild-type
R582A
the mutation in the ectodomain has no effect on sACE2 release
R697G
deleterious missense variant
R768W
non-synonymous single nucleotide polymorphism
S477N
mutation forms high-affinity complexes (~40% more than wild-type)
S477N/E484K
variant possesses both enhanced affinity and antibody resistance
S547C
deleterious missense variant
S563L
non-synonymous single nucleotide polymorphism
S692P
deleterious missense variant
T27A
the variant in the binding region increases disease susceptibility towards SARS-CoV-2
T92I
the variant in the binding region increases disease susceptibility towards SARS-CoV-2
V581A
the mutation in the ectodomain has no effect on sACE2 release
V604A
the mutation in the ectodomain has no effect on sACE2 release
W271A
angiotensin I cleavage activity is 5.3% of wild-type activity, angiotensin II cleavage activity is 0.9% of wild-type activity. Lacks any significant chloride sensitivity with the substrate angiotensin I
W459C
non-synonymous single nucleotide polymorphism
Y252N
non-synonymous single nucleotide polymorphism
Y50F
variant exhibits lower binding to SARS-CoV-2 S protein
Y83H
variant exhibits lower binding to SARS-CoV-2 S protein
H345A
-
no activity with (7-methoxycoumarin-4-yl)acetyl-APK-2,4-dinitrophenyl
H345L
-
no activity with (7-methoxycoumarin-4-yl)acetyl-APK-2,4-dinitrophenyl
H505A
-
1.5% of wild-type activity with (7-methoxycoumarin-4-yl)acetyl-APK-2,4-dinitrophenyl as substrate
H505L
-
no activity with (7-methoxycoumarin-4-yl)acetyl-APK-2,4-dinitrophenyl
R169Q
-
as active as wild-type enzyme with (7-methoxycoumarin-4-yl)acetyl-APK-2,4-dinitrophenyl as substrate
R273K
-
no activity with (7-methoxycoumarin-4-yl)acetyl-APK-2,4-dinitrophenyl
R273Q
-
no activity with (7-methoxycoumarin-4-yl)acetyl-APK-2,4-dinitrophenyl
R514Q
-
about 10% of wild-type activity with (7-methoxycoumarin-4-yl)acetyl-APK-2,4-dinitrophenyl as substrate
additional information
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
22
recombinant enzyme, at room temperature, stable for 6 h
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
Zn2+ stabilizes
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
recombinant
recombinant enzyme
recombinant from CHO K1 cells
recombinant from Sf21 cells as mIgG-tagged protein
recombinant from Sf9 cells, to near homogeneity
recombinant truncated extracellular form of human ACE2 (residues 1–740)
recombinant wild-type and extracellular domain as FLAG-tagged proteins from Sf9 cells
soluble ACE2, residues 19 to 615, was expressed in Sf9 cells
Ni3+-charged nitrilotriacetic acid-linked resin chromatography and and anti-Flag column chromatography
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
30 M HEK293 Freestyle cells are transfected with 293fectin combined with 30 mg of pFuse-based vectors containing the ACE2 construct
ACE2 expressed in Chinese hamster ovary cells specifically binds to glutathione-S-transferase-calmodulin, but not glutathione-S-transferase alone
ACE2 expression analysis
development of a transgenic mouse model (syn-hACE2) where the full open reading frame of the human ACE2 gene is under the control of a synapsin promoter, allowing the hACE2 protein to be expressed specifically in neurons
DNA and amino acid sequence determination, gene maps to choromosomal location Xp22, expression in CHO cells of the wild-type and of the soluble truncated mutant, the latter as c-Myc- and His-tagged protein
expressed in the endothelial cell line Eahy926
expression in HEK-293 cells
expression in Spodoptera frugiperda Sf9 cells via infection with baculovirus
expression in the avian fibroblast cell line, DF1
expression of a fusion of ACE2 to the Fc domain of IgG1
expression of extracellular domain and wild-type, both as FLAG-tagged proteins, in Spodotera frugiperda Sf9 cells via baculovirus infection
expression of recombinant ACE2 in P-selectin-transfected Chinese hamster ovary cells
expression of the extracellular domain of human ACE2, residues Gln18-Ser740
expression of the mutant enzyme in CHO cells
expression of wild-type and utant L584A ACE2 in HEK-293 cells
gene ACE2, DNA sequence determination and analysis, expression in CHO K1 cells, secretion of the active enzyme from transfected cells by cleavage N-terminal to the transmembrane domain
N-terminal SNAP-tagged human ACE2 labeled with terbium, expression in EK-293 cell
Sf21 cells via infection with baculovirus, mIgG-tagged protein
cloning and expression of a constitutively secreted form of ACE2, WKY rats are transduced with lentiviral vector containing shACE2. The plasma ACE2 levels could be increased by lentivector-mediated shACE2 gene transfer. This provides a tool to investigate the role of this enzyme in the development of the cardiovascular disease both through the role of hyperactivity of the RAS and through infectious agents
-
expressed in HEK 293-T cells
-
expressed in HEK-ACE2 cells
-
expression in CHO cells and polarized Madin-Darby canine kidney epithelial cells
-
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
angiotensin peptides modulate the expression of angiotensin converting enzyme II in the cardiovascular system, angiotensin II upregulates ACE2, modulated through activation of Ang II type 1 receptor, AT1R, and increases Ang-(1-7) formation from Ang II, and ACE2 expression is further enhanced by Ang-(1-7) in a positive feedback loop, molecular mechanism, overview. The upregulation is inhibited by Ang-(1-7) Mas receptor blockade through PD98059
expression of ACE2 increases during aging in human lungs. ACE2 expression increases upon telomere shortening or dysfunction in cultured mammalian cells. This increase is controlled at the transcriptional level, and ACE2 promoter activity is DNA damage response-dependent
knockdown of TRIM28 induces enzyme (ACE2) expression. TRIM28 knockdown enhances interferon-gamma (IFN-gamma)-induced ACE2 expression through a mechanism involving upregulating IFN-gamma receptor 2 (IFNGR2) in both A549 and PAEpiCs. The upregulated ACE2 induced by TRIM28 knockdown and co-culture of NK cells is partially reversed by dexamethasone in A-549 cells. TRIM28 is a novel regulator of ACE2 expression and SARS-CoV-2 cell entry
mechanisms exist by which SARS-CoV-2 induces shedding of ACE2, together with downregulation of ACE2 gene expression
miR-421 (miRNA) downregulates the expression of ACE2 in human cells by interacting with a specific sequence in its 3'-UTR and thereby repressing translation
presence of ibuprofen, flurbiprofen, etoricoxib or paracetamol have no effect on ACE2 mRNA/protein expression and activity in the Caco-2 cell model
SARS-CoV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyperinflammation
treatment of A-549 lung epithelial cells with 17-beta-estradiol reduces the cellular mRNA levels of ACE2 and TMPRSS2 mRNA, while not affecting FURIN expression
up-regulated expression in patients with heart failure and hypertension
angiotensin II downregulates ACE2, but increases the expression of vascular endothelial growth factor and type receptor AT1-R, overview
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
analysis
diagnostics
ACE2 levels is a putative early biomarker of SARS-CoV-2 infection severity
drug development
a super-potent tetramerized ACE2 protein displays enhanced neutralization of SARS-CoV-2 virus infection
medicine
pharmacology
analysis
-
mass spectrometric assay for angiotensin-converting enzyme 2 using angiotensin II as substrate will have applications in drug screening, antagonist development, and clinical investigations
medicine
pharmacology
-
ACE2 might be a target for treatment of non-small cell lung cancer
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Yan, Z.H.; Ren, K.J.; Wang, Y.; Chen, S.; Brock, T.A.; Rege, A.A.
Development of intramolecularly quenched fluorescent peptides as substrates of angiotensin-converting enzyme 2
Anal. Biochem.
312
141-147
2003
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Guy, J.L.; Jackson, R.M.; Acharya, K.R.; Sturrock, E.D.; Hooper, N.M.; Turner, A.J.
Angiotensin-converting enzyme-2 (ACE2): comparative modeling of the active site, specificity requirements, and chloride dependence
Biochemistry
42
13185-13192
2003
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; Breitbart, R.E.; Acton, S.
A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9
Circ. Res.
87
E1-9
2000
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Zisman, L.S.; Keller, R.S.; Weaver, B.; Lin, Q.; Speth, R.; Bristow, M.R.; Canver, C.C.
Increased angiotensin-(1-7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme homologue ACE2
Circulation
108
1707-1712
2003
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Dales, N.A.; Gould, A.E.; Brown, J.A.; Calderwood, E.F.; Guan, B.; Minor, C.A.; Gavin, J.M.; Hales, P.; Kaushik, V.K.; Stewart, M.; Tummino, P.J.; Vickers, C.S.; Ocain, T.D.; Patane, M.A.
Substrate-based design of the first class of angiotensin-converting enzyme-related carboxypeptidase (ACE2) inhibitors
J. Am. Chem. Soc.
124
11852-11853
2002
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Tipnis, S.R.; Hooper, N.M.; Hyde, R.J.; Christie, G.; Karran, E.; Turner, A.J.
A humen homolog of angiotensin converting enzyme - cloning and functional expression as a captopril-insensitive carboxypeptidase
J. Biol. Chem.
275
33238-33243
2000
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Vickers, C.; Hales, P.; Kaushik, V.; Dick, L.; Gavin, J.; Tang, J.; Godbout, K.; Parsons, T.; Baronas, E.; Hsieh, F.; Acton, S.; Patane, M.; Nichols, A.; Tummino, P.
Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase
J. Biol. Chem.
277
14838-14843
2002
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Huang, L.; Sexton, D.J.; Skogerson, K.; Devlin, M.; Smith, R.; Sanyal, I.; Parry, T.; Kent, R.; Enright, J.; Wu, Q.L.; Conley, G.; DeOliveira, D.; Morganelli, L.; Ducar, M.; Wescott, C.R.; Ladner, R.C.
Novel peptide inhibitors of angiotensin-converting enzyme 2
J. Biol. Chem.
278
15532-15540
2003
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Benson, D.A.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Wheeler, D.L.
GenBank: update
Nucleic Acids Res.
32
D23-D26
2004
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Rice, G.I.; Thomas, D.A.; Grant, P.J.; Turner, A.J.; Hooper, N.M.
Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism
Biochem. J.
383
45-51
2004
Homo sapiens
Manually annotated by BRENDA team
Warner, F.J.; Smith, A.I.; Hooper, N.M.; Turner, A.J.
Angiotensin-converting enzyme-2: a molecular and cellular perspective
Cell. Mol. Life Sci.
61
2704-2713
2004
Homo sapiens
Manually annotated by BRENDA team
Danilczyk, U.; Eriksson, U.; Oudit, G.Y.; Penninger, J.M.
Physiological roles of angiotensin-converting enzyme 2
Cell. Mol. Life Sci.
61
2714-2719
2004
Homo sapiens
Manually annotated by BRENDA team
Kuba, K.; Imai, Y.; Penninger, J.M.
Angiotensin-converting enzyme 2 in lung diseases
Curr. Opin. Pharmacol.
6
271-276
2006
Homo sapiens
Manually annotated by BRENDA team
Douglas, G.C.; OBryan, M.K.; Hedger, M.P.; Lee, D.K.; Yarski, M.A.; Smith, A.I.; Lew, R.A.
The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis
Endocrinology
145
4703-4711
2004
Rattus norvegicus, Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Guy, J.L.; Jackson, R.M.; Jensen, H.A.; Hooper, N.M.; Turner, A.J.
Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis
FEBS J.
272
3512-3520
2005
Homo sapiens
Manually annotated by BRENDA team
Elased, K.M.; Cunha, T.S.; Gurley, S.B.; Coffman, T.M.; Morris, M.
New mass spectrometric assay for angiotensin-converting enzyme 2 activity
Hypertension
47
1010-1017
2006
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Rice, G.I.; Jones, A.L.; Grant, P.J.; Carter, A.M.; Turner, A.J.; Hooper, N.M.
Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study
Hypertension
48
914-920
2006
Homo sapiens
Manually annotated by BRENDA team
Lew, R.A.; Warner, F.J.; Hanchapola, I.; Smith, A.I.
Characterization of angiotensin converting enzyme-2 (ACE2) in human urine
Int. J. Pept. Res. Ther.
12
283-289
2006
Homo sapiens
Manually annotated by BRENDA team
Warner, F.J.; Lew, R.A.; Smith, A.I.; Lambert, D.W.; Hooper, N.M.; Turner, A.J.
Angiotensin-converting enzyme 2 (ACE2), but not ACE, is preferentially localized to the apical surface of polarized kidney cells
J. Biol. Chem.
280
39353-39362
2005
Homo sapiens
Manually annotated by BRENDA team
Campbell, D.J.; Zeitz, C.J.; Esler, M.D.; Horowitz, J.D.
Evidence against a major role for angiotensin converting enzyme-related carboxypeptidase (ACE2) in angiotensin peptide metabolism in the human coronary circulation
J. Hypertens.
22
1971-1976
2004
Homo sapiens
Manually annotated by BRENDA team
To, K.F.; Lo, A.W.
Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2)
J. Pathol.
203
740-743
2004
Homo sapiens
Manually annotated by BRENDA team
Valdes, G.; Neves, L.A.; Anton, L.; Corthorn, J.; Chacon, C.; Germain, A.M.; Merrill, D.C.; Ferrario, C.M.; Sarao, R.; Penninger, J.; Brosnihan, K.B.
Distribution of angiotensin-(1-7) and ACE2 in human placentas of normal and pathological pregnancies
Placenta
27
200-207
2006
Homo sapiens
Manually annotated by BRENDA team
Huentelman, M.J.; Zubcevic, J.; Katovich, M.J.; Raizada, M.K.
Cloning and characterization of a secreted form of angiotensin-converting enzyme 2
Regul. Pept.
122
61-67
2004
Homo sapiens
Manually annotated by BRENDA team
Li, X.; Molina-Molina, M.; Abdul-Hafez, A.; Uhal, V.; Xaubet, A.; Uhal, B.D.
Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis
Am. J. Physiol. Lung Cell Mol. Physiol.
295
L178-185
2008
Homo sapiens, Mus musculus, Rattus norvegicus
Manually annotated by BRENDA team
Ho, T.Y.; Wu, S.L.; Chen, J.C.; Li, C.C.; Hsiang, C.Y.
Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction
Antiviral Res.
74
92-101
2007
Homo sapiens
Manually annotated by BRENDA team
Lambert, D.W.; Hooper, N.M.; Turner, A.J.
Angiotensin-converting enzyme 2 and new insights into the renin-angiotensin system
Biochem. Pharmacol.
75
781-786
2008
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Deaton, D.N.; Gao, E.N.; Graham, K.P.; Gross, J.W.; Miller, A.B.; Strelow, J.M.
Thiol-based angiotensin-converting enzyme 2 inhibitors: P1 modifications for the exploration of the S1 subsite
Bioorg. Med. Chem. Lett.
18
732-737
2008
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Zhong, J.C.; Yu, X.Y.; Lin, Q.X.; Li, X.H.; Huang, X.Z.; Xiao, D.Z.; Lin, S.G.
Enhanced angiotensin converting enzyme 2 regulates the insulin/Akt signalling pathway by blockade of macrophage migration inhibitory factor expression
Br. J. Pharmacol.
153
66-74
2008
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Guy, J.L.; Lambert, D.W.; Turner, A.J.; Porter, K.E.
Functional angiotensin-converting enzyme 2 is expressed in human cardiac myofibroblasts
Exp. Physiol.
93
579-588
2008
Homo sapiens
Manually annotated by BRENDA team
Lew, R.A.; Warner, F.J.; Hanchapola, I.; Yarski, M.A.; Manohar, J.; Burrell, L.M.; Smith, A.I.
Angiotensin-converting enzyme 2 catalytic activity in human plasma is masked by an endogenous inhibitor
Exp. Physiol.
93
685-693
2008
Homo sapiens
Manually annotated by BRENDA team
Lambert, D.W.; Clarke, N.E.; Hooper, N.M.; Turner, A.J.
Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain
FEBS Lett.
582
385-390
2008
Homo sapiens
Manually annotated by BRENDA team
Rella, M.; Rushworth, C.A.; Guy, J.L.; Turner, A.J.; Langer, T.; Jackson, R.M.
Structure-based pharmacophore design and virtual screening for novel angiotensin converting enzyme 2 inhibitors
J. Chem. Inf. Model.
46
708-716
2006
Homo sapiens
Manually annotated by BRENDA team
Mores, A.; Matziari, M.; Beau, F.; Cuniasse, P.; Yiotakis, A.; Dive, V.
Development of potent and selective phosphinic peptide inhibitors of angiotensin-converting enzyme 2
J. Med. Chem.
51
2216-2226
2008
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Guo, H.; Guo, A.; Wang, C.; Yan, B.; Lu, H.; Chen, H.
Expression of feline angiotensin converting enzyme 2 and its interaction with SARS-CoV S1 protein
Res. Vet. Sci.
84
494-496
2008
Felis silvestris (Q56H28), Rattus norvegicus (Q5EGZ1), Mus musculus (Q8R0I0), Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Koka, V.; Huang, X.R.; Chung, A.C.; Wang, W.; Truong, L.D.; Lan, H.Y.
Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway
Am. J. Pathol.
172
1174-1183
2008
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Lai, Z.W.; Lew, R.A.; Yarski, M.A.; Mu, F.T.; Andrews, R.K.; Smith, A.I.
The identification of a calmodulin-binding domain within the cytoplasmic tail of angiotensin-converting enzyme-2
Endocrinology
150
2376-2381
2009
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Rushworth, C.A.; Guy, J.L.; Turner, A.J.
Residues affecting the chloride regulation and substrate selectivity of the angiotensin-converting enzymes (ACE and ACE2) identified by site-directed mutagenesis
FEBS J.
275
6033-6042
2008
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Towler, P.; Staker, B.; Prasad, S.G.; Menon, S.; Tang, J.; Parsons,T.; Ryan, D.; Fisher, M.; Williams, D.; Dales, N.A.; Patane, M.A.; Pantoliano, M.W.
ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis
J. Biol. Chem.
279
17996-18007
2004
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Ferreira. A.J.; Raizada, M.K.
Are we poised to target ACE2 for the next generation of antihypertensives?
J. Mol. Med.
86
685-690
2008
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Xia, H.; Lazartigues, E.
Angiotensin-converting enzyme 2 in the brain: properties and future directions
J. Neurochem.
107
1482-1494
2008
Rattus norvegicus (Q5EGZ1), Mus musculus (Q8R0I0), Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Sluimer, J.C.; Gasc, J.M.; Hamming, I.; van Goor, H.; Michaud, A.; van den Akker, L.H.; Juetten, B.; Cleutjens, J.; Bijnens, A.P.; Corvol, P.; Daemen, M.J.; Heeneman, S.
Angiotensin-converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions
J. Pathol.
215
273-279
2008
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Bindom, S.M.; Lazartigues, E.
The sweeter side of ACE2: physiological evidence for a role in diabetes
Mol. Cell. Endocrinol.
302
193-202
2009
Homo sapiens (Q9BYF1), Rattus norvegicus (Q5EGZ1)
Manually annotated by BRENDA team
Oudit, G.Y.; Imai, Y.; Kuba, K.; Scholey, J.W.; Penninger, J.M.
The role of ACE2 in pulmonary diseases - relevance for the nephrologist.
Nephrol. Dial. Transplant.
24
1362-1365
2009
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Vaz-Silva, J.; Carneiro, M.M.; Ferreira, M.C.; Pinheiro, S.V.; Silva, D.A.; Silva-Filho, A.L.; Witz, C.A.; Reis, A.M.; Santos, R.A.; Reis, F.M.
The vasoactive peptide angiotensin-(1-7), its receptor Mas and the angiotensin-converting enzyme type 2 are expressed in the human endometrium
Reprod. Sci.
16
247-256
2009
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Zhou, L.; Zhang, R.; Yao, W.; Wang, J.; Qian, A.; Qiao, M.; Zhang, Y.; Yuan, Y.
Decreased expression of Angiotensin-converting enzyme 2 in pancreatic ductal adenocarcinoma is associated with tumor progression
Tohoku J. Exp. Med.
217
123-131
2009
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Clayton, D.; Hanchapola, I.; Perlmutter, P.; Smith, A.I.; Aguilar, M.I.
The active site specificity of angiotensin II converting enzyme 2 investigated through single and multiple residue changes and beta-amino acid substrate analogs
Adv. Exp. Med. Biol.
611
559-560
2009
Homo sapiens
Manually annotated by BRENDA team
Jia, H.P.; Look, D.C.; Tan, P.; Shi, L.; Hickey, M.; Gakhar, L.; Chappell, M.C.; Wohlford-Lenane, C.; McCray, P.B.
Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia
Am. J. Physiol. Lung Cell Mol. Physiol.
297
L84-L96
2009
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Takahashi, Y.; Haga, S.; Ishizaka, Y.; Mimori, A.
Autoantibodies to angiotensin-converting enzyme 2 in patients with connective tissue diseases
Arthritis Res. Ther.
12
R85
2010
Homo sapiens
Manually annotated by BRENDA team
Stewart, J.M.; Ocon, A.J.; Clarke, D.; Taneja, I.; Medow, M.S.
Defects in cutaneous angiotensin-converting enzyme 2 and angiotensin-(1-7) production in postural tachycardia syndrome
Hypertension
53
767-774
2009
Homo sapiens
Manually annotated by BRENDA team
Yoshikawa, N.; Yoshikawa, T.; Hill, T.; Huang, C.; Watts, D.M.; Makino, S.; Milligan, G.; Chan, T.; Peters, C.J.; Tseng, C.T.
Differential virological and immunological outcome of severe acute respiratory syndrome coronavirus infection in susceptible and resistant transgenic mice expressing human angiotensin-converting enzyme 2
J. Virol.
83
5451-5465
2009
Homo sapiens
Manually annotated by BRENDA team
Feng, Y.; Wan, H.; Liu, J.; Zhang, R.; Ma, Q.; Han, B.; Xiang, Y.; Che, J.; Cao, H.; Fei, X.; Qiu, W.
The angiotensin-converting enzyme 2 in tumor growth and tumor-associated angiogenesis in non-small cell lung cancer
Oncol. Rep.
23
941-948
2010
Homo sapiens
Manually annotated by BRENDA team
Lin, C.S.; Pan, C.H.; Wen, C.H.; Yang, T.H.; Kuan, T.C.
Regulation of angiotensin converting enzyme II by angiotensin peptides in human cardiofibroblasts
Peptides
31
1334-1340
2010
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Lambert, D.W.; Lambert, L.A.; Clarke, N.E.; Hooper, N.M.; Porter, K.E.; Turner, A.J.
Angiotensin-converting enzyme 2 is subject to post-transcriptional regulation by miR-421
Clin. Sci.
127
243-249
2014
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Liu, S.; Liu, J.; Miura, Y.; Tanabe, C.; Maeda, T.; Terayama, Y.; Turner, A.J.; Zou, K.; Komano, H.
Conversion of Abeta43 to Abeta40 by the successive action of angiotensin-converting enzyme 2 and angiotensin-converting enzyme
J. Neurosci. Res.
92
1178-1186
2014
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Uri, K.; Fagyas, M.; Manyine Siket, I.; Kertesz, A.; Csanadi, Z.; Sandorfi, G.; Clemens, M.; Fedor, R.; Papp, Z.; Edes, I.; Toth, A.; Lizanecz, E.
New perspectives in the renin-angiotensin-aldosterone system (RAAS) IV: circulating ACE2 as a biomarker of systolic dysfunction in human hypertension and heart failure
PLoS ONE
9
e87845
2014
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Chen, Y.; Guo, Y.; Pan, Y.; Zhao, Z.
Structure analysis of the receptor binding of 2019-nCoV
Biochem. Biophys. Res. Commun.
525
135-140
2020
Nipponia nippon (A0A091UR55), Rhinolophus sinicus (E2DHI7), Paguma larvata (Q56NL1), Homo sapiens (Q9BYF1), Callorhinchus milii (XP_007889845.1), Xenopus laevis (XP_018104311.1), Protobothrops mucrosquamatus (XP_029140508.1)
Manually annotated by BRENDA team
Cao, Y.; Li, L.; Feng, Z.; Wan, S.; Huang, P.; Sun, X.; Wen, F.; Huang, X.; Ning, G.; Wang, W.
Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations
Cell Discov.
6
11
2020
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Rutkowska-Zapala, M.; Suski, M.; Szatanek, R.; Lenart, M.; Weglarczyk, K.; Olszanecki, R.; Grodzicki, T.; Strach, M.; Gasowski, J.; Siedlar, M.
Human monocyte subsets exhibit divergent angiotensin I-converting activity
Clin. Exp. Immunol.
181
126-132
2015
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Batlle, D.; Wysocki, J.; Satchell, K.
Soluble angiotensin-converting enzyme 2 a potential approach for coronavirus infection therapy?
Clin. Sci.
134
543-545
2020
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Cao, X.; Song, L.; Zhang, Y.; Li, Q.; Shi, T.; Yang, F.; Yuan, M.; Xin, Z.; Yang, J.
Angiotensin-converting enzyme 2 inhibits endoplasmic reticulum stress-associated pathway to preserve nonalcoholic fatty liver disease
Diabetes Metab. Res. Rev.
35
e3123
2019
Mus musculus (Q8R0I0), Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Clayton, D.; Hanchapola, I.; Thomas, W.; Widdop, R.; Smith, A.; Perlmutter, P.; Aguilar, M.
Structural determinants for binding to angiotensin converting enzyme 2 (ACE2) and angiotensin receptors 1 and 2
Front. Pharmacol.
6
005
2015
Homo sapiens
Manually annotated by BRENDA team
Wang, W.; McKinnie, S.; Farhan, M.; Paul, M.; McDonald, T.; McLean, B.; Llorens-Cortes, C.; Hazra, S.; Murray, A.; Vederas, J.; Oudit, G.
Angiotensin-converting enzyme 2 metabolizes and partially inactivates pyr-apelin-13 and apelin-17 Physiological effects in the cardiovascular system
Hypertension
68
365-377
2016
Mus musculus (Q8R0I0), Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Sharma, J.N.; Al-Shoumer, K.; Matar, K.M.; Madathil, N.V.; Al-Moalem, A.
Altered activities of kininase II, an angiotensin converting enzyme, prekallikrein, and nitric oxide in Kuwaiti patients with type 2 diabetes
Int. J. Immunopathol. Pharmacol.
28
240-246
2015
Homo sapiens
Manually annotated by BRENDA team
Zhang, H.; Penninger, J.; Li, Y.; Zhong, N.; Slutsky, A.
Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor molecular mechanisms and potential therapeutic target
Intensive Care Med.
46
586-590
2020
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Xiao, F.; Burns, K.D.
Measurement of angiotensin converting enzyme 2 activity in biological fluid (ACE2)
Methods Mol. Biol.
1527
101-115
2017
Mus musculus (Q8R0I0), Mus musculus, Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Qiu, Y.; Zhao, Y.B.; Wang, Q.; Li, J.Y.; Zhou, Z.J.; Liao, C.H.; Ge, X.Y.
Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2
Microbes Infect.
22
221-225
2020
Columba livia (A0A2I0MLI2), Sus scrofa (K7GLM4), Felis catus (Q56H28), Paguma larvata (Q56NL1), Mus musculus (Q8R0I0), Homo sapiens (Q9BYF1), Homo sapiens, Rhinolophus sinicus (U5WHY8), Capra hircus (W6CG84), Bos taurus (XP_005228485.1), Bubalus bubalis (XP_006041602.1), Ovis aries (XP_011961657.1), Manis javanica (XP_017505752.1)
Manually annotated by BRENDA team
Ramchand, J.; Patel, S.; Srivastava, P.; Farouque, O.; Burrell, L.
Elevated plasma angiotensin converting enzyme 2 activity is an independent predictor of major adverse cardiac events in patients with obstructive coronary artery disease
PLoS ONE
13
e0198144
2018
Homo sapiens
Manually annotated by BRENDA team
Cao, X.; Yang, F.; Shi, T.; Yuan, M.; Xin, Z.; Xie, R.; Li, S.; Li, H.; Yang, J.K.
Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis
Sci. Rep.
6
21592
2016
Mus musculus (Q8R0I0), Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Li, F.; Li, W.; Farzan, M.; Harrison, S.C.
Structure of SARS coronavirus spike receptor-binding domain complexed with receptor
Science
309
1864-1868
2005
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Bojadzic, D.; Alcazar, O.; Chen, J.; Chuang, S.T.; Condor Capcha, J.M.; Shehadeh, L.A.; Buchwald, P.
Small-molecule inhibitors of the coronavirus spike ACE2 protein-protein interaction as blockers of viral attachment and entry for SARS-CoV-2
ACS Infect. Dis.
7
1519-1534
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Low-Gan, J.; Huang, R.; Kelley, A.; Jenkins, G.W.; McGregor, D.; Smider, V.V.
Diversity of ACE2 and its interaction with SARS-CoV-2 receptor binding domain
Biochem. J.
478
3671-3684
2021
Mustela putorius (Q2WG88), Felis catus (Q56H28), Homo sapiens (Q9BYF1), Rhinolophus sinicus (U5WHY8), Cricetulus griseus (XP_003503283.12), Bos taurus (XP_024843618.1)
Manually annotated by BRENDA team
Antony, P.; Vijayan, R.
Role of SARS-CoV-2 and ACE2 variations in COVID-19
Biomed. J.
44
235-244
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Mehrabadi, M.E.; Hemmati, R.; Tashakor, A.; Homaei, A.; Yousefzadeh, M.; Hemati, K.; Hosseinkhani, S.
Induced dysregulation of ACE2 by SARS-CoV-2 plays a key role in COVID-19 severity
Biomed. Pharmacother.
137
111363
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Cao, W.; Dong, C.; Kim, S.; Hou, D.; Tai, W.; Du, L.; Im, W.; Zhang, X.F.
Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction
Biophys. J.
120
1011-1019
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Barros, E.; Casalino, L.; Gaieb, Z.; Dommer, A.; Wang, Y.; Fallon, L.; Raguette, L.; Belfon, K.; Simmerling, C.; Amaro, R.
The flexibility of ACE2 in the context of SARS-CoV-2 infection
Biophys. J.
120
1072-1084
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Wang, Y.; Fan, Y.; Huang, Y.; Du, T.; Liu, Z.; Huang, D.; Wang, Y.; Wang, N.; Zhang, P.
TRIM28 regulates SARS-CoV-2 cell entry by targeting ACE2
Cell. Signal.
85
110064
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Nesci, S.
SARS-CoV-2 first contact Spike-ACE2 interactions in COVID-19
Chem. Biol. Drug Des.
98
207-211
2021
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Benitez-Cardoza, C.G.; Vique-Sanchez, J.L.
Identifying compounds that prevent the binding of the SARS-CoV-2 S-protein to ACE2
Comput. Biol. Med.
136
104719
2021
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Zhou, Z.; Yang, Z.; Ou, J.; Zhang, H.; Zhang, Q.; Dong, M.; Zhang, G.
Temperature dependence of the SARS-CoV-2 affinity to human ACE2 determines COVID-19 progression and clinical outcome
Comput. Struct. Biotechnol. J.
19
161-167
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Baby, K.; Maity, S.; Mehta, C.H.; Suresh, A.; Nayak, U.Y.; Nayak, Y.
SARS-CoV-2 entry inhibitors by dual targeting TMPRSS2 and ACE2 An in silico drug repurposing study
Eur. J. Pharmacol.
896
173922
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Aleksova, A.; Gagno, G.; Sinagra, G.; Beltrami, A.P.; Janjusevic, M.; Ippolito, G.; Zumla, A.; Fluca, A.L.; Ferro, F.
Effects of SARS-CoV-2 on cardiovascular system the dual role of angiotensin-converting enzyme 2 (ACE2) as the virus receptor and homeostasis regulator-review
Int. J. Mol. Sci.
22
4526
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Kiseleva, A.A.; Troisi, E.M.; Hensley, S.E.; Kohli, R.M.; Epstein, J.A.
SARS-CoV-2 spike protein binding selectively accelerates substrate-specific catalytic activity of ACE2
J. Biochem.
170
299-306
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Khelfaoui, H.; Harkati, D.; Saleh, B.
Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2
J. Biomol. Struct. Dyn.
39
7246-7262
2021
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Choudhury, M.; Dhanabalan, A.; Goswami, N.
Understanding the binding mechanism for potential inhibition of SARS-CoV-2 Mpro and exploring the modes of ACE2 inhibition by hydroxychloroquine
J. Cell. Biochem.
123
347-358
2021
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Gan, H.H.; Twaddle, A.; Marchand, B.; Gunsalus, K.C.
Structural modeling of the SARS-CoV-2 spike/human ACE2 complex interface can identify high-affinity variants associated with increased transmissibility
J. Mol. Biol.
433
167051
2021
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Ferrari, M.; Mekkaoui, L.; Ilca, F.T.; Akbar, Z.; Bughda, R.; Lamb, K.; Ward, K.; Parekh, F.; Karattil, R.; Allen, C.; Wu, P.; Baldan, V.; Mattiuzzo, G.; Bentley, E.M.; Takeuchi, Y.; Sillibourne, J.; Datta, P.; Kinna, A.; Pule, M.; Onuoha, S.C.
Characterization of a novel ACE2-based therapeutic with enhanced rather than reduced activity against SARS-CoV-2 variants
J. Virol.
95
e0068521
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Liu, X.; Zaid, A.; Freitas, J.R.; McMillan, N.A.; Mahalingam, S.; Taylor, A.
Infectious clones produce SARS-CoV-2 that causes severe pulmonary disease in infected K18-human ACE2 mice
mBio
12
e00819-21
2021
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Day, C.J.; Bailly, B.; Guillon, P.; Dirr, L.; Jen, F.E.; Spillings, B.L.; Mak, J.; von Itzstein, M.; Haselhorst, T.; Jennings, M.P.
Multidisciplinary approaches identify compounds that bind to human ACE2 or SARS-CoV-2 spike protein as candidates to block SARS-CoV-2-ACE2 receptor interactions
mBio
12
e03681-20
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Aboudounya, M.M.; Heads, R.J.
COVID-19 and Toll-like receptor 4 (TLR4) SARS-CoV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyperinflammation
Mediators Inflamm.
2021
8874339
2021
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Yang, Y.; Zhang, Y.; Qu, Y.; Zhang, C.; Liu, X.W.; Zhao, M.; Mu, Y.; Li, W.
Key residues of the receptor binding domain in the spike protein of SARS-CoV-2 mediating the interactions with ACE2 a molecular dynamics study
Nanoscale
13
9364-9370
2021
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Heinzelman, P.; Romero, P.A.
Discovery of human ACE2 variants with altered recognition by the SARS-CoV-2 spike protein
PLoS ONE
16
e0251585
2021
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Rawat, P.; Jemimah, S.; Ponnuswamy, P.; Gromiha, M.
Why are ACE2 binding coronavirus strains SARS-CoV/SARS-CoV-2 wild and NL63 mild?
Proteins
89
389-398
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Miller, A.; Leach, A.; Thomas, J.; McAndrew, C.; Bentley, E.; Mattiuzzo, G.; John, L.; Mirazimi, A.; Harris, G.; Gamage, N.; Carr, S.; Ali, H.; Van Montfort, R.; Rabbitts, T.
A super-potent tetramerized ACE2 protein displays enhanced neutralization of SARS-CoV-2 virus infection
Sci. Rep.
11
10617
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Piplani, S.; Singh, P.K.; Winkler, D.A.; Petrovsky, N.
In silico comparison of SARS-CoV-2 spike protein-ACE2 binding affinities across species and implications for virus origin
Sci. Rep.
11
13063
2021
Mesocricetus auratus (A0A1U7QTA1), Macaca fascicularis (A0A2K5X283), Equus caballus (F6V9L3), Canis lupus familiaris (J9P7Y2), Canis lupus familiaris, Bos taurus (Q2HJI5), Mustela putorius furo (Q2WG88), Mustela putorius furo, Felis catus (Q56H28), Paguma larvata (Q56NL1), Mus musculus (Q8R0I0), Homo sapiens (Q9BYF1), Homo sapiens, Rhinolophus sinicus (U5WHY8), Ophiophagus hannah (V8NIH2), Panthera tigris (XP_007090142), Manis javanica (XP_017505752.1)
Manually annotated by BRENDA team
Singh, A.; Steinkellner, G.; Koechl, K.; Gruber, K.; Gruber, C.C.
Serine 477 plays a crucial role in the interaction of the SARS-CoV-2 spike protein with the human receptor ACE2
Sci. Rep.
11
4320
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Goc, A.; Niedzwiecki, A.; Rath, M.
Polyunsaturated ?-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry
Sci. Rep.
11
5207
2021
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Ahmad, I.; Pawara, R.; Surana, S.; Patel, H.
The Repurposed ACE2 Inhibitors SARS-CoV-2 entry blockers of covid-19
Top. Curr. Chem.
379
40
2021
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Ramirez Hernandez, E.; Hernandez-Zimbron, L.F.; Martinez Zuniga, N.; Leal-Garcia, J.J.; Ignacio Hernandez, V.; Ucharima-Corona, L.E.; Perez Campos, E.; Zenteno, E.
The role of the SARS-CoV-2 S-protein glycosylation in the interaction of SARS-CoV-2/ACE2 and immunological responses
Viral Immunol.
34
165-173
2021
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Gutierrez-Chamorro, L.; Riveira-Munoz, E.; Barrios, C.; Palau, V.; Nevot, M.; Pedreno-Lopez, S.; Senserrich, J.; Massanella, M.; Clotet, B.; Cabrera, C.; Mitja, O.; Crespo, M.; Pascual, J.; Riera, M.; Ballana, E.
SARS-CoV-2 infection modulates ACE2 function and subsequent inflammatory responses in swabs and plasma of COVID-19 patients
Viruses
13
1715
2021
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Gutgsell, A.; Gunnarsson, A.; Forssen, P.; Gordon, E.; Fornstedt, T.; Geschwindner, S.
Biosensor-enabled deconvolution of the avidity-induced affinity enhancement for the SARS-CoV-2 spike protein and ACE2 interaction
Anal. Chem.
94
1187-1194
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Shin, Y.H.; Jeong, K.; Lee, J.; Lee, H.J.; Yim, J.; Kim, J.; Kim, S.; Park, S.B.
Inhibition of ACE2-spike interaction by an ACE2 binder suppresses SARS-CoV-2 entry
Angew. Chem. Int. Ed. Engl.
61
e202115695
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Huang, Y.; Harris, B.; Minami, S.; Jung, S.; Shah, P.; Nandi, S.; McDonald, K.; Faller, R.
SARS-CoV-2 spike binding to ACE2 is stronger and longer ranged due to glycan interaction
Biophys. J.
121
79-90
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Lee, J.H.; Lee, Y.; Lee, S.K.; Kim, J.; Lee, C.S.; Kim, N.H.; Kim, H.G.
Versatile role of ACE2-based biosensors for detection of SARS-CoV-2 variants and neutralizing antibodies
Biosens. Bioelectron.
203
114034
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Han, P.; Li, L.; Liu, S.; Wang, Q.; Zhang, D.; Xu, Z.; Han, P.; Li, X.; Peng, Q.; Su, C.; Huang, B.; Li, D.; Zhang, R.; Tian, M.; Fu, L.; Gao, Y.; Zhao, X.; Liu, K.; Qi, J.; Gao, G.F.; Wang, P.
Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2
Cell
185
630-640.e10
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Cecon, E.; Burridge, M.; Cao, L.; Carter, L.; Ravichandran, R.; Dam, J.; Jockers, R.
SARS-COV-2 spike binding to ACE2 in living cells monitored by TR-FRET
Cell Chem. Biol.
29
74-83
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Wang, Z.; Lv, J.; Yu, P.; Qu, Y.; Zhou, Y.; Zhou, L.; Zhu, Q.; Li, S.; Song, J.; Deng, W.; Gao, R.; Liu, Y.; Liu, J.; Tong, W.M.; Qin, C.; Huang, B.
SARS-CoV-2 treatment effects induced by ACE2-expressing microparticles are explained by the oxidized cholesterol-increased endosomal pH of alveolar macrophages
Cell. Mol. Immunol.
19
210-221
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Zhang, Y.N.; Zhang, Y.; Su, S.; Zhu, H.Y.; Xu, W.; Wang, L.; Wu, M.; Chen, K.; Yu, F.Q.; Xi, T.K.; Zhou, Q.; Xie, Y.H.; Qin, X.; Ge, H.; Lu, L.; Qing, J.; Fang, G.M.
Neutralizing SARS-CoV-2 by dimeric side chain-to-side chain cross-linked ACE2 peptide mimetics
Chem. Commun. (Camb.)
58
1804-1807
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Chen, P.; Wang, J.; Xu, X.; Li, Y.; Zhu, Y.; Li, X.; Li, M.; Hao, P.
Molecular dynamic simulation analysis of SARS-CoV-2 spike mutations and evaluation of ACE2 from pets and wild animals for infection risk
Comput. Biol. Chem.
96
107613
2022
Manis javanica, Paguma larvata (Q56NL1), Mus musculus (Q8R0I0), Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Baristaite, G.; Gurwitz, D.
Estradiol reduces ACE2 and TMPRSS2 mRNA levels in A549 human lung epithelial cells
Drug Dev. Res.
2022
1-6
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Sepe, S.; Rossiello, F.; Cancila, V.; Iannelli, F.; Matti, V.; Cicio, G.; Cabrini, M.; Marinelli, E.; Alabi, B.R.; di Lillo, A.; Di Napoli, A.; Shay, A.W.; Tripodo, C.; d'Adda di Fagagna, F.
DNA damage response at telomeres boosts the transcription of SARS-CoV-2 receptor ACE2 during aging
EMBO Rep.
23
e53658
2022
Mus musculus (Q8R0I0), Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Samanta, A.; Alam, S.; Ali, S.; Hoque, M.
Analyzing the interaction of human ACE2 and RBD of spike protein of SARS-CoV-2 in perspective of Omicron variant
EXCLI J.
21
610-620
2022
Homo sapiens (Q9BYF1)
-
Manually annotated by BRENDA team
Pei, G.; Xu, W.; Lan, J.; Wang, X.; Li, P.
CEBIT screening for inhibitors of the interaction between SARS-CoV-2 spike and ACE2
Fundam. Res.
2
562-569
2022
Homo sapiens (Q9BYF1)
-
Manually annotated by BRENDA team
Chakraborty, S.
E484K and N501Y SARS-CoV 2 spike mutants increase ACE2 recognition but reduce affinity for neutralizing antibody
Int. Immunopharmacol.
102
108424
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
de Bruin, N.; Schneider, A.K.; Reus, P.; Talmon, S.; Ciesek, S.; Bojkova, D.; Cinatl, J.; Lodhi, I.; Charlesworth, B.; Sinclair, S.; Pennick, G.; Laughey, W.F.; Gribbon, P.; Kannt, A.; Schiffmann, S.
Ibuprofen, flurbiprofen, etoricoxib or paracetamol do not influence ACE2 expression and activity in vitro or in mice and do not exacerbate in-vitro SARS-CoV-2 infection
Int. J. Mol. Sci.
23
1049
2022
Mus musculus (Q8R0I0), Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Mishra, L.; Bandyopadhyay, T.
Unbinding of hACE2 and inhibitors from the receptor binding domain of SARS-CoV-2 spike protein
J. Biomol. Struct. Dyn.
2022
1-20
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Kalhor, H.; Sadeghi, S.; Abolhasani, H.; Kalhor, H.; Rahimi, H.
Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches
J. Biomol. Struct. Dyn.
40
1299-1315
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Bagheri, M.; Niavarani, A.
Molecular dynamics analysis predicts ritonavir and naloxegol strongly block the SARS-CoV-2 spike protein-hACE2 binding
J. Biomol. Struct. Dyn.
40
1597-1606
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Gyebi, G.A.; Adegunloye, A.P.; Ibrahim, I.M.; Ogunyemi, O.M.; Afolabi, S.O.; Ogunro, O.B.
Prevention of SARS-CoV-2 cell entry insight from in silico interaction of drug-like alkaloids with spike glycoprotein, human ACE2, and TMPRSS2
J. Biomol. Struct. Dyn.
40
2121-2145
2022
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
AlGhamdi, N.A.; Alsuwat, H.S.; Borgio, J.F.; AbdulAzeez, S.
Emerging of composition variations of SARS-CoV-2 spike protein and human ACE2 contribute to the level of infection in silico approaches
J. Biomol. Struct. Dyn.
40
2635-2646
2022
Homo sapiens (Q9BYF1), Homo sapiens
Manually annotated by BRENDA team
Lee, J.H.; Lee, C.E.; Yoo, Y.; Shin, E.; An, J.; Park, S.Y.; Song, W.J.; Kwon, H.S.; Cho, Y.S.; Moon, H.B.; Kim, T.B.
Soluble ACE2 and TMPRSS2 levels in the serum of asthmatic patients
J. Korean Med. Sci.
37
e65
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Shahbazi, B.; Mafakher, L.; Teimoori-Toolabi, L.
Different compounds against Angiotensin-Converting Enzyme 2 (ACE2) receptor potentially containing the infectivity of SARS-CoV-2 an in silico study
J. Mol. Model.
28
82
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Bharathi, M.; Sivamaruthi, B.S.; Kesika, P.; Thangaleela, S.; Chaiyasut, C.
In silico screening of bioactive compounds of representative seaweeds to inhibit SARS-CoV-2 ACE2-bound omicron B.1.1.529 spike protein trimer
Mar. Drugs
20
148
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Celik, I.; Khan, A.; Dwivany, F.; Fatimawal, F.; Wei, D.; Tallei, T.
Computational prediction of the effect of mutations in the receptor-binding domain on the interaction between SARS-CoV-2 and human ACE2
Mol. Divers.
FEHLT
0000
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Tallei, T.E.; Fatimawali, T.E.; Adam, A.A.; Elseehy, M.M.; El-Shehawi, A.M.; Mahmoud, E.A.; Tania, A.D.; Niode, N.J.; Kusumawaty, D.; Rahimah, S.; Effendi, Y.; Idroes, R.; Celik, I.; Hossain, M.J.; Emran, T.B.
Fruit bromelain-derived peptide potentially restrains the attachment of SARS-CoV-2 variants to hACE2 A pharmacoinformatics approach
Molecules
27
260
2022
Homo sapiens
Manually annotated by BRENDA team
El-Shennawy, L.; Hoffmann, A.D.; Dashzeveg, N.K.; McAndrews, K.M.; Mehl, P.J.; Cornish, D.; Yu, Z.; Tokars, V.L.; Nicolaescu, V.; Tomatsidou, A.; Mao, C.; Felicelli, C.J.; Tsai, C.F.; Ostiguin, C.; Jia, Y.; Li, L.; Furlong, K.; Wysocki, J.; Luo, X.; Ruivo, C.F.; Batlle, D.; Hope, T.J.; Shen, Y.; Chae, Y.K.; Zhang, H. et al.
Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2
Nat. Commun.
13
405
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Park, G.C.; Bang, S.Y.; Lee, H.W.; Choi, K.U.; Kim, J.M.; Shin, S.C.; Cheon, Y.I.; Sung, E.S.; Lee, M.; Lee, J.C.; Kim, H.S.; Lee, B.J.
ACE2 and TMPRSS2 immunolocalization and oral manifestations of COVID-19
Oral Dis.
2022
1-9
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Xie, Y.; Guo, W.; Lopez-Hernadez, A.; Teng, S.; Li, L.
The pH effects on SARS-CoV and SARS-CoV-2 spike proteins in the process of binding to hACE2
Pathogens
11
238
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Amraei, R.; Xia, C.; Olejnik, J.; White, M.R.; Napoleon, M.A.; Lotfollahzadeh, S.; Hauser, B.M.; Schmidt, A.G.; Chitalia, V.; Muehlberger, E.; Costello, C.E.; Rahimi, N.
Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells
Proc. Natl. Acad. Sci. USA
119
e2113874119
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Heinzelman, P.; Greenhalgh, J.C.; Romero, P.A.
Yeast surface display-based identification of ACE2 mutations that modulate SARS-CoV-2 spike binding across multiple mammalian species
Protein Eng. Des. Sel.
35
gzab035
2022
Canis lupus familiaris (E2RR65), Sus scrofa (K7GLM4), Felis catus (Q56H28), Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Mannar, D.; Saville, J.; Zhu, X.; Srivastava, S.; Berezuk, A.; Tuttle, K.; Marquez, A.; Sekirov, I.; Subramaniam, S.
SARS-CoV-2 Omicron variant Antibody evasion and cryo-EM structure of spike protein-ACE2 complex
Science
375
760-764
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team
Kapczynski, D.R.; Sweeney, R.; Spackman, E.; Pantin-Jackwood, M.; Suarez, D.L.
Development of an in vitro model for animal species susceptibility to SARS-CoV-2 replication based on expression of ACE2 and TMPRSS2 in avian cells
Virology
569
1-12
2022
Homo sapiens (Q9BYF1)
Manually annotated by BRENDA team