Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.1.1.3 - triacylglycerol lipase and Organism(s) Rhizomucor miehei and UniProt Accession P19515

for references in articles please use BRENDA:EC3.1.1.3
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.1 Acting on ester bonds
             3.1.1 Carboxylic-ester hydrolases
                3.1.1.3 triacylglycerol lipase
IUBMB Comments
The enzyme is found in diverse organisms including animals, plants, fungi, and bacteria. It hydrolyses triglycerides into diglycerides and subsequently into monoglycerides and free fatty acids. The enzyme is highly soluble in water and acts at the surface of oil droplets. Access to the active site is controlled by the opening of a lid, which, when closed, hides the hydrophobic surface that surrounds the active site. The lid opens when the enzyme contacts an oil-water interface (interfacial activation). The pancreatic enzyme requires a protein cofactor, namely colipase, to counteract the inhibitory effects of bile salts.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Rhizomucor miehei
UNIPROT: P19515
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Rhizomucor miehei
The enzyme appears in selected viruses and cellular organisms
Synonyms
lipase, acyltransferase, pancreatic lipase, hepatic lipase, adipose triglyceride lipase, cholesterol esterase, lipase b, triglyceride lipase, tgl, diacylglycerol lipase, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
amano AP
-
-
-
-
amano B
-
-
-
-
amano CE
-
-
-
-
amano CES
-
-
-
-
amano P
-
-
-
-
amno N-AP
-
-
-
-
BAL
-
-
-
-
Bile-salt-stimulated lipase
-
-
-
-
BSSL
-
-
-
-
butyrinase
-
-
-
-
cacordase
-
-
-
-
CALB
-
-
-
-
capalase L
-
-
-
-
Carboxyl ester lipase
-
-
-
-
cholesterol esterase
-
-
-
-
Cytotoxic T lymphocyte lipase
-
-
-
-
EDL
-
-
-
-
endothelial cell-derived lipase
-
-
-
-
endothelial-derived lipase
-
-
-
-
GA 56 (enzyme)
-
-
-
-
Gastric lipase
-
-
-
-
GEH
-
-
-
-
glycerol ester hydrolase
-
-
-
-
glycerol-ester hydrolase
-
-
-
-
heparin releasable hepatic lipase
-
-
-
-
hepatic lipase
-
-
-
-
hepatic monoacylglycerol acyltransferase
-
-
-
-
Lingual lipase
-
-
-
-
lipase
lipase, triacylglycerol
-
-
-
-
lipazin
-
-
-
-
lipozyme IM
-
-
lipozyme RM-IM
-
commercial preparation, immobilized enzyme
liver lipase
-
-
-
-
meito MY 30
-
-
-
-
meito Sangyo OF lipase
-
-
-
-
Pancreatic lipase
-
-
-
-
Pancreatic lysophospholipase
-
-
-
-
PGE
-
-
-
-
PL-RP2
-
-
-
-
post-heparin plasma protamine-resistant lipase
-
-
-
-
PPL
-
-
-
-
Pregastric esterase
-
-
-
-
Pregastric lipase
-
-
-
-
salt-resistant post-heparin lipase
-
-
-
-
steapsin
-
-
-
-
Sterol esterase
-
-
-
-
takedo 1969-4-9
-
-
-
-
teenesterase
-
-
-
-
tiacetinase
-
-
-
-
tibutyrin esterase
-
-
-
-
triacylglycerol ester hydrolase
-
-
-
-
triacylglycerol hydrolase
-
-
Triacylglycerol lipase
-
-
-
-
tributyrase
-
-
-
-
tributyrinase
-
-
-
-
triglyceridase
-
-
-
-
triglyceride hydrolase
-
-
-
-
triglyceride lipase
triolein hydrolase
-
-
-
-
tween hydrolase
-
-
-
-
tween-hydrolyzing esterase
-
-
-
-
Tweenase
-
-
-
-
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
triacylglycerol + H2O = diacylglycerol + a carboxylate
show the reaction diagram
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis
-
-
hydrolysis of carboxylic ester
-
-
-
-
transesterification
-
-
carboxylic ester hydrolysis
-
-
PATHWAY SOURCE
PATHWAYS
-
-, -
SYSTEMATIC NAME
IUBMB Comments
triacylglycerol acylhydrolase
The enzyme is found in diverse organisms including animals, plants, fungi, and bacteria. It hydrolyses triglycerides into diglycerides and subsequently into monoglycerides and free fatty acids. The enzyme is highly soluble in water and acts at the surface of oil droplets. Access to the active site is controlled by the opening of a lid, which, when closed, hides the hydrophobic surface that surrounds the active site. The lid opens when the enzyme contacts an oil-water interface (interfacial activation). The pancreatic enzyme requires a protein cofactor, namely colipase, to counteract the inhibitory effects of bile salts.
CAS REGISTRY NUMBER
COMMENTARY hide
9001-62-1
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
4-nitrophenyl butanoate + H2O
4-nitrophenol + butanoate
show the reaction diagram
-
-
-
?
octanol + decanoate
octyl decanoate + H2O
show the reaction diagram
-
-
-
?
(4S)-4-tert-butyl-2-phenyl-1,3-oxazol-5(4H)-one + butanol
butyl (2S)-2-(benzoylamino)3,3-dimethylbutanoate
show the reaction diagram
-
-
-
-
?
1,2-O-dilauryl-rac-glycero-3-glutaric acid resorufin ester + H2O
?
show the reaction diagram
-
-
-
?
4-nitrophenyl butyrate + H2O
4-nitrophenol + butyrate
show the reaction diagram
-
low activity
-
?
4-nitrophenyl decanoate + H2O
4-nitrophenol + decanoate
show the reaction diagram
-
-
-
?
4-nitrophenyl hexanoate + H2O
4-nitrophenol + hexanoate
show the reaction diagram
-
low activity
-
?
4-nitrophenyl octanoate + H2O
4-nitrophenol + octanoate
show the reaction diagram
4-nitrophenyl tetradecanoate + H2O
4-nitrophenol + tetradecanoate
show the reaction diagram
-
best 4-nitrophenyl ester substrate for wild-type enzyme and mutant F94R
-
?
eugenol + benzoic acid
eugenyl benzoate
show the reaction diagram
-
-
-
-
?
glycerol + (R)-mandelic acid methyl ester + H2O
?
show the reaction diagram
-
about 300fold lower activity compared to phenylpropionic acid ethyl ester
-
-
?
glycerol + (S)-mandelic acid methyl ester + H2O
?
show the reaction diagram
-
about 300fold lower activity compared to phenylpropionic acid ethyl ester
-
-
?
glycerol + phenylacetic acid methyl ester + H2O
?
show the reaction diagram
-
about 5fold lower activity compared to phenylpropionic acid ethyl ester
-
-
?
glycerol + phenylmalonic acid dimethyl ester + H2O
glyceryl monomethylphenylmalonate + ethanol
show the reaction diagram
-
about 5fold lower activity compared to phenylpropionic acid ethyl ester
-
-
?
glycerol + phenylpropionic acid ethyl ester + H2O
glyceryl phenylpropionic ester + ethanol
show the reaction diagram
-
the immobilized lipase exhibits the highest activity towards phenylpropionic acid ethyl ester. 90% of glycerol is the optimum amount to perform the transesterification reaction
the maximum product yield is achieved after 4 h (78%)
-
?
high linoleic sunflower oil + H2O
?
show the reaction diagram
-
-
-
-
?
high oleic sunflower oil + H2O
?
show the reaction diagram
-
-
-
-
?
lauric acid + 1-propanol
propyl laurate + H2O
show the reaction diagram
-
-
-
-
?
olive oil + H2O
?
show the reaction diagram
-
-
-
-
?
triacylglycerol + H2O
diacylglycerol + a carboxylate
show the reaction diagram
-
-
-
-
?
tributyrin + H2O
dibutyrin + butyrate
show the reaction diagram
tridecanin + H2O
didecanin + decanoate
show the reaction diagram
-
-
-
?
trihexanin + H2O
dihexanin + hexanoate
show the reaction diagram
-
-
-
?
trioctanin + H2O
dioctanin + octanoate
show the reaction diagram
-
-
-
?
triolein + H2O
diolein + oleate
show the reaction diagram
-
-
-
-
?
trioleoylglycerol + succinic acid
1,2-dioleoyl-3-succinoylglycerol + 2-oleoyl-1,3-succinoylglycerol
show the reaction diagram
-
-
-
-
?
tripalmitoylglycerol + succinic acid
1,2-dipalmitoyl-3-succinoylglycerol + 2-palmitoyl-1,3-disuccinoylglycerol
show the reaction diagram
-
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
triacylglycerol + H2O
diacylglycerol + a carboxylate
show the reaction diagram
-
-
-
-
?
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
Diethyl p-nitrophenyl phosphate
-
-
eugenol
-
substrate inhibition
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
Triton X-100
-
enhances the enzyme production in vivo by 50fold compared to olive oil alone in the medium
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1.17 - 2.01
4-nitrophenyl octanoate
34.04
benzoic acid
-
chitosan-chitin nanowhiskers supported lipase, pH not specified in the publication, 50°C
138.28
eugenol
-
chitosan-chitin nanowhiskers supported lipase, pH not specified in the publication, 50°C
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
24.05 - 43.71
4-nitrophenyl octanoate
0.67
eugenol
-
chitosan-chitin nanowhiskers supported lipase, pH not specified in the publication, 50°C
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
20.6 - 28.6
4-nitrophenyl octanoate
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
438.6
eugenol
-
chitosan-chitin nanowhiskers supported lipase, pH not specified in the publication, 50°C
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
0.141
-
commercial preparation
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
7.7
-
assay at
8.5
mutant T18K/T22I/S56C/N63C/V189C/E230I/D238C
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
4 - 10.5
-
pH profile, the enzyme is active under acidic conditions and shows 22.4% of maximal activity at pH 4.0
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
25
-
assay at
55
mutant T18K/T22I/E230I
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
-
UniProt
Manually annotated by BRENDA team
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
LIP_RHIMI
363
1
39602
Swiss-Prot
Secretory Pathway (Reliability: 1)
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
crystallization at a concentration of 26.0 mg/ml and 2.0 M sodium phosphate at pH 4.9 by the batch technique or with 10.0 mg/ml protein and 2.8 M phosphate at pH 7.8 using the hanging drop technique. Both crystallization conditions give isomorphous crystals during 2-4 weeks and room temperature
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
F94E
-
site-directed mutagenesis, altered substrate chain length specificity
F94Q
-
site-directed mutagenesis, altered substrate chain length specificity
F94R
-
site-directed mutagenesis, altered substrate chain length specificity
T18K/T22I/E230I
thermostable mutant, melting temperature is 10 degrees higher than wild-type
T18K/T22I/S56C/N63C/V189C/E230I/D238C
thermostable mutant, residues S56C/N63C and V189C/D238C may form additional disulfide bonds. Melting temperature is 14.3 degrees higher than wild-type and half-life at 70°C is 12.5fold increased
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
58.7
melting temperature, wild-type
65
120 min, 13% residual activity for wild-type, 95% for mutant T18K/T22I/E230I
68.1
melting temperature, mutant T18K/T22I/E230I
70
wild-type, half-life 2.2 min, mutant T18K/T22I/S56C/N63C/V189C/E230I/D238C, half-life 27.5 min
73
melting temperature, mutant T18K/T22I/S56C/N63C/V189C/E230I/D238C
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
when the lipase is immobilized in hydroxy(propylmethyl) cellulose gels it retains its activity from 20-65°C independently of the microemulsion used, in the case of agar microemulsion-based organogels the enzyme loses its activity above 50°C, either partly (20% loss in respect to the maximum activity observed for lecithin-agar gels) or completely (100% loss for AOT-agar gels)
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
preparative level, recombinant mutants expressed in Pichia pastoris
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expression in Escherichia coli
subcloning of plasmids encoding mutant enzymes in Escherichia coli XLIB, expression of mutants in Pichia pastoris GS115
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
synthesis
solubilization in sodium bis-(2-ethylhexyl)sulfosuccinate-stabilized water-in-oil microemulsions in n-heptane and analysis of hydrolysis and condensation activity. Esterification activity shows only a slight dependence on temperature over the studied range and an apparent activation energy of 20 kJ/mol for octyl decanoate synthesis. The enzyme shows good stability over a 30-day period in R = 7.5 and R = 10 microemulsions, pH 6.1
synthesis
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Derewenda, U.; Brzozowski, A.M.; Lawson, D.M.; Derewenda, Z.S.
Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase
Biochemistry
31
1532-1541
1992
Rhizomucor miehei
Manually annotated by BRENDA team
Sharma, R.; Chisti, Y.; Banerjee, U.C.
Production, purification, characterization, and applications of lipases
Biotechnol. Adv.
19
627-662
2001
Acinetobacter calcoaceticus, Aspergillus niger, Aspergillus oryzae, Geobacillus stearothermophilus, Bacillus sp. (in: Bacteria), Burkholderia cepacia, Burkholderia sp., Moesziomyces antarcticus, Diutina rugosa, Rhizomucor miehei, Penicillium roqueforti, Hyphopichia burtonii, Proteus vulgaris, Pseudomonas sp., Pseudomonas aeruginosa, Pseudomonas alcaligenes, Pseudomonas oleovorans, Rhizopus arrhizus, Rhodotorula glutinis, Staphylococcus epidermidis, Penicillium wortmanii, Penicillium roqueforti IAM7268, Bacillus sp. (in: Bacteria) J33, Acinetobacter calcoaceticus BD 413, Geobacillus stearothermophilus L1, Pseudomonas sp. KM1-56
Manually annotated by BRENDA team
Oh, S.W.; Gaskin, D.J.H.; Kwon, D.Y.; Vulfson, E.N.
Properties of recombinant Rhizomucor miehei lipase with amino acid substitutions of Phe94 in the substrate binding domain
Biotechnol. Lett.
23
563-568
2001
Rhizomucor miehei
-
Manually annotated by BRENDA team
Maruyama, T.; Nakajima, M.; Kondo, H.; Kawasaki, K.; Seki, M.; Goto, M.
Can lipases hydrolyze a peptide bond?
Enzyme Microb. Technol.
32
655-657
2003
Bacillus subtilis, Diutina rugosa, Fusarium solani, Homo sapiens, Thermomyces lanuginosus, Rhizomucor miehei, Rhizopus arrhizus, Rhizopus japonicus, Sus scrofa, Chromobacterium viscosum, Alcaligenes ssp., Bacillus subtilis 168 BsL
-
Manually annotated by BRENDA team
Turner, N.J.; Winterman, J.R.; McCague, R.; Parratt, J.S.; Taylor, S.J.C.
Synthesis of homochiral L-(S)-tert-leucine via a lipase catalysed dynamic resolution process
Tetrahedron Lett.
36 (7)
1113-1116
1995
Rhizomucor miehei
-
Manually annotated by BRENDA team
Poulsen, K.R.; Snabe, T.; Petersen, E.I.; Fojan, P.; Neves-Petersen, M.T.; Wimmer, R.; Petersen, S.B.
Quantization of pH: evidence for acidic activity of triglyceride lipases
Biochemistry
44
11574-11580
2005
Fusarium solani, Rhizomucor miehei, Thermomyces lanuginosus (O59952), Thermomyces lanuginosus, Burkholderia cepacia (P22088), Burkholderia cepacia
Manually annotated by BRENDA team
Bezbradica, D.; Mijin, D.; Siler-Marinkovic, S.; Knezevic, Z.
The effect of substrate polarity on the lipase-catalyzed synthesis of aroma esters in solvent-free systems
J. Mol. Catal. B
45
97-101
2007
Rhizomucor miehei, Sus scrofa
-
Manually annotated by BRENDA team
Zoumpanioti, M.; Parmaklis, P.; de Maria, P.D.; Stamatis, H.; Sinisterra, J.V.; Xenakis, A.
Esterification reactions catalyzed by lipases immobilized in organogels: effect of temperature and substrate diffusion
Biotechnol. Lett.
30
1627-1631
2008
Rhizomucor miehei
Manually annotated by BRENDA team
Utsugi, A.; Kanda, A.; Hara, S.
Lipase specificity in the transacylation of triacylglycerin
J. Oleo Sci.
58
123-132
2009
Aspergillus niger, Burkholderia cepacia, Diutina rugosa, Mucor javanicus, Rhizomucor miehei, Penicillium camemberti, Penicillium roqueforti, Pseudomonas fluorescens, Rhizopus arrhizus, Rhizopus niveus, Sus scrofa
Manually annotated by BRENDA team
Acosta, A.; Filice, M.; Fernandez-Lorente, G.; Palomo, J.M.; Guisan, J.M.
Kinetically controlled synthesis of monoglyceryl esters from chiral and prochiral acids methyl esters catalyzed by immobilized Rhizomucor miehei lipase
Biores. Technol.
102
507-512
2011
Rhizomucor miehei
Manually annotated by BRENDA team
Vasel, B.; Hecht, H.J.; Schmid, R.D.; Schomburg, D.
3D-structures of the lipase from Rhizomucor miehei at different temperatures and computer modelling of a complex of the lipase with trilaurylglycerol
J. Biotechnol.
28
99-115
1993
Rhizomucor miehei
Manually annotated by BRENDA team
Bispo, P.; Batista, I.; Bernardino, R.J.; Bandarra, N.M.
Preparation of triacylglycerols rich in omega-3 fatty acids from sardine oil using a Rhizomucor miehei lipase: focus in the EPA/DHA ratio
Appl. Biochem. Biotechnol.
172
1866-1881
2014
Rhizomucor miehei
Manually annotated by BRENDA team
Attya, M.; Russo, A.; Perri, E.; Sindona, G.
Endogenous lipase catalyzed transesterification of olive oil fats. The formation of isomeric and oligomeric triacyleglycerols
J. Mass Spectrom.
47
1247-1253
2012
Rhizomucor miehei
Manually annotated by BRENDA team
Li, G.; Fang, X.; Su, F.; Chen, Y.; Xu, L.; Yan, Y.
Enhancing the thermostability of Rhizomucor miehei lipase with a limited screening library by rational-design point mutations and disulfide bonds
Appl. Environ. Microbiol.
84
e02129-17
2018
Rhizomucor miehei (A0A2D3HJ61), Rhizomucor miehei
Manually annotated by BRENDA team
Crooks, G.E.; Rees, G.D.; Robinson, B.H.; Svensson, M.; Stephenson, G.R.
Comparison of hydrolysis and esterification behavior of Humicola lanuginosa and Rhizomucor miehei lipases in AOT-stabilized water-in-oil microemulsions II. Effect of temperature on reaction kinetics and general considerations of stability and productivit
Biotechnol. Bioeng.
48
190-196
1995
Thermomyces lanuginosus, Rhizomucor miehei (P19515), Rhizomucor miehei
Manually annotated by BRENDA team
Manan, F.M.A.; Attan, N.; Zakaria, Z.; Keyon, A.S.A.; Wahab, R.A.
Enzymatic esterification of eugenol and benzoic acid by a novel chitosan-chitin nanowhiskers supported Rhizomucor miehei lipase Process optimization and kinetic assessments
Enzyme Microb. Technol.
108
42-52
2018
Rhizomucor miehei
Manually annotated by BRENDA team
Babaki, M.; Yousefi, M.; Habibi, Z.; Mohammadi, M.; Brask, J.
Effect of water, organic solvent and adsorbent contents on production of biodiesel fuel from canola oil catalyzed by various lipases immobilized on epoxy-functionalized silica as low cost biocatalyst
J. Mol. Catal. B
120
93-99
2015
Moesziomyces antarcticus, Thermomyces lanuginosus, Rhizomucor miehei
-
Manually annotated by BRENDA team
Calero, J.; Verdugo, C.; Luna, D.; Sancho, E.D.; Luna, C.; Posadillo, A.; Bautista, F.M.; Romero, A.A.
Selective ethanolysis of sunflower oil with Lipozyme RM IM, an immobilized Rhizomucor miehei lipase, to obtain a biodiesel-like biofuel, which avoids glycerol production through the monoglyceride formation
New Biotechnol.
31
596-601
2014
Rhizomucor miehei
Manually annotated by BRENDA team