Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.1.26.11 - tRNase Z and Organism(s) Escherichia coli and UniProt Accession P0A8V0

for references in articles please use BRENDA:EC3.1.26.11
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.1 Acting on ester bonds
             3.1.26 Endoribonucleases producing 5'-phosphomonoesters
                3.1.26.11 tRNase Z
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Escherichia coli
UNIPROT: P0A8V0 not found.
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Escherichia coli
The enzyme appears in selected viruses and cellular organisms
Reaction Schemes
endonucleolytic cleavage of RNA, removing extra 3' nucleotides from tRNA precursor, generating 3' termini of tRNAs. A 3'-hydroxy group is left at the tRNA terminus and a 5'-phosphoryl group is left at the trailer molecule
Synonyms
elac2, trnase z, rnase z, rnase bn, trnase zl, 3' trnase, 3'-trnase, trnase zs, trna 3' processing endoribonuclease, rnase zs1, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
3 tRNase
-
-
-
-
3' tRNase
-
-
3'-tRNA processing endoribonuclease
-
-
-
-
nuclease, transfer ribonucleate maturation 3'-endoribo-(9CI)
-
-
-
-
pre-tRNA processing endoribonuclease
-
-
-
-
precursor tRNA 3'-end processing endoribonuclease
-
-
-
-
RNase BN
transfer RNA maturation endonuclease
-
-
-
-
tRNA 3 endonuclease
-
-
-
-
tRNA 3' processing endoribonuclease
-
-
-
-
tRNA precursor-processing endoribonuclease
-
-
-
-
zinc phosphodiesterase
-
-
zinc-dependent phosphodiesterase
-
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis of phosphoric ester
-
hydrolysis of phosphoric ester
CAS REGISTRY NUMBER
COMMENTARY hide
98148-84-6
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
bis(p-nitrophenyl)phosphate + H2O
p-nitrophenol + p-nitrophenyl phosphate
show the reaction diagram
pre-tRNA + H2O
?
show the reaction diagram
-
the glycine/proline-rich ZiPD exosite of tRNase Z takes part in the pre-tRNA binding, it is a flexible arm which protrudes from the main protein body
-
-
?
thymidine 5'-p-nitrophenyl phosphate + H2O
p-nitrophenol + TMP
show the reaction diagram
-
-
-
-
?
thymidine-5-p-nitrophenyl phosphate + H2O
p-nitrophenol + TMP
show the reaction diagram
-
TpNPP substrate, phosphodiesterase activities of tRNase Z on small chromogenic substrates mentioned, structural features of potential model substrates indicated
-
-
?
usRNA1 + H2O
?
show the reaction diagram
-
24 nt unstructured RNA
-
-
?
usRNA10 + H2O
?
show the reaction diagram
-
40 nt unstructured RNA
-
-
?
usRNA2 + H2O
?
show the reaction diagram
-
24 nt unstructured RNA
-
-
?
usRNA3 + H2O
?
show the reaction diagram
-
28 nt unstructured RNA
-
-
?
usRNA4 + H2O
?
show the reaction diagram
-
39 nt unstructured RNA
-
-
?
usRNA5 + H2O
?
show the reaction diagram
-
26 nt unstructured RNA
-
-
?
usRNA6 + H2O
?
show the reaction diagram
-
26 nt unstructured RNA
-
-
?
usRNA7 + H2O
?
show the reaction diagram
-
24 nt unstructured RNA
-
-
?
usRNA8 + H2O
?
show the reaction diagram
-
43 nt unstructured RNA
-
-
?
usRNA9 + H2O
?
show the reaction diagram
-
22 nt unstructured RNA
-
-
?
additional information
?
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Cd2+
-
with 0.2 mM, at 37°C, pH 7.4, 28% relative activity when compared to Co2+
Co2+
-
100% relative activity at 0.2 mM
Cu2+
-
with 0.2 mM, at 37°C, pH 7.4, 8% relative activity when compared to Co2+
Fe2+
-
with 0.2 mM, at 37°C, pH 7.4, 34% relative activity when compared to Co2+
Mn2+
-
with 0.2 mM, at 37°C, pH 7.4, 95% relative activity when compared to Co2+. When the existing metal ion of the apoenzyme is removed with EDTA, with 0.2 mM, at 37°C, pH 7.4, 23% relative activity when compared to Co2+ after 60 min of incubation
additional information
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
EDTA
-
with 0.2 mM, at 37°C, pH 7.4, 11% relative activity when compared to Co2+
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
6.5 - 7.5
-
assay at
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
37
-
assay at
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
-
SwissProt
Manually annotated by BRENDA team
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
malfunction
-
strains with simultanoeus deletion of genes from RNases II, Z, D, T and PH are not viable, but cells survive when only one of these genes is active
physiological function
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
dimer
-
homodimer, crystal structure
homodimer
-
crystallography
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
crystal structure of different tRNase Z enzymes with regard to canonical sequence motifs reviewed, overview about substrate recognition and cleavage sites of tRNase Z given
-
each monomer exhibits the typical metallo-beta-lactamase fold, 2 Zn2+ ions are complexed at the active site
-
structural features summarized
-
structures of free and RNA-bound prokaryotic tRNase Z proteins compared, overview, electrostatic surface representation, catalytic site and cleavage mechanism indicated, overview
-
the enzyme forms a homodimer, the monomeric subunits are arranged in head-to-head fashion. The monomers concertedly build an active site cleft which is capable of accommodating single-stranded RNA
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
D212A
-
Asp(II) active site residue
D68A
-
Asp(I), active site residue
H141A
-
His(IV), active site residue
H248A
-
His(V), active site residue
H270A
-
His(VI), active site residue
H64A
-
His(I), active site residue
H66A
-
His(II), active site residue
H69A
-
His(III), active site residue
Q44S/Q46T
-
double mutant, cleavage of human pre-tRNA(Arg) after U75, very inefficiently
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
affinity chromatography, gel filtration
-
by centrifugation, on nickel column and by ultrafiltration
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
Escherichia coli strain BL21I-II-(DE3)/pLys carrying the pET-ElaC(His) plasmid
-
expression in Escherichia coli
-
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Shibata, H.S.; Minagawa, A.; Takaku, H.; Takagi, M.; Nashimoto, M.
Unstructured RNA is a substrate for tRNase Z
Biochemistry
45
5486-5492
2006
Bacillus subtilis, Escherichia coli, Homo sapiens, Pyrobaculum aerophilum, Saccharomyces cerevisiae, Sus scrofa, Thermotoga maritima
Manually annotated by BRENDA team
Vogel, A.; Schilling, O.; Spath, B.; Marchfelder, A.
The tRNase Z family of proteins: physiological functions, substrate specificity and structural properties
Biol. Chem.
386
1253-1264
2005
Arabidopsis thaliana, Arabidopsis thaliana (Q8L633), Arabidopsis thaliana (Q8LGU7), Arabidopsis thaliana (Q8VYS2), Bacillus subtilis (P54548), Caenorhabditis elegans (O44476), Drosophila melanogaster (Q8MKW7), Escherichia coli (P0A8V0), Haloferax volcanii, Homo sapiens (Q9BQ52), Homo sapiens (Q9H777), Methanocaldococcus jannaschii (Q58897), Pyrobaculum aerophilum (Q8ZTJ7), Pyrococcus furiosus (Q8U182), Saccharomyces cerevisiae (P36159), Thermoplasma acidophilum (Q9HJ19), Thermotoga maritima
Manually annotated by BRENDA team
Kostelecky, B.; Pohl, E.; Vogel, A.; Schilling, O.; Meyer-Klaucke, W.
The crystal structure of the zinc phosphodiesterase from Escherichia coli provides insight into function and cooperativity of tRNase Z-family proteins
J. Bacteriol.
188
1607-1614
2006
Escherichia coli
Manually annotated by BRENDA team
Dominski, Z.
Nucleases of the metallo-beta-lactamase family and their role in DNA and RNA metabolism
Crit. Rev. Biochem. Mol. Biol.
42
67-93
2007
Escherichia coli, Homo sapiens
Manually annotated by BRENDA team
Redko, Y.; Li de Lasierra-Gallay, I.; Condon, C.
When alls zed and done: the structure and function of RNase Z in prokaryotes
Nat. Rev. Microbiol.
5
278-286
2007
Aspergillus nidulans, Bacillus subtilis (P54548), Bacteroides fragilis, Bombyx mori, Bradyrhizobium japonicum, Caenorhabditis elegans, Chlamydia trachomatis, Clostridium acetobutylicum, Clostridium spp., Deinococcus radiodurans, Drosophila melanogaster, Escherichia coli, Haloquadratum walsbyi, Lacticaseibacillus casei, Listeria monocytogenes, Methanocaldococcus jannaschii, Methanococcoides burtonii, Mycobacterium tuberculosis, Myxococcus xanthus, Nanoarchaeum equitans, Prochlorococcus marinus, Saccharolobus solfataricus, Saccharomyces cerevisiae, Staphylococcus aureus, Streptococcus pneumoniae, Streptomyces coelicolor, Thermotoga maritima, Treponema pallidum, Xenopus laevis
Manually annotated by BRENDA team
Ceballos, M.; Vioque, A.
tRNase Z
Protein Pept. Lett.
14
137-145
2007
Synechocystis sp., Arabidopsis thaliana, Bacillus subtilis, Escherichia coli, Homo sapiens, Methanocaldococcus jannaschii, Thermotoga maritima
Manually annotated by BRENDA team
Elbarbary, R.A.; Takaku, H.; Nashimoto, M.
Functional analyses for tRNase Z variants: an aspartate and a histidine in the active site are essential for the catalytic activity
Biochim. Biophys. Acta
1784
2079-2085
2008
Bacillus subtilis, Escherichia coli, Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Takaku, H.; Nashimoto, M.
Escherichia coli tRNase Z can shut down growth probably by removing amino acids from aminoacyl-tRNAs
Genes Cells
13
1087-1097
2008
Escherichia coli
Manually annotated by BRENDA team
Minagawa, A.; Ishii, R.; Takaku, H.; Yokoyama, S.; Nashimoto, M.
The flexible arm of tRNase Z is not essential for pre-tRNA binding but affects cleavage site selection
J. Mol. Biol.
381
289-299
2008
Bacillus subtilis, Escherichia coli, Pyrobaculum aerophilum, Thermoplasma acidophilum, Thermotoga maritima
Manually annotated by BRENDA team
Dutta, T.; Deutscher, M.P.
Catalytic properties of RNase BN/RNase Z from Escherichia coli: RNase BN is both an exo- and endoribonuclease
J. Biol. Chem.
284
15425-15431
2009
Escherichia coli
Manually annotated by BRENDA team
Hartmann, R.K.; Goessringer, M.; Spaeth, B.; Fischer, S.; Marchfelder, A.
The making of tRNAs and more - RNase P and tRNase Z
Prog. Mol. Biol. Transl. Sci.
85
319-368
2009
Aeropyrum pernix, Archaeoglobus fulgidus, Bacillus subtilis, Borreliella burgdorferi, Chlamydia trachomatis, Clostridium perfringens, Deinococcus radiodurans, Escherichia coli, Halobacterium sp., Haloferax volcanii, Lactococcus lactis, Methanocaldococcus jannaschii, Methanopyrus kandleri, Methanosarcina mazei, Methanothermobacter thermautotrophicus, Nanoarchaeum equitans, Pyrobaculum aerophilum, Pyrococcus abyssi, Pyrococcus furiosus, Saccharolobus solfataricus, Synechocystis sp. PCC 6803, Thermoplasma acidophilum, Thermotoga maritima, Treponema pallidum, Triticum aestivum
Manually annotated by BRENDA team
Dutta, T.; Deutscher, M.P.
Mode of action of RNase BN/RNase Z on tRNA precursors: RNase BN does not remove the CCA sequence from tRNA
J. Biol. Chem.
285
22874-22881
2010
Escherichia coli
Manually annotated by BRENDA team