Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.2.1.3 - glucan 1,4-alpha-glucosidase and Organism(s) Mus musculus and UniProt Accession Q6XK24

for references in articles please use BRENDA:EC3.2.1.3
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
IUBMB Comments
Most forms of the enzyme can rapidly hydrolyse 1,6-alpha-D-glucosidic bonds when the next bond in the sequence is 1,4, and some preparations of this enzyme hydrolyse 1,6- and 1,3-alpha-D-glucosidic bonds in other polysaccharides. This entry covers all such enzymes acting on polysaccharides more rapidly than on oligosaccharides. EC 3.2.1.20 alpha-glucosidase, from mammalian intestine, can catalyse similar reactions.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Mus musculus
UNIPROT: Q6XK24
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Mus musculus
The enzyme appears in selected viruses and cellular organisms
Synonyms
glucoamylase, amyloglucosidase, acid maltase, maltase-glucoamylase, lysosomal alpha-glucosidase, maltase glucoamylase, gamma-amylase, glucose amylase, gam-1, glucoamylase p, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
glucoamylase
-
1,4-alpha-D-glucan glucohydrolase
-
-
-
-
acid maltase
-
-
-
-
alpha-1,4-glucan glucohydrolase
-
-
-
-
amyloglucosidase
-
-
-
-
exo-1,4-alpha-glucosidase
-
-
-
-
GAI
-
-
-
-
GAII
-
-
-
-
gamma-amylase
-
-
-
-
Glucan 1,4-alpha-glucosidase
-
-
-
-
glucoamylase
-
-
-
-
glucose amylase
-
-
-
-
lysosomal alpha-glucosidase
-
-
-
-
Meiotic expression upregulated protein 17
-
-
-
-
PATHWAY SOURCE
PATHWAYS
-
-
SYSTEMATIC NAME
IUBMB Comments
4-alpha-D-glucan glucohydrolase
Most forms of the enzyme can rapidly hydrolyse 1,6-alpha-D-glucosidic bonds when the next bond in the sequence is 1,4, and some preparations of this enzyme hydrolyse 1,6- and 1,3-alpha-D-glucosidic bonds in other polysaccharides. This entry covers all such enzymes acting on polysaccharides more rapidly than on oligosaccharides. EC 3.2.1.20 alpha-glucosidase, from mammalian intestine, can catalyse similar reactions.
CAS REGISTRY NUMBER
COMMENTARY hide
9032-08-0
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
starch + H2O
?
show the reaction diagram
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
starch + H2O
?
show the reaction diagram
-
-
-
?
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(+)-catechin
noncompetitive inhibition
caffeic acid
noncompetitive inhibition
chlorogenic acid
noncompetitive inhibition
epigallocatechin gallate
EGCG, noncompetitive inhibition
gallic acid
noncompetitive inhibition
additional information
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0204 - 0.0216
(+)-catechin
0.0565 - 0.0582
caffeic acid
0.0018 - 0.003
chlorogenic acid
0.00151 - 0.0017
epigallocatechin gallate
0.0249 - 0.0313
gallic acid
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
37
assay at
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
-
SwissProt
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
Q6XK24_MOUSE
536
1
60350
TrEMBL
Secretory Pathway (Reliability: 1)
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
recombinant glucoamylase subunit Ct-MGAM splice form N20 and subunit Ct-SI from Spodoptera frugiperda Sf9 cells
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
recombinant expression of the glucoamylase subunit Ct-MGAM splice form N20 and the sucrase subunit Ct-SI in Spodoptera frugiperda Sf9 cells using the baculovirus transfection system
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
nutrition
-
feeding of maltase-glucoamylase null and wild-type mice with starch diets ad libitum and ad limitum. After ad libitum meals, null and wild-type mice have similar increases of blood glucose concentration. At low intakes, null mice have less fractional glucogenesis than wild-type mice. Null mice do not reduce fractional glucogenesis responses to ad libitum intakes demonstrating the dominant role of sucrose-isomaltase activity during full feeding
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Diaz-Sotomayor, M.; Quezada-Calvillo, R.; Avery, S.E.; Chacko, S.K.; Yan, L.K.; Lin, A.H.; Ao, Z.H.; Hamaker, B.R.; Nichols, B.L.
Maltase-glucoamylase modulates gluconeogenesis and sucrase-isomaltase dominates starch digestion glucogenesis
J. Pediatr. Gastroenterol. Nutr.
57
704-712
2013
Mus musculus
Manually annotated by BRENDA team
Simsek, M.; Quezada-Calvillo, R.; Ferruzzi, M.G.; Nichols, B.L.; Hamaker, B.R.
Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release
J. Agric. Food Chem.
63
3873-3879
2015
Mus musculus (Q6XK24), Mus musculus
Manually annotated by BRENDA team