Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.2.2.23 - DNA-formamidopyrimidine glycosylase and Organism(s) Escherichia coli and UniProt Accession P50465

for references in articles please use BRENDA:EC3.2.2.23
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.2 Glycosylases
             3.2.2 Hydrolysing N-glycosyl compounds
                3.2.2.23 DNA-formamidopyrimidine glycosylase
IUBMB Comments
May play a significant role in processes leading to recovery from mutagenesis and/or cell death by alkylating agents. Also involved in the GO system responsible for removing an oxidatively damaged form of guanine (7,8-dihydro-8-oxoguanine) from DNA.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Escherichia coli
UNIPROT: P50465
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Escherichia coli
The enzyme appears in selected viruses and cellular organisms
Synonyms
neil1, neil3, fpg protein, formamidopyrimidine-dna glycosylase, formamidopyrimidine dna glycosylase, 8-oxoguanine-dna glycosylase, formamidopyrimidine glycosylase, fapy-dna glycosylase, fpg-1, fpg-l, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
2,6-diamino-4-hydroxy-5(N-methyl)formamidopyrimidine-DNA glycosylase
-
-
-
-
2,6-diamino-4-hydroxy-5N-formamidopyrimidine-DNA glycosylase
-
-
-
-
2,6-diamino-4-hydroxy-5N-methyl-formamidopyrimidine-DNA glycosylase
-
-
-
-
8-hydroxyguanine endonuclease
-
-
-
-
8-oxoguanine DNA glycosylase
-
-
-
-
deoxyribonucleate glycosidase
-
-
-
-
DNA glycohydrolase (releasing 2,6-diamino-4-hydroxy-5-(N-methyl)-formamidopyrimidine)
-
-
-
-
Fapy-DNA glycosylase
-
-
-
-
formamidopyrimidine DNA glycosylase
formamidopyrimidine-DNA glycosyl hydrolase
-
-
-
-
formamidopyrimidine-DNA glycosylase
formamidopyrimidine-N-glycosylase
-
-
Fpg protein
-
-
-
-
glycosidase, deoxyribonucleate formamidopyrimidine
-
-
-
-
additional information
-
Fpg belongs to the class of DNA glycosylases/abasic site lyases
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
hydrolysis of DNA containing ring-opened 7-methylguanine residues, releasing 2,6-diamino-4-hydroxy-5-(N-methyl)formamidopyrimidine
show the reaction diagram
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis of N-glycosyl bond
-
-
-
-
SYSTEMATIC NAME
IUBMB Comments
DNA glycohydrolase [2,6-diamino-4-hydroxy-5-(N-methyl)formamidopyrimide releasing]
May play a significant role in processes leading to recovery from mutagenesis and/or cell death by alkylating agents. Also involved in the GO system responsible for removing an oxidatively damaged form of guanine (7,8-dihydro-8-oxoguanine) from DNA.
CAS REGISTRY NUMBER
COMMENTARY hide
78783-53-6
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
DNA + H2O
?
show the reaction diagram
DNA containing 2'-deoxy-8-oxonebularine residues + H2O
?
show the reaction diagram
23mer oligonucleotide containing a single site, very poor substrate
-
-
?
DNA containing 2,6-diamino-4-hydroxy-5-formamidopyrimidine residues + H2O
2,6-diamino-4-hydroxy-5-formamidopyrimidine + DNA
show the reaction diagram
FapyGua
-
-
?
DNA containing 4,6-diamino-5-formamidopyrimidine residues + H2O
4,6-diamino-5-formamidopyrimidine + DNA
show the reaction diagram
FapyAde
-
-
?
DNA containing 7-hydro-8-oxoguanine residues + H2O
DNA + 7-hydro-8-oxoguanine
show the reaction diagram
DNA containing ring-opened N7-methylguanine residues + H2O
2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine + DNA
show the reaction diagram
23-oligomer
-
?
13mer oligonucleotide duplex containing 8-oxoguanine + H2O
8-oxoguanine + oligonucleotide
show the reaction diagram
2,6-diamino-4-hydroxy-5-formamidopyrimidine:Cyt oligodeoxynucleotide + H2O
2,6-diamino-4-hydroxy-5-formamidopyrimidine + Cyt oligodeoxynucleotide
show the reaction diagram
-
-
-
-
?
23mer oligonucleotide duplex containing 8-oxoguanine + H2O
8-oxoguanine + oligonucleotide
show the reaction diagram
-
-
-
?
53mer containing 8-oxoguanine + H2O
53mer with an abasic site + 8-oxoguanine
show the reaction diagram
-
-
-
?
8-oxo-7,8-dihydroguanine:Cyt oligodeoxynucleotide + H2O
8-oxo-7,8-dihydroguanine + Cyt oligodeoxynucleotide
show the reaction diagram
-
-
-
-
?
DNA + H2O
?
show the reaction diagram
DNA containing 2,6-diamino-4-hydroxy-5-formamidopyrimidine residues + H2O
2,6-diamino-4-hydroxy-5-formamidopyrimidine + DNA
show the reaction diagram
DNA containing 2,6-diamino-4-hydroxy-5-formamidopyrimidine residues + H2O
DNA + 2,6-diamino-4-hydroxy-5-formamidopyrimidine
show the reaction diagram
DNA containing 2,6-diamino-4-hydroxyformamidopyrimidine residues + H2O
2,6-diamino-4-hydroxyformamidopyrimidine + DNA
show the reaction diagram
-
repair of the major DNA lesions 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxyformamidopyrimidine formed by reactive oxidative species
-
-
?
DNA containing 4,6-diamino-5-formamidopyrimidine residues + H2O
4,6-diamino-5-formamidopyrimidine + DNA
show the reaction diagram
DNA containing 4,6-diamino-5-formamidopyrimidine residues + H2O
DNA + 4,6-diamino-5-formamidopyrimidine
show the reaction diagram
DNA containing 5,6-dihydrothymine residues + H2O
?
show the reaction diagram
-
dublex 33mer oligonucleotide, poor substrate
-
-
?
DNA containing 5,6-dihydrouracil + H2O
DNA + 5,6-dihydrouracil
show the reaction diagram
-
-
-
-
?
DNA containing 5-hydroxy-2'-deoxyuridine + H2O
?
show the reaction diagram
-
double-stranded oligonucleotides, N-glycosylase/beta,delta-elimination reaction
-
-
?
DNA containing 5-hydroxycytosine residues + H2O
5-hydroxycytosine + DNA
show the reaction diagram
-
-
-
-
?
DNA containing 5-hydroxycytosine residues + H2O
?
show the reaction diagram
DNA containing 5-hydroxyuracil residues + H2O
5-hydroxyuracil + DNA
show the reaction diagram
-
-
-
-
?
DNA containing 7,8-dihydro-8-oxoguanine residues + H2O
DNA + 7,8-dihydro-8-oxoguanine
show the reaction diagram
-
-
-
-
?
DNA containing 7-deaza-2'-deoxyguanosine + H2O
7-deaza-2'-deoxyguanosine + DNA
show the reaction diagram
-
-
-
-
?
DNA containing 7-hydro-8-oxoguanine + H2O
7-hydro-8-oxoguanine + DNA
show the reaction diagram
DNA containing 7-hydro-8-oxoguanine residues + H2O
DNA + 7-hydro-8-oxoguanine
show the reaction diagram
DNA containing 7-methyl-7-deazaguanine residues + H2O
7-methyl-7-deazaguanine + DNA
show the reaction diagram
-
-
-
-
?
DNA containing 7-methyl-8-oxo-2'-deoxyguanosine + H2O
7-methyl-8-oxo-2'-deoxyguanosine + DNA
show the reaction diagram
-
-
-
-
?
DNA containing 8-hydroxyadenine + H2O
DNA + 8-hydroxyguanine
show the reaction diagram
-
-
-
-
?
DNA containing 8-hydroxyadenine residues + H2O
8-hydroxyadenine + DNA
show the reaction diagram
-
poor substrate
-
-
?
DNA containing 8-hydroxyguanine residues + H2O
8-hydroxyguanine + DNA
show the reaction diagram
DNA containing 8-hyroxyguanine + H2O
?
show the reaction diagram
-
-
-
-
?
DNA containing 8-oxo-2'-deoxyguanosine + H2O
8-oxo-2'-deoxyguanosine + DNA
show the reaction diagram
-
-
-
-
?
DNA containing 8-oxo-2'-deoxyinosine + H2O
?
show the reaction diagram
-
dublex
-
-
?
DNA containing 8-oxo-7,8-dihydroguanine residues + H2O
DNA + 8-hydroxyguanine
show the reaction diagram
-
-
-
-
?
DNA containing 8-oxo-7,8-dihydroguanine residues + H2O
DNA + 8-oxo-7,8-dihydroguanine
show the reaction diagram
-
-
-
?
DNA containing 8-oxo-guanine residues + H2O
DNA + 8-oxoguanine
show the reaction diagram
-
-
-
-
?
DNA containing 8-oxo-guanine residues mispaired to adenine + H2O
DNA + 8-oxoguanine
show the reaction diagram
-
-
-
-
?
DNA containing 8-oxo-guanine residues mispaired to guanine + H2O
DNA + 8-oxoguanine
show the reaction diagram
-
-
-
-
?
DNA containing 8-oxo-guanine residues mispaired to thymine + H2O
DNA + 8-oxoguanine
show the reaction diagram
-
-
-
-
?
DNA containing 8-oxoguanine opposite A + H2O
8-oxoguanine + DNA
show the reaction diagram
poor substrate, analysis of rate constants of conformational transitions
-
-
?
DNA containing 8-oxoguanine opposite C + H2O
8-oxoguanine + DNA
show the reaction diagram
good substrate, analysis of rate constants of conformational transitions
-
-
?
DNA containing 8-oxoguanine opposite G + H2O
8-oxoguanine + DNA
show the reaction diagram
analysis of rate constants of conformational transitions
-
-
?
DNA containing 8-oxoguanine opposite T + H2O
8-oxoguanine + DNA
show the reaction diagram
analysis of rate constants of conformational transitions
-
-
?
DNA containing 8-oxoguanine residues + H2O
8-oxoguanine + DNA
show the reaction diagram
DNA containing 8-oxoguanine residues + H2O
DNA + 8-oxoguanine
show the reaction diagram
DNA containing 8-thio-2'-deoxyguanosine + H2O
8-thio-2'-deoxyguanosine + DNA
show the reaction diagram
-
-
-
-
?
DNA containing dihydrothymine residues + H2O
dihydrothymine + DNA
show the reaction diagram
-
-
-
-
?
DNA containing dihydrouracil + H2O
8-oxoguanine + DNA
show the reaction diagram
-
-
-
?
DNA containing formamidopyrimidine-guanine residues + H2O
4,6-diamino-5-formamidopyrimidine + DNA
show the reaction diagram
-
-
-
?
DNA containing guanidinohydantoin + H2O
guanidinohydantoin + DNA
show the reaction diagram
-
for DNA duplex length of 30 bp, the excision efficiency in pairs with C, G, or T is similar to 8-oxoguanine. Opposite A, the base removal activity is more efficient than removal of 8-oxoguanine
-
-
?
DNA containing methylated formamidopyrimidine-guanine residues + H2O
2,6-diamino-4-hydroxy-5-(N-methyl)formamidopyrimidine + DNA
show the reaction diagram
-
-
-
?
DNA containing ring-opened N7-methylguanine + H2O
2,6-diamino-4-hydroxy-5-(N-methyl)formamidopyrimidine + DNA
show the reaction diagram
-
repairs oxidative DNA damage by efficiently removing formamidopyrimidine lesions and 8-oxoguanine residues from DNA
-
-
?
DNA containing ring-opened N7-methylguanine residues + H2O
2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine + DNA
show the reaction diagram
DNA containing spiroiminodihydantoin + H2O
spiroiminodihydantoin + DNA
show the reaction diagram
-
for DNA duplex length of 30 bp, the excision efficiency in pairs with C, G, or T is similar to 8-oxoguanine. Opposite A, the base removal activity is more efficient than removal of 8-oxoguanine
-
-
?
DNA containing tetrahydrofuran residues + H2O
tetrahydrofuran + DNA
show the reaction diagram
-
-
-
-
?
oligonucleotide containing 8-oxo-2'-deoxyguanosine residue + H2O
oligonucleotide + 8-oxo-2'-deoxyguanosine
show the reaction diagram
-
-
-
-
?
oligonucleotide containing abasic site residue + H2O
oligonucleotide + abasic site
show the reaction diagram
-
-
-
-
?
oligonucleotide containing tetrahydrofuran residue + H2O
oligonucleotide + tetrahydrofuran
show the reaction diagram
-
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
DNA + H2O
?
show the reaction diagram
2,6-diamino-4-hydroxy-5-formamidopyrimidine:Cyt oligodeoxynucleotide + H2O
2,6-diamino-4-hydroxy-5-formamidopyrimidine + Cyt oligodeoxynucleotide
show the reaction diagram
-
-
-
-
?
8-oxo-7,8-dihydroguanine:Cyt oligodeoxynucleotide + H2O
8-oxo-7,8-dihydroguanine + Cyt oligodeoxynucleotide
show the reaction diagram
-
-
-
-
?
DNA + H2O
?
show the reaction diagram
DNA containing 2,6-diamino-4-hydroxyformamidopyrimidine residues + H2O
2,6-diamino-4-hydroxyformamidopyrimidine + DNA
show the reaction diagram
-
repair of the major DNA lesions 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxyformamidopyrimidine formed by reactive oxidative species
-
-
?
DNA containing 7-hydro-8-oxoguanine + H2O
7-hydro-8-oxoguanine + DNA
show the reaction diagram
DNA containing 8-hydroxyguanine residues + H2O
8-hydroxyguanine + DNA
show the reaction diagram
DNA containing 8-oxoguanine residues + H2O
DNA + 8-oxoguanine
show the reaction diagram
DNA containing ring-opened N7-methylguanine + H2O
2,6-diamino-4-hydroxy-5-(N-methyl)formamidopyrimidine + DNA
show the reaction diagram
-
repairs oxidative DNA damage by efficiently removing formamidopyrimidine lesions and 8-oxoguanine residues from DNA
-
-
?
additional information
?
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Co2+
-
zinc(II)- and cobalt(II)-associated enzyme, metal-binding domain
KH2PO4
-
pH 7.4, stimulates, optimum concentration: 0.05 M
Na+
-
maximal efficiency at 100 mM NaCl
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
5-Nitroso-2,4,6-triaminopyrimidine
-
product inhibition
d(pA)10-d(pT)10
-
dublex, nonspecific oligonucleotide
-
d(pA)16-d(pT)16
-
dublex, nonspecific oligonucleotide
-
Formamidopyrimidine
-
product inhibition
nonspecific ds 8-23mer oligonucleotide
-
competitive inhibitors
-
tetrahydrofuran-containing DNA dublex
-
-
-
additional information
-
not inhibited by 1.2 mM 8-oxo-7,8-dihydro-2’-deoxyguanosine
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0000009 - 0.000019
DNA
0.0000069 - 0.0000075
DNA containing 7-hydro-8-oxoguanine residues
-
0.000023 - 0.000029
DNA containing ring-opened N7-methylguanine residues
-
0.0000039 - 0.0000466
13mer oligonucleotide duplex containing 8-oxoguanine
-
0.0000063 - 0.000018
23mer oligonucleotide duplex containing 8-oxoguanine
-
0.0046
DNA
-
pH 7.5, 25°C, DNA containing an apurinic/apyrimidinic site
0.00178 - 0.00487
DNA containing 2,6-diamino-4-hydroxy-5-formamidopyrimidine residues
-
0.00078 - 0.00129
DNA containing 4,6-diamino-5-formamidopyrimidine residues
-
0.00045
DNA containing 5,6-dihydrothymine residues
-
pH 7.5, 37°C
-
0.00061 - 0.00957
DNA containing 5,6-dihydrouracil
0.0047
DNA containing 5-hydroxycytosine residues
-
pH 7.5, 37°C
-
0.000083
DNA containing 7-deaza-2'-deoxyguanosine
-
-
0.002
DNA containing 7-hydro-8-oxoguanine residues
-
pH 7.5, 25°C
-
0.000053
DNA containing 7-methyl-8-oxo-2'-deoxyguanosine
-
-
0.000004 - 0.00311
DNA containing 8-hydroxyguanine residues
-
0.000012
DNA containing 8-oxo-2'-deoxyguanosine
-
-
0.001 - 0.44
DNA containing 8-oxo-guanine residues
-
0.022 - 0.023
DNA containing 8-oxo-guanine residues mispaired to adenine
-
0.0001 - 0.0051
DNA containing 8-oxo-guanine residues mispaired to guanine
-
0.00019 - 0.0042
DNA containing 8-oxo-guanine residues mispaired to thymine
-
0.000225
DNA containing 8-thio-2'-deoxyguanosine
-
-
0.000009 - 0.000041
DNA containing ring-opened N7-methylguanine residues
-
additional information
additional information
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0568 - 0.0883
DNA
0.000383 - 0.0185
DNA containing 7-hydro-8-oxoguanine residues
-
0.0012 - 0.00383
DNA containing ring-opened N7-methylguanine residues
-
0.0065 - 0.0283
13mer oligonucleotide duplex containing 8-oxoguanine
-
0.07 - 1.7
23mer oligonucleotide duplex containing 8-oxoguanine
-
0.05
DNA
-
pH 7.5, 25°C, DNA containing an apurininc/apyrimidinic site
0.004 - 0.015
DNA containing 5,6-dihydrouracil
0.053
DNA containing 7-deaza-2'-deoxyguanosine
-
-
0.025
DNA containing 7-hydro-8-oxoguanine residues
-
pH 7.5, 25°C
-
0.00051
DNA containing 7-methyl-8-oxo-2'-deoxyguanosine
-
-
0.000167 - 0.03
DNA containing 8-hydroxyguanine residues
-
0.00167
DNA containing 8-hyroxyguanine
-
pH 7.8, 37°C, 34-oligomer, K57R mutant Fpg
-
0.066
DNA containing 8-oxo-2'-deoxyguanosine
-
-
0.0003 - 0.0067
DNA containing 8-oxo-guanine residues
-
0.000075 - 0.00011
DNA containing 8-oxo-guanine residues mispaired to adenine
-
0.00038 - 0.0035
DNA containing 8-oxo-guanine residues mispaired to guanine
-
0.0003 - 0.0047
DNA containing 8-oxo-guanine residues mispaired to thymine
-
0.00045
DNA containing 8-thio-2'-deoxyguanosine
-
-
0.002 - 0.085
DNA containing ring-opened N7-methylguanine residues
-
additional information
additional information
-
turnover of duplex oligonucleotides and mismatched duplexes
-
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0067
d(pA)10-d(pT)10
-
pH 7.5, 25°C
-
0.001
d(pA)16-d(pT)16
-
pH 7.5, 25°C
-
additional information
additional information
-
with increase in dublex length of nonspecific ds 8-23mer oligonucleotides, Ki values decrease from 0.05 mM to 0.0007 mM
-
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
0.054
polymeric DNA containing ring-opened N7-methylguanine residues as substrate, wild-type Fpg
0.0146
-
pH 7.6, 37°C, enzyme from overexpressing strain HB101
0.0423
-
pH 7.6, 37°C, Fapy-DNA glycosylase activity
0.5
-
pH 7.8, 37°C, apurinic/apyrimidinic-nicking activity
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
7.2 - 8
-
-
7.4
-
assay at
7.6
-
assay at
7.8
-
assay at
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
15
-
assay at, 13mer substrates
20
-
assay at, 23mer substrates
25
-
assay at
pI VALUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
strain 5H11S
SwissProt
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
metabolism
-
DNA glycosylases play a key role in the base excision repair pathway, Fpg belongs to the class of DNA glycosylases/abasic site lyases excising several oxidatively damaged purines in the base excision repair pathway
physiological function
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
35000
1 * 35000, SDS-PAGE
30000
30200
30290
-
x * 30290, calculated from amino acid sequence
31000
-
x * 31000, SDS-PAGE
34400
-
x * 34400, SDS-PAGE
62900
-
x * 62900, EGFP-fusion protein, SDS-PAGE
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
monomer
1 * 35000, SDS-PAGE
monomer
-
1 * 30200, globular monomer
additional information
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
NMR spectroscopy study of enzyme free in solution and bound to a double-stranded DNA oligomer containing 1,3-propanediol. Enzyme is a very dynamic molecule even after binding to damaged DNA
-
structure of enzyme covalently complexed to DNA
-
structures of zinc- and cobalt-associated enzyme
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
K155A
mutant with 50fold decreased activity with 7-hydro-8-oxoguanine-DNA as substrate, only 3-4fold decreased activity with 7-methylformamidopyrimidine-DNA, increased AP lyase activity
E131R
loss of activity
E173Q
no enzymic activity, E173 may play a crucial role in forming the active site pocket
E2Q
no enzymic activity, interactions with G167 and Y170 are interupted
E3Q
-
inactive. Mutant binds DNA duplexes containing spiroiminodihydantoin or guanidinohydantoin about 1000fold more tightly over corresponding duplexes containing 8-oxoguanine
F110A
-
the mutation affects the enzyme activity, especially in the case of oxoG/C substrate, in the second and third reaction steps
F110W
-
the mutation affects the enzyme activity, especially in the case of oxoG/C substrate, in the second and third reaction steps
F111A
-
the mutant displays a significant increase in the average diffusion constant compared to the wild-type protein with no enzymatic activity on DNA containing 8-oxoguanine residues opposite cytosine. The mutant has little or no ability to form a Schiff base with 8-oxoguanine residues opposite cytosine or 5,6-dihydrouracil opposite guanine compared to wild type enzyme
H71A
severely compromised in turnover of oligonucleotides with 8-oxoguanosine opposie cytosine, but show turnover rates comparable to wild-type on abasic-site containing DNA
H89A
-
selective diminition of the rate of excision of 8-oxoguanine
H89A/R109A
-
about 10fold increase in KM-value
K155A
K217T
-
selective reduction of the ability to excise 8-oxoguanine from DNA
K57A
-
mutant with about 15% of wild-type activity in both N-glycosylase and AP lyase activity
N168D
0.2% of wild-type activity
N168Q
9.5% of wild-type activity
P2T
-
mutant with 10% of wild-type 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine DNA glycosylase activity and barely detectable 7,8-dihydro-8-oxoguanine-DNA glycosylase activity, no cleavage of DNA containing AP sites
Q234R
mutant retains activity
Q234R/R244E
mutant retains activity
R108A
-
R108 is a major determinant of opposite-base specificity
R108K
1.9% of wild-type activity
R108L
0.3% of wild-type activity
R108Q
0.3% of wild-type activity
R109A
-
binding of enzyme to damaged DNA is almost abolished
R244E
mutant retains activity
R258A
0.4% of wild-type activity
R258K
0.3% of wild-type activity
R258Q
6.2% of wild-type activity
R54E
loss of activity
R54E/E131R
loss of activity
S208A
mutation has no effect, in both wild-type and S208 A residue Tyr170 quickly reorients to form an alternative set of hydrogen bonds
Y170F
mutation decreases Fpg binding but does not fully inactivate the protein
additional information
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
44.9
mutant Y170F, melting temperature
46.5
mutant Q234R/R244E, melting temperature
51.2
wild-type, melting temperature
53.8
mutant E131R, melting temperature
58.2
mutant S208A, melting temperature
65
-
free protein undergoes irreversible thermal unfolding with a Tm of about 65°C
additional information
-
purified enzyme is very sensitive to extreme temperature fluctuations
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
15N-labeled formamidopyrimidine DNA glycosylase is as active as unlabeled enzyme
-
50% glycerol destabilizes during storage, concentration of above 10% cause a 60% reduction in activity
-
complete loss of activity if the enzyme stored at -20°C or -80°C is subsequently thawed for assaying
-
rapid loss of activity when a conventional pressure cell is used to concentrate enzyme
-
unstable in low ionic strength solutions
-
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
0°C, buffered 0.5 M KCl, 1 week, stable
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
wild-type and K155A mutant Fpg, expressed in Escherichia coli BLR(DE3)
63.6fold, from overexpressing strain HB101
-
copurified with apurinic/apyrimidinic-nicking activity
-
DE52 resin column chromatography and HPLC-Shodex carboxymethyl cellulose column chromatography
-
K57R, K155A mutant Fpg
-
two-step procedure
-
wild-type and K57G, K57R mutant Fpg
-
wild-type and K57G, P2G, P2E mutant Fpg
-
wild-type, P2G, P2E and P2T mutant Fpg
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expression of K155A mutant and wild-type Fpg in Escherichia coli BL21(DE3) and BLR(DE3)
expressed in Escherichia coli BL21(DE3) cells
-
expressed NCI-H727 non small cell lung carcinoma cells
-
expression in Escherichia coli
-
expression in human bladder cell
-
expression of EGFP-tagged enzyme in HEK-293T cells. Transformation of primary human fibroblasts of a Cockayne syndrome patient using SV40, expression of FPG in 5-hydroxy-2'-deoxycytidine repair defective human cells complements the disorder and leads to stable correction of the delayed removal of both oxidized purines and oxidized pyrimidines in the cells, detailed overview
-
fpg structural gene is cloned and sequenced, overexpression in Escherichia coli HB101
-
P2E, P2T and P2G mutant Fpg are cloned and expressed in Escherichia coli BH20(fpg-)
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
analysis
-
comparison of human Ogg1, Escherichia coli Fpg and endonuclease III for the ability to modify the sensitivity of the comet assay. All three endonucleases recognize oxidative DNA damage and, in addition, Fpg and endonuclease III also recognize alkylation damage. Use of human Ogg1 in the modified comet assay offers a useful alternative to Fpg and is more specific for 8-oxoguanine and methyl-fapy-guanine
medicine
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Boiteux, S.; O'Connor, T.R.; Laval, J.
Formamidopyrimidine-DNA glycosylase of Escherichia coli: cloning and sequencing of the fpg structural gene and overproduction of the protein
EMBO J.
6
3177-3183
1987
Escherichia coli, Escherichia coli HB1100
Manually annotated by BRENDA team
Tchou, J.; Grollman, A.P.
The catalytic mechanism of Fpg protein. Evidence for a Schiff base intermediate and amino terminus localization of the catalytic site
J. Biol. Chem.
270
11671-11677
1995
Escherichia coli, Escherichia coli JM109
Manually annotated by BRENDA team
Tchou, J.; Bodepudi, V.; Shibutani, S.; Antoshechkin, I.; Miller, J.; Grollman, A.P.; Johnson, F.
Substrate specificity of Fpg protein. Recognition and cleavage of oxidatively damaged DNA
J. Biol. Chem.
269
15318-15324
1994
Escherichia coli
Manually annotated by BRENDA team
Tchou, J.; Kasai, H.; Chung, M.H.; Laval, J.; Grollman, A.P.; Nishimura, S.
8-Oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity
Proc. Natl. Acad. Sci. USA
88
4690-4694
1991
Escherichia coli
Manually annotated by BRENDA team
O'Connor, T.R.; Laval, J.
Physical association of the 2,6-diamino-4-hydroxy-5N-formamidopyrimidine-DNA glycosylase of Escherichia coli and an activity nicking DNA at apurinic/apyrimidinic sites
Proc. Natl. Acad. Sci. USA
86
5222-5226
1989
Escherichia coli
Manually annotated by BRENDA team
Bailly, V.; Verly, W.G.; O'Connor, T.; Laval, J.
Mechanism of DNA strand nicking at apurinic/apyrimidinic sites by Escherichia coli [formamidopyrimidine]DNA glycosylase
Biochem. J.
262
581-589
1989
Escherichia coli
Manually annotated by BRENDA team
Chetsanga, C.J.; Lozon, M.; Makaroff, C.; Savage, L.
Purification and characterization of Escherichia coli formamidopyrimidine-DNA glycosylase that excises damaged 7-methylguanine from deoxyribonucleic acid
Biochemistry
20
5201-5207
1981
Escherichia coli
Manually annotated by BRENDA team
Hatahet, Z.; Kow, Y.W.; Purmal, A.A.; Cunningham, R.P.; Wallace, S.S.
New substrates for old enzymes. 5-Hydroxy-2'-deoxycytidine and 5-hydroxy-2'-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2'-deoxyuridine is a substrate for uracil DNA N-glycosylase
J. Biol. Chem.
269
18814-18820
1994
Escherichia coli
Manually annotated by BRENDA team
Gilboa, R.; Zharkov, D.O.; Golan, G.; Fernandes, A.S.; Gerchman, S.E.; Matz, E.; Kycia, J.H.; Grollman, A.P.; Shoham, G.
Structure of formamidopyrimidine-DNA glycosylase covalently complexed to DNA
J. Biol. Chem.
277
19811-19816
2002
Escherichia coli
Manually annotated by BRENDA team
Buchko, G.W.; Hess, N.J.; Bandaru, V.; Wallace, S.S.; Kennedy, M.A.
Spectroscopic studies of zinc(II)- and cobalt(II)-associated Escherichia coli formamidopyrimidine-DNA glycosylase: extended X-ray absorption fine structure evidence for a metal-binding domain
Biochemistry
39
12441-12449
2000
Escherichia coli
Manually annotated by BRENDA team
Kuznetsov, S.V.; Sidorkina, O.M.; Jurado, J.; Bazin, M.; Tauc, P.; Brochon, J.C.; Laval, J.; Santus, R.
Effect of single mutations on the structural dynamics of a DNA repair enzyme, the Escherichia coli formamidopyrimidine-DNA glycosylase. A fluorescence study using tryptophan residues as reporter groups
Eur. J. Biochem.
253
413-420
1998
Escherichia coli, Escherichia coli BH20
Manually annotated by BRENDA team
Sidorkina, O.; Dizdaroglu, M.; Laval, J.
Effect of single mutations on the specificity of Escherichia coli FPG protein for excision of purine lesions from DNA damaged by free radicals
Free Radic. Biol. Med.
31
816-823
2001
Escherichia coli
Manually annotated by BRENDA team
Rabow, L.E.; Kow, Y.W.
Mechanism of action of base release by Escherichia coli Fpg protein: Role of lysine 155 in catalysis
Biochemistry
36
5084-5096
1997
Escherichia coli (P50465), Escherichia coli
Manually annotated by BRENDA team
Rabow, L.; Venkataraman, R.; Kow, Y.W.
Mechanism of action of Escherichia coli formamidopyrimidine N-glycosylase: Role of K155 in substrate binding and product release
Prog. Nucleic Acid Res. Mol. Biol.
68
223-234
2001
Escherichia coli
Manually annotated by BRENDA team
D'Ham, C.; Romieu, A.; Jaquinod, M.; Gasparutto, D.; Cadet, J.
Excision of 5,6-dihydroxy-5,6-dihydrothymine, 5,6-dihydrothymine, and 5-hydroxycytosine from defined sequence oligonucleotides by Escherichia coli endonuclease III and Fpg proteins: Kinetic and mechanistic aspects
Biochemistry
38
3335-3344
1999
Escherichia coli
Manually annotated by BRENDA team
Sidorkina, O.M.; Laval, J.
Role of lysine-57 in the catalytic activities of Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg protein)
Nucleic Acids Res.
26
5351-5357
1998
Escherichia coli, Escherichia coli BH20
Manually annotated by BRENDA team
Minetti, C.A.S.A.; Remeta, D.P.; Zharkov, D.O.; Plum, G.E.; Johnson, F.; Grollman, A.P.; Breslauer, K.J.
Energetics of lesion recognition by a DNA repair protein: Thermodynamic characterization of formamidopyrimidine-glycosylase (Fpg) interactions with damaged DNA duplexes
J. Mol. Biol.
328
1047-1060
2003
Escherichia coli, Escherichia coli B834 (DE3)
Manually annotated by BRENDA team
Fedorova, O.S.; Nevinsky, G.A.; Koval, V.V.; Ishchenko, A.A.; Vasilenko, N.L.; Douglas, K.T.
Stopped-flow kinetic studies of the interaction between Escherichia coli Fpg protein and DNA substrates
Biochemistry
41
1520-1528
2002
Escherichia coli
Manually annotated by BRENDA team
Asagoshi, K.; Yamada, T.; Terato, H.; Ohyama, Y.; Monden, Y.; Arai, T.; Nishimura, S.; Aburatani, H.; Lindahl, T.; Ide, H.
Distinct repair activities of human 7,8-dihydro-8-oxoguanine DNA glycosylase and formamidopyrimidine DNA glycosylase for formamidopyrimidine and 7,8-dihydro-8-oxoguanine
J. Biol. Chem.
275
4956-4964
2000
Escherichia coli
Manually annotated by BRENDA team
Sidorkina, O.M.; Laval, J.
Role of the N-terminal proline residue in the catalytic activities of the Escherichia coli Fpg protein
J. Biol. Chem.
275
9924-9929
2000
Escherichia coli
Manually annotated by BRENDA team
Perlow-Poehnelt, R.A.; Zharkov, D.O.; Grollman, A.P.; Broyde, S.
Substrate discrimination by formamidopyrimidine-DNA glycosylase: distinguishing interactions within the active site
Biochemistry
43
16092-16105
2004
Escherichia coli (P05523), Escherichia coli
Manually annotated by BRENDA team
Buchko, G.W.; McAteer, K.; Wallace, S.S.; Kennedy, M.A.
Solution-state NMR investigation of DNA binding interactions in Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg): a dynamic description of the DNA/protein interface
DNA Repair
4
327-339
2005
Escherichia coli
Manually annotated by BRENDA team
Zaika, E.I.; Perlow, R.A.; Matz, E.; Broyde, S.; Gilboa, R.; Grollman, A.P.; Zharkov, D.O.
Substrate discrimination by formamidopyrimidine-DNA glycosylase: a mutational analysis
J. Biol. Chem.
279
4849-4861
2004
Escherichia coli
Manually annotated by BRENDA team
Koval, V.V.; Kuznetsov, N.A.; Zharkov, D.O.; Ishchenko, A.A.; Douglas, K.T.; Nevinsky, G.A.; Fedorova, O.S.
Pre-steady-state kinetics shows differences in processing of various DNA lesions by Escherichia coli formamidopyrimidine-DNA glycosylase
Nucleic Acids Res.
32
926-935
2004
Escherichia coli
Manually annotated by BRENDA team
Reddy, P.; Jaruga, P.; O'Connor, T.; Rodriguez, H.; Dizdaroglu, M.
Overexpression and rapid purification of Escherichia coli formamidopyrimidine-DNA glycosylase
Protein Expr. Purif.
34
126-133
2004
Escherichia coli
Manually annotated by BRENDA team
Harbut, M.B.; Meador, M.; Dodson, M.L.; Lloyd, R.S.
Modulation of the turnover of formamidopyrimidine DNA glycosylase
Biochemistry
45
7341-7346
2006
Escherichia coli (P05523), Escherichia coli
Manually annotated by BRENDA team
Kuznetsov, N.A.; Koval, V.V.; Zharkov, D.O.; Vorobjev, Y.N.; Nevinsky, G.A.; Douglas, K.T.; Fedorova, O.S.
Pre-steady-state kinetic study of substrate specificity of Escherichia coli formamidopyrimidine--DNA glycosylase
Biochemistry
46
424-435
2007
Escherichia coli (P05523), Escherichia coli
Manually annotated by BRENDA team
Krishnamurthy, N.; Muller, J.G.; Burrows, C.J.; David, S.S.
Unusual structural features of hydantoin lesions translate into efficient recognition by Escherichia coli Fpg
Biochemistry
46
9355-9365
2007
Escherichia coli
Manually annotated by BRENDA team
Paul, S.; Gros, L.; Laval, J.; Sutherland, B.M.
Expression of the E. coli fpg protein in CHO cells lowers endogenous oxypurine clustered damage levels and decreases accumulation of endogenous Hprt mutations
Environ. Mol. Mutagen.
47
311-319
2006
Escherichia coli
Manually annotated by BRENDA team
Ropolo, M.; Degan, P.; Foresta, M.; DErrico, M.; Lasiglie, D.; Dogliotti, E.; Casartelli, G.; Zupo, S.; Poggi, A.; Frosina, G.
Complementation of the oxidatively damaged DNA repair defect in Cockayne syndrome A and B cells by Escherichia coli formamidopyrimidine DNA glycosylase
Free Radic. Biol. Med.
42
1807-1817
2007
Escherichia coli
Manually annotated by BRENDA team
Ropolo, M.; Geroldi, A.; Degan, P.; Andreotti, V.; Zupo, S.; Poggi, A.; Reed, A.; Kelley, M.R.; Frosina, G.
Accelerated repair and reduced mutagenicity of oxidative DNA damage in human bladder cells expressing the E. coli FPG protein
Int. J. Cancer
118
1628-1634
2006
Escherichia coli
Manually annotated by BRENDA team
Hamm, M.L.; Gill, T.J.; Nicolson, S.C.; Summers, M.R.
Substrate specificity of Fpg (MutM) and hOGG1, two repair glycosylases
J. Am. Chem. Soc.
129
7724-7725
2007
Escherichia coli, Homo sapiens
Manually annotated by BRENDA team
Rogacheva, M.; Ishchenko, A.; Saparbaev, M.; Kuznetsova, S.; Ogryzko, V.
High resolution characterization of formamidopyrimidine-DNA glycosylase interaction with its substrate by chemical cross-linking and mass spectrometry using substrate analogs
J. Biol. Chem.
281
32353-32365
2006
Escherichia coli, Homo sapiens
Manually annotated by BRENDA team
Smith, C.C.; ODonovan, M.R.; Martin, E.A.
hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII
Mutagenesis
21
185-190
2006
Escherichia coli, Homo sapiens
Manually annotated by BRENDA team
Shu, J.; Schellhorn, H.E.; Murphy, T.M.
Stationary phase-induction of G->T mutations in Escherichia coli
Mutat. Res.
596
106-112
2006
Escherichia coli
Manually annotated by BRENDA team
Minetti, C.A.; Remeta, D.P.; Breslauer, K.J.
A continuous hyperchromicity assay to characterize the kinetics and thermodynamics of DNA lesion recognition and base excision
Proc. Natl. Acad. Sci. USA
105
70-75
2008
Escherichia coli
Manually annotated by BRENDA team
Kuznetsov, N.A.; Zharkov, D.O.; Koval, V.V.; Buckle, M.; Fedorova, O.S.
Reversible chemical step and rate-limiting enzyme regeneration in the reaction catalyzed by formamidopyrimidine-DNA glycosylase
Biochemistry
48
11335-11343
2009
Escherichia coli
Manually annotated by BRENDA team
Foresta, M.; Ropolo, M.; Degan, P.; Pettinati, I.; Kow, Y.W.; Damonte, G.; Poggi, A.; Frosina, G.
Defective repair of 5-hydroxy-2-deoxycytidine in Cockayne syndrome cells and its complementation by Escherichia coli formamidopyrimidine DNA glycosylase and endonuclease III
Free Radic. Biol. Med.
48
681-690
2010
Escherichia coli
Manually annotated by BRENDA team
Koval, V.V.; Kuznetsov, N.A.; Ishchenko, A.A.; Saparbaev, M.K.; Fedorova, O.S.
Real-time studies of conformational dynamics of the repair enzyme E. coli formamidopyrimidine-DNA glycosylase and its DNA complexes during catalytic cycle
Mutat. Res.
685
3-10
2010
Escherichia coli
Manually annotated by BRENDA team
Schalow, B.J.; Courcelle, C.T.; Courcelle, J.
Escherichia coli Fpg glycosylase is nonrendundant and required for the rapid global repair of oxidized purine and pyrimidine damage in vivo
J. Mol. Biol.
410
183-193
2011
Escherichia coli, Escherichia coli SR108
Manually annotated by BRENDA team
Dunn, A.R.; Kad, N.M.; Nelson, S.R.; Warshaw, D.M.; Wallace, S.S.
Single Qdot-labeled glycosylase molecules use a wedge amino acid to probe for lesions while scanning along DNA
Nucleic Acids Res.
39
7487-7498
2011
Escherichia coli
Manually annotated by BRENDA team
Reddy, P.T.; Jaruga, P.; Nelson, B.C.; Lowenthal, M.; Dizdaroglu, M.
Stable isotope-labeling of DNA repair proteins, and their purification and characterization
Protein Expr. Purif.
78
94-101
2011
Escherichia coli
Manually annotated by BRENDA team
Rana, J.; Huang, H.
Actions of the Klenow fragment of DNA polymerase I and some DNA glycosylases on chemically stable analogues of N7-methyl-2-deoxyguanosine
Bioorg. Med. Chem.
21
6886-6892
2013
Escherichia coli
Manually annotated by BRENDA team
Kain, J.; Karlsson, H.L.; Moeller, L.
DNA damage induced by micro- and nanoparticles - interaction with FPG influences the detection of DNA oxidation in the comet assay
Mutagenesis
27
491-500
2012
Escherichia coli
Manually annotated by BRENDA team
Kuznetsov, N.A.; Vorobjev, Y.N.; Krasnoperov, L.N.; Fedorova, O.S.
Thermodynamics of the multi-stage DNA lesion recognition and repair by formamidopyrimidine-DNA glycosylase using pyrrolocytosine fluorescence--stopped-flow pre-steady-state kinetics
Nucleic Acids Res.
40
7384-7392
2012
Escherichia coli
Manually annotated by BRENDA team
Foresta, M.; Izzotti, A.; La Maestra, S.; Micale, R.; Poggi, A.; Vecchio, D.; Frosina, G.
Accelerated repair and reduced mutagenicity of DNA damage induced by cigarette smoke in human bronchial cells transfected with E.coli formamidopyrimidine DNA glycosylase
PLoS ONE
9
e87984
2014
Escherichia coli
Manually annotated by BRENDA team
Prakash, A.; Doublie, S.; Wallace, S.S.
The Fpg/Nei family of DNA glycosylases: substrates, structures, and search for damage
Prog. Mol. Biol. Transl. Sci.
110
71-91
2012
Escherichia coli (P05523), Geobacillus stearothermophilus (P84131), Lactococcus lactis (P42371), Thermus thermophilus (O50606), Thermus thermophilus DSM 579 (O50606)
Manually annotated by BRENDA team
Le Meur, R.; Culard, F.; Nadan, V.; Goffinont, S.; Coste, F.; Guerin, M.; Loth, K.; Landon, C.; Castaing, B.
The nucleoid-associated protein HU enhances 8-oxoguanine base excision by the formamidopyrimidine-DNA glycosylase
Biochem. J.
471
13-23
2015
Escherichia coli (P05523)
Manually annotated by BRENDA team
Kiruba, G.S.; Xu, J.; Zelikson, V.; Lee, J.K.
Gas-phase studies of formamidopyrimidine glycosylase (Fpg) substrates
Chemistry
22
3881-3890
2016
Escherichia coli
Manually annotated by BRENDA team
Endutkin, A.V.; Koptelov, S.S.; Popov, A.V.; Torgasheva, N.A.; Lomzov, A.A.; Tsygankova, A.R.; Skiba, T.V.; Afonnikov, D.A.; Zharkov, D.O.
Residue coevolution reveals functionally important intramolecular interactions in formamidopyrimidine-DNA glycosylase
DNA Repair
69
24-33
2018
Escherichia coli (P05523), Escherichia coli
Manually annotated by BRENDA team
Li, H.; Endutkin, A.V.; Bergonzo, C.; Campbell, A.J.; de los Santos, C.; Grollman, A.; Zharkov, D.O.; Simmerling, C.
A dynamic checkpoint in oxidative lesion discrimination by formamidopyrimidine-DNA glycosylase
Nucleic Acids Res.
44
683-694
2016
Escherichia coli (P05523), Geobacillus stearothermophilus (P84131)
Manually annotated by BRENDA team