Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.4.11.10 - bacterial leucyl aminopeptidase and Organism(s) Vibrio proteolyticus and UniProt Accession Q01693

for references in articles please use BRENDA:EC3.4.11.10
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.4 Acting on peptide bonds (peptidases)
             3.4.11 Aminopeptidases
                3.4.11.10 bacterial leucyl aminopeptidase
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Vibrio proteolyticus
UNIPROT: Q01693 not found.
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Vibrio proteolyticus
The expected taxonomic range for this enzyme is: Bacteria, Archaea, Eukaryota
Reaction Schemes
Release of an N-terminal amino acid, preferentially leucine, but not glutamic or aspartic acids.
release of an N-terminal amino acid, preferentially leucine, but not glutamic or aspartic acids
Synonyms
cgase, ap-ii, cysteinylglycinase, fglap, hpm17ap, lapii, mtlap, m17 aminopeptidase, thermostable leucine aminopeptidase, rlap55, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Aeromonas proteolytica aminopeptidase
-
leucine aminopeptidase
-
Aeromonas proteolytica aminopeptidase
Aminopeptidase
-
-
aminopeptidase Ap1
-
-
bacterial leucine aminopeptidase
-
-
leucine aminopeptidase
-
-
ribosomal-bound aminopeptidase
-
-
-
-
Vibrio aminopeptidase
-
-
additional information
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
Release of an N-terminal amino acid, preferentially leucine, but not glutamic or aspartic acids.
show the reaction diagram
Release of an N-terminal amino acid, preferentially leucine, but not glutamic or aspartic acids.
show the reaction diagram
release of an N-terminal amino acid, preferentially leucine, but not glutamic or aspartic acids
show the reaction diagram
active site structure involving His97, Asp117, Asp179, Glu151, Glu152, and His256
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis of peptide bond
-
hydrolysis of peptide bond
-
-
CAS REGISTRY NUMBER
COMMENTARY hide
37288-67-8
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
L-Leu-4-nitroanilide + H2O
L-Leu + 4-nitroaniline
show the reaction diagram
-
-
-
?
L-leucine 4-nitroanilide + H2O
L-leucine + 4-nitroaniline
show the reaction diagram
-
-
?
L-leucine-4-nitroanilide + H2O
L-leucine + 4-nitroaniline
show the reaction diagram
-
-
-
?
L-leucyl-L-leucyl-L-leucine + H2O
L-leucine + L-leucyl-L-leucine
show the reaction diagram
-
-
-
?
Peptides + H2O
?
show the reaction diagram
-
-
-
?
recombinant human methionine-interferon alpha-2b + H2O
L-methionine + recombinant human interferon alpha-2b
show the reaction diagram
-
-
-
?
Ala-Gly + H2O
Ala + Gly
show the reaction diagram
-
-
-
ir
DL-Ala-Gly-Gly + H2O
DL-Ala + Gly-Gly
show the reaction diagram
-
-
-
ir
DL-Leu-Gly-DL-Phe + H2O
DL-Leu + Gly-DL-Phe
show the reaction diagram
-
-
-
ir
DL-Leu-Gly-Gly + H2O
DL-Leu + Gly-Gly
show the reaction diagram
-
-
-
ir
Ile-amide + H2O
Ile + NH3
show the reaction diagram
-
-
-
ir
L-Leu-4-nitroanilide + H2O
L-Leu + 4-nitroaniline
show the reaction diagram
-
-
-
-
?
L-Leu-7-amido-4-methylcoumarin + H2O
L-Leu + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
L-leucine 4-nitroanilide + H2O
L-leucine + 4-nitroaniline
show the reaction diagram
L-leucine anilide + H2O
L-leucine + aniline
show the reaction diagram
-
-
-
?
L-leucine ethyl ester + H2O
L-leucine + ethanol
show the reaction diagram
-
-
-
?
L-leucine-4-anisidide + H2O
L-leucine + anisidine
show the reaction diagram
-
-
-
?
L-leucine-4-nitroanilide + H2O
L-leucine + 4-nitroaniline
show the reaction diagram
L-leucine-p-nitroanilide + H2O
L-Leu + p-nitroaniline
show the reaction diagram
-
-
-
-
?
Leu-4-nitroanilide + H2O
Leu + 4-nitroaniline
show the reaction diagram
Leu-Ala + H2O
Leu + Ala
show the reaction diagram
Leu-amide + H2O
Leu + NH3
show the reaction diagram
Leu-Arg + H2O
Leu + Arg
show the reaction diagram
Leu-beta-naphthylamide + H2O
Leu + beta-naphthylamine
show the reaction diagram
Leu-Gly + H2O
Leu + Gly
show the reaction diagram
-
-
-
ir
Leu-Ile + H2O
Leu + Ile
show the reaction diagram
Leu-Leu + H2O
Leu + Leu
show the reaction diagram
Leu-Met + H2O
Leu + Met
show the reaction diagram
Leu-methyl ester + H2O
Leu + methanol
show the reaction diagram
-
-
-
ir
Leu-Phe + H2O
Leu + Phe
show the reaction diagram
Leu-Trp + H2O
Leu + Trp
show the reaction diagram
Leu-Tyr + H2O
Leu + Tyr
show the reaction diagram
Leu-Val + H2O
Leu + Val
show the reaction diagram
Lys-Gly + H2O
Lys + Gly
show the reaction diagram
-
-
-
ir
Met-amide + H2O
Met + NH3
show the reaction diagram
-
-
-
ir
norleucinamide + H2O
norleucine + NH3
show the reaction diagram
norvalinamide + H2O
norvaline + NH3
show the reaction diagram
-
-
-
-
?
peptides + H2O
N-terminal amino acid + peptide(n-1)
show the reaction diagram
-
-
-
?
Phe-amide + H2O
Phe + NH3
show the reaction diagram
-
-
-
ir
Phe-Asp-Ser-Ala-Val + H2O
Phe + Asp-Ser-Ala-Val
show the reaction diagram
-
-
-
ir
Phe-beta-naphthylamide + H2O
Phe + beta-naphthylamine
show the reaction diagram
-
18% of rate of hydrolysis of Leu-beta-naphthylamide
-
ir
Phe-Gly + H2O
Phe + Gly
show the reaction diagram
-
-
-
ir
Phe-methyl ester + H2O
Phe + methanol
show the reaction diagram
-
-
-
ir
Pro-Phe-Gly-Lys + H2O
Pro + Phe-Gly-Lys
show the reaction diagram
-
-
-
ir
Pro-Phe-Pro + H2O
Pro + Phe-Pro
show the reaction diagram
-
-
-
ir
thionoleucine-4-anisidide + H2O
thionoleucine + anisidine
show the reaction diagram
-
-
-
?
thionoleucine-S-anilide + H2O
thionoleucine + aniline
show the reaction diagram
-
-
-
?
Thr-beta-naphthylamide + H2O
Thr + beta-naphthylamine
show the reaction diagram
-
3.3% of rate of hydrolysis of Leu-beta-naphthylamide
-
ir
Tyr-Gly + H2O
Tyr + Gly
show the reaction diagram
-
-
-
ir
Val-amide + H2O
Val + NH3
show the reaction diagram
-
-
-
ir
Val-Gly + H2O
Val + Gly
show the reaction diagram
-
-
-
ir
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
Peptides + H2O
?
show the reaction diagram
-
-
-
?
additional information
?
-
-
aminopeptidases are involved in peptides processing and degradation, and are important in uptake of nutrients, regulation, overview
-
-
?
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1-butaneboronic acid
binding mode
4-iodo-D-phenylalanine hydroxamate
binding mode
DTT
complete inhibition at 20 mM
L-leucine
competitive inhibition
L-leucine 4-nitroanilide
-
L-leucine phosphonic acid
binding mode
L-leucinephosphonic acid
competitive, interacts with both metal ions in the dinuclear active site, inhibition mechanism
leucine phosphonic acid
competitive inhibition
n-valeramide
enzyme-inhibitor complex represents snapshot of proteolytic reaction between Michaelis-Menten and transition state
1,10-phenanthroline
-
-
1,2-Cyclohexanedione
-
Ki: 0.022-0.023 mM
1-aminoindan-2-one
-
-
1-Butaneboronate
1-butaneboronic acid
-
binding structure and inhibition mechanism with Co/Zn-, Co/Co-, and Zn/Zn-enzyme
1-Phenyl-2-thiourea
2,3-Butanedione
-
photochemical inactivation: effect only in the light, proportional to light intensity, modification of 5 Trp-, 3-4 Tyr-, 2 His- and 2Arg-residues, no photoinactivation in the absence of oxygen or in the presence of azide, protection also by Trp, Met, D-Met, L-2-thiol-His, 2-mercaptoethanol, Gly-Met, Ki: 5.1-19.8 mM
2,3-Pentanedione
-
photochemical inactivation: effect only in UV-light
2-amino-1,4-dihydro-2-isoquinolin-3-one
-
-
2-aminocycloheptanone
-
-
2-hydroxy-1,4-dihydro-2H-isoquinolin-3-one
-
-
2-methylquinolin-8-ol
-
-
2-propanol
-
Ki: 8 mM
3-amino-1,2,3,4-tetrahydronaphthalene-2-carbohydroxamic acid
-
-
3-amino-1,2,3,4-tetrahydronaphthalene-2-ethanone
-
-
3-amino-1,2,3,4-tetrahydronaphthalene-2-phosphonic acid
-
-
3-amino-2-tetralone
-
-
3-amino-3,4-dihydro-1H-naphtalen-2-one
-
-
3-amino-3,4-dihydro-1H-naphthalen-2-one O-(2-phenylethyl)oxime
-
-
3-amino-3,4-dihydro-1H-naphthalen-2-one O-(3-phenylpropyl)oxime
-
-
3-amino-3,4-dihydro-1H-naphthalen-2-one O-(4-phenylbutyl)oxime
-
-
3-amino-3,4-dihydro-1H-naphthalen-2-one O-(5-phenylpentyl)oxime
-
-
3-amino-3,4-dihydro-1H-naphthalen-2-one O-benzyloxime
-
-
3-amino-3,4-dihydro-1H-naphthalen-2-one O-methyloxime
-
-
3-methyl-1,2-cyclopentanedione
-
Ki: 0.48-1.19 mM
3-methyl-1-butanol
-
Ki: 0.98 mM
3-methylquinolin-8-ol
-
-
4-iodo-D-phenylalanine hydroxamate
-
-
5,7-dibromoquinolin-8-ol
-
-
5,7-dichloroquinolin-8-ol
-
-
5,7-diiodoquinolin-8-ol
-
-
5-(trifluoromethyl)quinolin-8-ol
-
-
5-bromo-2-methylquinolin-8-ol
-
-
5-bromo-8-hydroxy-2-methylquinoline-7-sulfonamide
-
-
5-bromo-8-hydroxy-N,2-dimethylquinoline-7-sulfonamide
-
-
5-bromo-8-hydroxy-N,N,2-trimethylquinoline-7-sulfonamide
-
-
5-bromoquinolin-8-ol
-
-
5-chloro-2-methylquinolin-8-ol
-
-
5-chloro-7-iodoquinolin-8-ol
-
-
5-chloro-8-hydroxy-N,N-dimethylquinoline-7-sulfonamide
-
-
5-chloro-8-hydroxy-N-methylquinoline-7-sulfonamide
-
-
5-chloro-8-hydroxyquinoline-7-sulfonamide
-
-
5-chloroquinolin-8-ol
-
-
5-fluoroquinolin-8-ol
-
-
5-iodoquinolin-8-ol
-
-
5-nitroquinolin-8-ol
-
-
7-amino-5,7,8,9-tetrahydrobenzocyclohepten-6-one
-
-
7-amino-5,7,8,9-tetrahydrobenzocyclohepten-6-oxime
-
-
8-hydroxy-N,N-dimethylquinoline-5-sulfonamide
-
-
amastatin
-
reversible, slow, tight binding, transition state analog complex, Ki: 0.58 nM, stoichiometry of inhibition 1:1
Amino acid hydroxamates
-
-
aminoquinolinone
-
-
benzyl alcohol
-
Ki: 2.6 mM
bestatin
cysteine
-
60% loss of activity at 10 mM
D-Leu-4-nitroanilide
-
D-isomers of the substrates inhibit the enzyme
D-Leu-hydroxamate
-
Ki: 2 nM, L-isomer bound 150 times less tightly
D-Val-4-nitroanilide
-
D-isomers of the substrates inhibit the enzyme
D-Val-hydroxamate
-
Ki: 5 nM
DL-Ala-hydroxamate
-
Ki: 0.0055 mM
DL-Phe-hydroxamate
-
Ki: 0.0008 mM
DL-Thr-hydroxamate
-
Ki: 0.002 mM
DL-Val-hydroxamate
-
Ki: 10 nM
epibestatin
-
Ki: 0.07 mM
ethanol
-
Ki: 80 mM
Glyoxal
-
Ki: 3.7-6.5 mM
isothiochroman-3-one
-
-
L-Ala-hydroxamate
-
Ki: 0.02 mM
L-leucine anilide
-
-
L-leucine anisidide
-
-
L-leucine phosphonic acid
-
transition state inhibitor, binding structure and inhibition mechanism with Co/Zn-, Co/Co-, and Zn/Zn-enzyme
L-leucinethiol
L-Leucinol
-
competitive
L-Phe-hydroxamate
-
Ki: 0.0088 mM
L-Thr-hydroxamate
-
Ki: 0.066 mM
L-Val-hydroxamate
-
Ki: 0.0022 mM
Leu-bromomethyl ketone
Leu-chloromethyl ketone
Leu-methyl ketone
methanol
-
Ki: 860 mM
methylglyoxal
-
photochemical inactivation: effect only in UV-light, Ki: 1.8-2.0 mM
n-butanol
-
Ki: 2.7 mM
N-mercapto-leucyl-4-nitroanilides
-
-
N-mercaptoacyl-leucyl-p-nitroaniline
-
synthethic inhibitor, and derivatives, spectroscopic study of slow-binding inhibition, Ki: 2.5-57 nM
-
n-Propanol
-
Ki: 11 mM
n-valeramide
-
no effect on enzyme zinc uptake, Ki: 0.0006 mM
Na2S
-
60% loss of activity at 10 mM
p-iodo-D-Phe hydroxamate
-
structure of enzyme-inhibitor complex: Glu151 has crucial functional role
phenol
-
Ki: 4 mM
Phenylglyoxal
Phenylurea
-
-
quinolin-8-ol
-
-
t-butyloxycarbonyl-L-Leu
-
bromomethyl ketone derivative, utilized for purification procedure
tert-butanol
-
Ki: 10 mM
Thioglycollate
-
60% loss of activity at 10 mM
thionoleucine-S-anilide
-
-
thionoleucine-S-anisidide
-
-
Urea
-
competitive
additional information
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.01 - 0.902
L-Leu-4-nitroanilide
0.01
L-leucine 4-nitroanilide
pH 8.0, 25°C
0.02726
recombinant human methionine-interferon alpha-2b
pH 6.0, 37°C
-
1
Ile-amide
-
-
0.019 - 15
L-leucine 4-nitroanilide
45 - 78
L-leucine anilide
0.7
L-leucine ethyl ester
-
-
32 - 50
L-leucine-4-anisidide
5.1
Leu-amide
-
-
0.39
Leu-Arg
-
-
0.43
Leu-beta-naphthylamide
-
-
0.38
Leu-Ile
-
-
0.18
Leu-Leu
-
-
0.35
Leu-Met
-
-
8.5
Leu-methyl ester
-
-
0.86
Leu-Phe
-
-
0.96
Leu-Trp
-
-
1.5
Leu-Tyr
-
-
0.64
Leu-Val
-
-
14.6
Met-amide
-
-
6.3
norleucinamide
-
-
10.8
norvalinamide
-
-
1.8
Phe-amide
-
-
3.9
Phe-methyl ester
-
-
4 - 7
thionoleucine-4-anisidide
4 - 11
thionoleucine-S-anilide
2.4
Val-amide
-
-
additional information
additional information
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.017 - 73
L-Leu-4-nitroanilide
4320
L-leucine 4-nitroanilide
pH 8.0, 25°C
0.000853
recombinant human methionine-interferon alpha-2b
pH 6.0, 37°C
-
6.2
Ile-amide
-
-
1.1 - 69
L-leucine 4-nitroanilide
6.3 - 16
L-leucine anilide
96
L-leucine ethyl ester
-
-
3.8 - 9.5
L-leucine-4-anisidide
15
Leu-Ala
-
-
220
Leu-amide
-
-
39
Leu-Arg
-
-
29.6
Leu-beta-naphthylamide
-
-
16
Leu-Ile
-
-
8.3
Leu-Leu
-
-
53
Leu-Met
-
-
145
Leu-methyl ester
-
-
72
Leu-Phe
-
-
58
Leu-Trp
-
-
85
Leu-Tyr
-
-
15
Leu-Val
-
-
32
Met-amide
-
-
60
norleucinamide
-
-
67
norvalinamide
-
-
67
peptide
-
-
6.2
Phe-amide
-
-
42
Phe-methyl ester
-
-
7.5 - 12.2
thionoleucine-4-anisidide
7.7 - 23.3
thionoleucine-S-anilide
6.5
Val-amide
-
-
additional information
additional information
-
penultimative substituents influence rate of hydrolysis
-
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.91 - 155.8
L-Leu-4-nitroanilide
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0019
L-leucine
wild type enzyme, in 50 mM Tricine buffer, 1.0 mM ZnSO4, and 200 mM KCl, at pH 8.0 and 25°C
0.0055
L-leucine 4-nitroanilide
enzyme with 2 Co2+ or Zn2+ bound, pH 8.0, 25°C
0.0066
L-leucinephosphonic acid
metal free enzyme, pH 8.0, 25°C
0.0019
leucine phosphonic acid
wild type enzyme, in 50 mM Tricine buffer, 1.0 mM ZnSO4, and 200 mM KCl, at pH 8.0 and 25°C
0.022 - 0.023
1,2-Cyclohexanedione
-
-
0.0027
1-Butaneboronate
0.24
1-Phenyl-2-thiourea
-
pH 8.0, 25°C
5.1 - 19.8
2,3-Butanedione
-
photochemical inactivation: effect only in the light, proportional to light intensity, modification of 5 Trp-, 3-4 Tyr-, 2 His- and 2Arg-residues, no photoinactivation in the absence of oxygen or in the presence of azide, protection also by Trp, Met, D-Met, L-2-thiol-His, 2-mercaptoethanol, Gly-Met
0.004
2-hydroxy-1,4-dihydro-2H-isoquinolin-3-one
-
-
0.1
2-methylquinolin-8-ol
-
value above, pH 8, 25°C
8
2-propanol
-
-
0.004
3-amino-1,2,3,4-tetrahydronaphthalene-2-carbohydroxamic acid
-
-
0.48 - 1.19
3-methyl-1,2-cyclopentanedione
-
-
0.98
3-methyl-1-butanol
-
-
0.00046
3-methylquinolin-8-ol
-
pH 8, 25°C
0.1
5,7-dibromoquinolin-8-ol
-
value above, pH 8, 25°C
0.1
5,7-dichloroquinolin-8-ol
-
value above, pH 8, 25°C
0.1
5,7-diiodoquinolin-8-ol
-
value above, pH 8, 25°C
0.00037
5-(trifluoromethyl)quinolin-8-ol
-
pH 8, 25°C
0.1
5-bromo-2-methylquinolin-8-ol
-
value above, pH 8, 25°C
0.1
5-bromo-8-hydroxy-2-methylquinoline-7-sulfonamide
-
value above, pH 8, 25°C
0.1
5-bromo-8-hydroxy-N,2-dimethylquinoline-7-sulfonamide
-
value above, pH 8, 25°C
0.1
5-bromo-8-hydroxy-N,N,2-trimethylquinoline-7-sulfonamide
-
value above, pH 8, 25°C
0.016
5-bromoquinolin-8-ol
-
pH 8, 25°C
0.1
5-chloro-2-methylquinolin-8-ol
-
value above, pH 8, 25°C
0.1
5-chloro-7-iodoquinolin-8-ol
-
value above, pH 8, 25°C
0.1
5-chloro-8-hydroxy-N,N-dimethylquinoline-7-sulfonamide
-
value above, pH 8, 25°C
0.00081
5-chloro-8-hydroxy-N-methylquinoline-7-sulfonamide
-
pH 8, 25°C
0.00019
5-chloro-8-hydroxyquinoline-7-sulfonamide
-
pH 8, 25°C
0.011
5-chloroquinolin-8-ol
-
pH 8, 25°C
0.00068
5-fluoroquinolin-8-ol
-
pH 8, 25°C
0.000062
5-iodoquinolin-8-ol
-
pH 8, 25°C
0.029
5-nitroquinolin-8-ol
-
pH 8, 25°C
0.1
8-hydroxy-N,N-dimethylquinoline-5-sulfonamide
-
value above, pH 8, 25°C
0.000058
amastatin
-
reversible, slow, tight binding, transition state analog complex, stoichiometry of inhibition 1:1
0.08
aminoquinolinone
-
-
2.6
benzyl alcohol
-
-
0.000002
D-Leu-hydroxamate
-
L-isomer bound 150 times less tightly
0.000005
D-Val-hydroxamate
-
-
0.0055
DL-Ala-hydroxamate
-
-
0.0008
DL-Phe-hydroxamate
-
-
0.002
DL-Thr-hydroxamate
-
-
0.00001
DL-Val-hydroxamate
-
-
0.07
epibestatin
-
-
80
ethanol
-
-
3.7 - 6.5
Glyoxal
-
-
0.004
isothiochroman-3-one
-
-
0.02
L-Ala-hydroxamate
-
-
0.000007
L-leucinethiol
-
-
0.017
L-Leucinol
-
-
0.0088
L-Phe-hydroxamate
-
-
0.0022
L-Thr-hydroxamate
-
-
860
L-Val-hydroxamate
-
-
0.0002
Leu-bromomethyl ketone
0.00067 - 0.17
Leu-chloromethyl ketone
1.8 - 2
methylglyoxal
-
photochemical inactivation: effect only in UV-light
2.7
n-butanol
-
-
0.0000025 - 0.000057
N-mercapto-leucyl-4-nitroanilides
-
-
0.0000025 - 0.000057
N-mercaptoacyl-leucyl-p-nitroaniline
-
synthethic inhibitor, and derivatives, spectroscopic study of slow-binding inhibition
-
11
n-Propanol
-
-
0.002 - 0.0023
Phenylglyoxal
-
-
0.00058
quinolin-8-ol
-
pH 8, 25°C
10
tert-butanol
-
-
4.6
Urea
-
pH 8.0, 25°C
additional information
additional information
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.15
1-aminoindan-2-one
Vibrio proteolyticus
-
pH 7.5, 25°C
0.74
2-amino-1,4-dihydro-2-isoquinolin-3-one
Vibrio proteolyticus
-
-
0.35
2-aminocycloheptanone
Vibrio proteolyticus
-
pH 7.5, 25°C
0.5
3-amino-1,2,3,4-tetrahydronaphthalene-2-ethanone
Vibrio proteolyticus
-
-
0.15
3-amino-1,2,3,4-tetrahydronaphthalene-2-phosphonic acid
Vibrio proteolyticus
-
-
0.13
3-amino-2-tetralone
Vibrio proteolyticus
-
-
0.13
3-amino-3,4-dihydro-1H-naphtalen-2-one
Vibrio proteolyticus
-
pH 7.5, 25°C
0.17
3-amino-3,4-dihydro-1H-naphthalen-2-one O-(2-phenylethyl)oxime
Vibrio proteolyticus
-
-
0.3
3-amino-3,4-dihydro-1H-naphthalen-2-one O-(3-phenylpropyl)oxime
Vibrio proteolyticus
-
-
0.11
3-amino-3,4-dihydro-1H-naphthalen-2-one O-(4-phenylbutyl)oxime
Vibrio proteolyticus
-
-
0.13
3-amino-3,4-dihydro-1H-naphthalen-2-one O-(5-phenylpentyl)oxime
Vibrio proteolyticus
-
-
0.21
3-amino-3,4-dihydro-1H-naphthalen-2-one O-benzyloxime
Vibrio proteolyticus
-
-
0.8
3-amino-3,4-dihydro-1H-naphthalen-2-one O-methyloxime
Vibrio proteolyticus
-
-
0.9
7-amino-5,7,8,9-tetrahydrobenzocyclohepten-6-one
Vibrio proteolyticus
-
pH 7.5, 25°C
0.015
7-amino-5,7,8,9-tetrahydrobenzocyclohepten-6-oxime
Vibrio proteolyticus
-
pH 7.5, 25°C
0.0000016
bestatin
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
0.003
supernatant clarification, in 10 mM Tricine buffer, pH 8.0, at 25°C
16
substrate L-leucine-4-nitroanilidepH 8.0, 37°C
17
-
nitro-enzyme
20
-
1-ethyl-3(3-dimethylaminopropyl)-carbodiimide treated enzyme
3
-
azo-enzyme
80 - 115
-
native enzyme, buffer dependent
84
-
diethylpyrocarbonate-treated enzyme
additional information
-
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
7.5 - 8.5
assay at
7.5 - 9.5
-
-
additional information
-
-
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5.5 - 10.8
pH-profile of mutant E151H
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
6.3
-
assay at
additional information
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
the enzyme contains a signal peptide sequence for protein secretion
-
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
temperature-dependent UV-CD spectra and fluorescent measurements
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
AMPX_VIBPR
504
0
54232
Swiss-Prot
-
PDB
SCOP
CATH
UNIPROT
ORGANISM
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
32000
43000
unprocessed enzyme form
28480
-
sedimentation equilibrium
29500
-
sedimentation velocity
33900
-
gel filtration
additional information
-
extracellular enzymes show a low MW of 20-30 kDa
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
monomer
additional information
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
proteolytic modification
the enzyme contains N- and C-terminal propeptides, processing of a 54 kDa zymogen to the 32 kDa mature enzyme, overview, modeling of the processing of wild-type enzyme, mechanism
proteolytic modification
-
the proenzyme contains a 21-amino acid-signal peptide, and a 84-amino acid N-terminal propeptide, 299 amino acids form the mature protein part, and 100 amino acids form the C-terminal propeptide
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
10 mg/ml purified enzyme, complexed with inhibitor L-leucinephosphonic acid from a 4fold molar excess, with precipitation solution containing Tris, pH 8.0, 10 mM KSCN, 0.4 M NaCl, 4 days, X-ray diffraction structure determination and analysis at 2.1 A resolution
16 mg/ml enzyme complexed with inhibitory Tris, in 10 mM Tris, pH 8.0, 10 mM KSCN, 0.4 NaCl, vapour diffusion method, with precipitant solution containing 100 mM Tris, pH 8.0, 100 mM KSCN, 4.5 M NaCl, 48 h, X-ray diffraction structure determination and analysis at 1.2 A resolution
analysis of crystal structures of free Zn-enzyme, and Zn-enyme bound to different inhibitors, complex optimizations, overview
hanging drop vapour diffusion method, aminopeptidase in 10 mM Tris buffer, pH 8.0, containing 10 mM KSCN and 400 mM NaCl is equilibrated with 100 mM Tris buffer, pH 8.0, containing 100 mM KSCN and 4.5 M NaCl, at 19°C
hanging drop vapour diffusion method, at 25°C
purified enzyme in complex Tris, 16 mg/ml in 10 mM Tris, pH 8.0, 10 mM KSCN, and 0.4 M NaCl, hanging drop vapour diffusion method, precipitation solution contains 100 mM Tris, pH 8.0, 100 mM KSCN, and 4.5 M NaCl, 48 h, X-ray diffraction structure determination and analysis at 1.2 A resolution, modeling
purified recombinant E151H mutant holoenzyme, 15 mg/ml protein in 10 mM HEPES, pH 7.2, 10 mM KSCN, and 0.4 M NaCl,vapour diffusion mehtod, the precipitation solution contains 100 mM HEPES, pH 7.2, 100 mM KSCN, and 4.5 M NaCl, 2-3 days, X-ray diffraction structure determination and analysis at 1.9 A resolution and room temperature
X-ray crystal structure of an aminopeptidase-L-leucyl-L-leucyl-L-leucine complex, sitting-drop method
free Zn-enzyme or enzyme in complex with synthetic inhibitor 4-iodo-D-phenylalanine hydroxamate, X-ray diffraction structure determination and analysis at 1.8 A resolution
-
structure of enzyme-inhibitor complex reported
-
X-ray study, 45% solvent content estimated
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
D118N
mutant shows similar activity compared to the wild type enzyme
D99A
mutant shows very low activity
D99H
mutant shows very low activity
D99M
mutant shows reduced activity
E151H
site-directed mutagenesis, the mutant enzyme shows a highly reduced reaction rate compared to the wild-type enzyme
M180A
mutant shows severly reduced activity (approximately 100fold less active) compared to the wild type enzyme
S228A
mutant shows strongly reduced activity (approximately 10fold less active) compared to the wild type enzyme
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5.5 - 8.5
-
above 40% maximal activity across range
81181
8 - 8.5
-
-
81176
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
urea-caused unfolding transitions of rLAP as a function of urea concentration are monitored by circular dichroism (CD) and fluorescence (FL) spectroscopy exhibiting single transitions by both techniques. Free energy change for unfolding measured by CD and FL spectroscopy are 2.8 and 3.7 kcal/mol, respectively
generally extremely stable
-
not denatured in aliphatic alcohols up to 20% concentration
-
only partially inactivated in 8 M urea
-
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
-20°C, 10 M tricine buffer, pH 8.0-8.5, several years, little loss of activity
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
ammonium sulfate fractionation, PK agarose bead chromatography, TALON Co2+-affinity resin column chromatography, and TALON Superflow metal affinity resin column chromatography
ammonium sulfate precipitation and Mono-Q column chromatography
from inclusion bodies, immobilized metal ion affinity chromatography (Ni2+), purity of 95%
native periplasmic enzyme by ion exchange and hydrophobic interaction chromatography, recombinant MBP-fusion enzyme and recombinant extracellular or mature intracellular wild-type enzyme from Escherichia coli by amylose affinity chromatography and ultrafiltration, and by ammonium sulfate fractionation, dialysis, hydrophobic interaction and anion exchange chromatography, and a second hydrophobic interaction chromatography step
recombinant wild-type and mutant E151H enzymes from Escherichia coli strain BL21(DE3) by ammonium sulfate fractionation, dialysis, hydrophobic interaction and anion exchange chromatography
2 new procedures
-
based on t-butyloxycarbonyl-L-Leu-bromomethyl ketone affinity chromatography
-
extracellular enzyme to homogeneity by ion exchange and hydrophobic interaction chromatography, or by heat treatment at 70°C
-
native enzyme
-
recombinant wild-type and mutant enzymes from Escherichia coli strain BL21(DE3) by ammonium sulfate fractionation, dialysis, hydrophobic interaction and anion exchange chromatography
-
revised procedure
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expressed in Escherichia coli BL21 Star DE3 cells
expression of wild-type and mutant E151H enzymes in Escherichia coli strain BL21(DE3)
gene AAP, overexpression of different forms of AAP in Escherichia coli, i.e as MBP-fusion protein, with or without N- and/or C-terminal propeptides, or with the native leader sequence of the enzyme
His-tagged protein expressed in Escherichia coli MM294
recombinant expression of His6-tagged enzyme
DNA and amino acid sequence determination and analysis
-
expression of wild-type and mutant E151HA and E151D enzymes in Escherichia coli strain BL21(DE3)
-
RENATURED/Commentary
ORGANISM
UNIPROT
LITERATURE
activity gain of rLAP refolded after reversible denaturation by urea, at 37°C, monitoring of the secondary structure changes
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
synthesis
leucine aminopeptidase from Vibrio proteolyticus is a broad specificity N-terminal aminopeptidase that is widely used in pharmaceutical processes where the removal of N-terminal residues in recombinant proteins is required
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Baker, J.O.; Prescott, J.M.
A transition-state-analog inhibitor influences zinc-binding by Aeromonas aminopeptidase
Biochem. Biophys. Res. Commun.
130
1154-1160
1985
Vibrio proteolyticus
Manually annotated by BRENDA team
Wilkes, S.H.; Prescott, J.M.
The slow, tight binding of bestatin and amastatin to aminopeptidases
J. Biol. Chem.
260
13154-13162
1985
Vibrio proteolyticus
Manually annotated by BRENDA team
Prescott, J.M.; Wagner, F.W.; Holmquist, B.; Vallee, B.L.
Spectral and kinetic studies of metal-substituted Aeromonas aminopeptidase: nonidentical, interacting metal-binding sites
Biochemistry
24
5350-5356
1985
Vibrio proteolyticus
Manually annotated by BRENDA team
Wilkes, S.H.; Prescott, J.M.
Stereospecificity of amino acid hydroxamate inhibition of aminopeptidases
J. Biol. Chem.
258
13517-13521
1983
Vibrio proteolyticus
Manually annotated by BRENDA team
Prescott, J.M.; Wagner, F.W.; Holmquist, B.; Vallee, B.L.
One hundred fold increased activity of Aeromonas aminopeptidase by sequential substitutions with Ni(II) or Cu(II) followed by zinc
Biochem. Biophys. Res. Commun.
114
646-652
1983
Vibrio proteolyticus
Manually annotated by BRENDA team
Baker, J.O.; Wilkes, S.H.; Bayliss, M.E.; Prescott, J.M.
Hydroxamates and aliphatic boronic acids: marker inhibitors for aminopeptidase
Biochemistry
22
2098-2103
1983
Vibrio proteolyticus
Manually annotated by BRENDA team
Prescott, J.M.; Wilkes, S.H.
Aeromonas aminopeptidase
Methods Enzymol.
45
530-543
1976
Vibrio proteolyticus
Manually annotated by BRENDA team
Kettner, C.; Glover, G.I.; Prescott, J.M.
Kinetics of inhibition of Aeromonas aminopeptidase by leucine methyl ketone derivatives
Arch. Biochem. Biophys.
165
739-743
1974
Vibrio proteolyticus
Manually annotated by BRENDA team
Kettner, C.; Rodriguez-Absi, J.; Glover, G.I.; Prescott, J.M.
The purification of Aeromonas aminopeptidase by affinity chromatography
Arch. Biochem. Biophys.
162
56-63
1974
Vibrio proteolyticus
Manually annotated by BRENDA team
Wagner, F.W.; Wilkes, S.H.; Prescott, J.M.
Specificity of Aeromonas aminopeptidase toward amino acid amides and dipeptides
J. Biol. Chem.
247
1208-1210
1972
Vibrio proteolyticus
Manually annotated by BRENDA team
Prescott, J.M.; Wilkes, S.H.; Wagner, F.W.; Wilson, K.J.
Aeromonas aminopeptidase. Improved isolation and some physical properties
J. Biol. Chem.
246
1756-1764
1971
Vibrio proteolyticus
Manually annotated by BRENDA team
Prescott, J.M.; Wilkes, S.H.
Aeromonas aminopeptidase: purification and some general properties
Arch. Biochem. Biophys.
117
328-336
1966
Vibrio proteolyticus
Manually annotated by BRENDA team
Maekinen, K.K.; Maekinen, P.L.; Wilkes, S.H.; Bayliss, M.E.; Prescott, J.M.
Chemical modification of Aeromonas aminopeptidase. Evidence for the involvement of tyrosyl and carboxyl groups in the activity of the enzyme
Eur. J. Biochem.
128
257-265
1982
Vibrio proteolyticus
Manually annotated by BRENDA team
Maekinen, K.K.; Maekinen, P.L.; Wilkes, S.H.; Bayliss, M.E.; Prescott, J.M.
Photochemical inactivation of Aeromonas aminopeptidase by 2,3-butanedione
J. Biol. Chem.
257
1765-1772
1982
Vibrio proteolyticus
Manually annotated by BRENDA team
Wilkes, S.H.; Bayliss, M.E.; Prescott, J.M.
Specificity of aeromonas aminopeptidase toward oligopeptides and polypeptides
Eur. J. Biochem.
34
459-466
1973
Vibrio proteolyticus
Manually annotated by BRENDA team
Schalk, C.; Remy, J.M.; Chevrier, B.; Moras, D.; Tarnus, C.
Rapid purification of the Aeromonas proteolytica aminopeptidase: crystallization and preliminary X-ray data
Arch. Biochem. Biophys.
294
91-97
1992
Vibrio proteolyticus
Manually annotated by BRENDA team
Bennett, B.; Holz, R.C.
Spectroscopically distinct cobalt(II) sites in heterodimetallic forms of the aminopeptidase from Aeromonas proteolytica: characterization of substrate binding
Biochemistry
36
9837-9846
1997
Vibrio proteolyticus
Manually annotated by BRENDA team
Chevrier, B.; D'Orchymont, H.; Schalk, C.; Moras, D.
The structure of the Aeromonas proteolytica aminopeptidase complexed with a hydroxamate inhibitor. Involvement in catalysis of Glu151 and two zinc ions of the co-catalytic unit
Eur. J. Biochem.
237
393-398
1996
Vibrio proteolyticus
Manually annotated by BRENDA team
De Paola, C.C.; Bennett, B.; Holz, R.C.; Ringe, D.; Petsko, G.A.
1-Butaneboronic acid binding to Aeromonas proteolytica aminopeptidase: a case of arrested development
Biochemistry
38
9048-9053
1999
Vibrio proteolyticus (Q01693)
Manually annotated by BRENDA team
Ustynyuk, L.; Bennett, B.; Edwards, T.; Holz, R.C.
Inhibition of the aminopeptidase from Aeromonas proteolytica by aliphatic alcohols. Characterization of the hydrophobic substrate recognition site
Biochemistry
38
11433-11439
1999
Vibrio proteolyticus
Manually annotated by BRENDA team
Huntington, K.M.; Bienvenue, D.L.; Wei, Y.; Bennett, B.; Holz, R.C.; Pei, D.
Slow-binding inhibition of the aminopeptidase from Aeromonas proteolytica by peptide thiols: synthesis and spectroscopic characterization
Biochemistry
38
15587-15596
1999
Vibrio proteolyticus
Manually annotated by BRENDA team
Stamper, C.; Bennett, B.; Edwards, T.; Holz, R.C.; Ringe, D.; Petsko, G.
Inhibition of the aminopeptidase from Aeromonas proteolytica by L-leucinephosphonic acid. Spectroscopic and crystallographic characterization of the transition state of peptide hydrolysis
Biochemistry
40
7035-7046
2001
Vibrio proteolyticus (Q01693)
Manually annotated by BRENDA team
Bienvenue, D.L.; Gilner, D.; Holz, R.C.
Hydrolysis of thionopeptides by the aminopeptidase from Aeromonas proteolytica: insight into substrate binding
Biochemistry
41
3712-3719
2002
Vibrio proteolyticus
Manually annotated by BRENDA team
Bienvenue, D.L.; Mathew, R.S.; Ringe, D.; Holz, R.C.
The aminopeptidase from Aeromonas proteolytica can function as an esterase
J. Biol. Inorg. Chem.
7
129-135
2002
Vibrio proteolyticus
Manually annotated by BRENDA team
Desmarais, W.T.; Bienvenue, D.L.; Bzymek, K.P.; Holz, R.C.; Petsko, G.A.; Ringe, D.
The 1.20 A resolution crystal structure of the aminopeptidase from Aeromonas proteolytica complexed with tris: a tale of buffer inhibition
Structure
10
1063-1072
2002
Vibrio proteolyticus (Q01693)
Manually annotated by BRENDA team
Jankiewicz, U.; Bielawski, W.
The properties and functions of bacterial aminopeptidases
Acta Microbiol. Pol.
52
217-231
2003
Brevibacterium linens, Brevibacterium linens SR3, Escherichia coli, Lactococcus sp., Mycoplasma salivarium, Pseudomonas aeruginosa, Pseudomonas putida, Salmonella enterica subsp. enterica serovar Typhimurium, Vibrio proteolyticus
Manually annotated by BRENDA team
Schuerer, G.; Lanig, H.; Clark, T.
Aeromonas proteolytica aminopeptidase: an investigation of the mode of action using a quantum mechanical/molecular mechanical approach
Biochemistry
43
5414-5427
2004
Vibrio proteolyticus (Q01693)
Manually annotated by BRENDA team
Bzymek, K.P.; Moulin, A.; Swierczek, S.I.; Ringe, D.; Petsko, G.A.; Bennett, B.; Holz, R.C.
Kinetic, spectroscopic, and X-ray crystallographic characterization of the functional E151H aminopeptidase from Aeromonas proteolytica
Biochemistry
44
12030-12040
2005
Vibrio proteolyticus (Q01693)
Manually annotated by BRENDA team
Bennett, B.
EPR of Co(II) as a structural and mechanistic probe of metalloprotein active sites: characterisation of an aminopeptidase
Curr. Top. Biophys.
26
49-57
2002
Vibrio proteolyticus
-
Manually annotated by BRENDA team
Chevrier, B.; D'Orchymont, H.
Vibrio aminopeptidase
Handbook of Proteolytic Enzymes (Barrett, J. ; Rawlings, N. D. ; Woessner, J. F. , eds)
1
963-965
2004
Vibrio proteolyticus
-
Manually annotated by BRENDA team
Bzymek, K.P.; Swierczek, S.I.; Bennett, B.; Holz, R.C.
Spectroscopic and thermodynamic characterization of the E151D and E151A altered leucine aminopeptidases from Aeromonas proteolytica
Inorg. Chem.
44
8574-8580
2005
Vibrio proteolyticus
Manually annotated by BRENDA team
Bienvenue, D.L.; Bennett, B.; Holz, R.C.
Inhibition of the aminopeptidase from Aeromonas proteolytica by L-leucinethiol: kinetic and spectroscopic characterization of a slow, tight-binding inhibitor-enzyme complex
J. Inorg. Biochem.
78
43-54
2000
Vibrio proteolyticus
Manually annotated by BRENDA team
Bzymek, K.P.; D'Souza, V.M.; Chen, G.; Campbell, H.; Mitchell, A.; Holz, R.C.
Function of the signal peptide and N- and C-terminal propeptides in the leucine aminopeptidase from Aeromonas proteolytica
Protein Expr. Purif.
37
294-305
2004
Vibrio proteolyticus (Q01693)
Manually annotated by BRENDA team
Kumar, A.; Periyannan, G.R.; Narayanan, B.; Kittell, A.W.; Kim, J.J.; Bennett, B.
Experimental evidence for a metallohydrolase mechanism in which the nucleophile is not delivered by a metal ion: EPR spectrokinetic and structural studies of aminopeptidase from Vibrio proteolyticus
Biochem. J.
403
527-536
2007
Vibrio proteolyticus (Q01693)
Manually annotated by BRENDA team
Albrecht, S.; Defoin, A.; Salomon, E.; Tarnus, C.; Wetterholm, A.; Haeggstroem, J.Z.
Synthesis and structure activity relationships of novel non-peptidic metallo-aminopeptidase inhibitors
Bioorg. Med. Chem.
14
7241-7257
2006
Vibrio proteolyticus
Manually annotated by BRENDA team
Chen, S.; Marino, T.; Fang, W.; Russo, N.; Himo, F.
Peptide hydrolysis by the binuclear zinc enzyme aminopeptidase from Aeromonas proteolytica: A density functional theory study
J. Phys. Chem. B
112
2494-2500
2008
Vibrio proteolyticus (Q01693)
Manually annotated by BRENDA team
Ataie, N.J.; Hoang, Q.Q.; Zahniser, M.P.; Tu, Y.; Milne, A.; Petsko, G.A.; Ringe, D.
Zinc coordination geometry and ligand binding affinity: the structural and kinetic analysis of the second-shell serine 228 residue and the methionine 180 residue of the aminopeptidase from Vibrio proteolyticus
Biochemistry
47
7673-7683
2008
Vibrio proteolyticus (Q01693)
Manually annotated by BRENDA team
Hartley, M.; Bennett, B.
Heterologous expression and purification of Vibrio proteolyticus (Aeromonas proteolytica) aminopeptidase: a rapid protocol
Protein Expr. Purif.
66
91-101
2009
Vibrio proteolyticus (Q01693)
Manually annotated by BRENDA team
Frey, S.T.; Guilmet, S.L.; Egan, R.G.; Bennett, A.; Soltau, S.R.; Holz, R.C.
Immobilization of the aminopeptidase from Aeromonas proteolytica on Mg2+/Al3+ layered double hydroxide particles
ACS Appl. Mater. Interfaces
2
2828-2832
2010
Vibrio proteolyticus
Manually annotated by BRENDA team
Albrecht, S.; Al-Lakkis-Wehbe, M.; Orsini, A.; Defoin, A.; Pale, P.; Salomon, E.; Tarnus, C.; Weibel, J.
Amino-benzosuberone: A novel warhead for selective inhibition of human aminopeptidase-N/CD13
Bioorg. Med. Chem.
19
1434-1449
2011
Vibrio proteolyticus
Manually annotated by BRENDA team
Perez-Sanchez, G.; Leal-Guadarrama, L.; Trelles, I.; Perez, N.; Medina-Rivero, E.
High-level production of a recombinant Vibrio proteolyticus leucine aminopeptidase and its use for N-terminal methionine excision from interferon alpha-2b
Process Biochem.
46
1825-1830
2011
Vibrio proteolyticus (Q01693)
-
Manually annotated by BRENDA team
Hanaya, K.; Suetsugu, M.; Saijo, S.; Yamato, I.; Aoki, S.
Potent inhibition of dinuclear zinc(II) peptidase, an aminopeptidase from Aeromonas proteolytica, by 8-quinolinol derivatives: inhibitor design based on Zn2+ fluorophores, kinetic, and X-ray crystallographic study
J. Biol. Inorg. Chem.
17
517-529
2012
Vibrio proteolyticus
Manually annotated by BRENDA team
Hernandez-Moreno, A.V.; Villasenor, F.; Medina-Rivero, E.; Perez, N.O.; Flores-Ortiz, L.F.; Saab-Rincon, G.; Luna-Barcenas, G.
Kinetics and conformational stability studies of recombinant leucine aminopeptidase
Int. J. Biol. Macromol.
64
306-312
2014
Vibrio proteolyticus (Q01693)
Manually annotated by BRENDA team