Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
2'(3')-O-L-(N,N-diacetyl-lysinyl)adenosine + H2O
?
minimalist substrate
-
-
?
acetyl-histidine-tRNA + H2O
acetyl-histidine + tRNA
-
-
-
?
acetyl-histidyl-tRNAHis + H2O
acetyl-histidine + tRNAHis
-
-
-
-
?
Ala-tRNA + H2O
Ala + tRNA
-
-
-
-
?
bulk peptidyl-tRNA + H2O
?
D-tyrosine-tRNA + H2O
D-tyrosine + tRNA
dephosphorylated diacetyl-lysine-tRNA + H2O
dephosphorylated diacetyl-lysine + tRNA
-
-
-
?
dephosporylated formyl-methionine-tRNA + H2O
dephosphorylated formyl-methionine + tRNA
-
-
-
?
diacetyl-Lys-tRNALys + H2O
diacetyl-Lys + tRNA
diacetyl-lysine-tRNA + H2O
diacetyl-lysine + tRNA
diacetyl-lysyl-tRNALys
diacetyl-Lys + tRNALys
-
-
-
-
?
diacetyl-lysyl-tRNALys + H2O
diacetyl-lysine + tRNALys
formyl-Met-tRNAfMet + H2O
formyl-Met + tRNAfMet
-
-
-
-
?
formyl-methionine-tRNA + H2O
formyl-methionine + tRNA
-
-
-
?
formyl-methionyl-tRNAfMet + H2O
formyl-methionine + tRNAfMet
-
Escherichia coli formyl-methionyltRNAfMet, phosphorylated and dephosphorylated substrate
-
-
?
Glu-tRNA + H2O
Glu + tRNA
-
-
-
-
?
Gly-tRNA + H2O
Gly + tRNA
-
-
-
-
?
Gly-tRNAAla + H2O
Gly + tRNAAla
-
-
-
?
L-Lys-tRNALys + H2O
L-lysine + tRNALys
-
-
-
?
Leu-tRNA + H2O
Leu + tRNA
Lys-tRNA + H2O
Lys + tRNA
Met-tRNA + H2O
Met + tRNA
-
-
-
-
?
Met-tRNAMet + H2O
Met + tRNAMet
-
-
-
-
?
N-acetyl-Ala-tRNA + H2O
N-acetyl-Ala + tRNA
-
-
-
-
?
N-acetyl-Ala-tRNA(Ala) + H2O
N-acetyl-Ala + tRNA(Ala)
-
-
-
-
?
N-acetyl-Glu-tRNA + H2O
N-acetyl-Glu + tRNA
-
-
-
-
?
N-acetyl-His-tRNA + H2O
N-acetyl-His + tRNA
-
-
-
-
?
N-acetyl-Leu-Gly-tRNA + H2O
N-acetyl-Leu-Gly + tRNA
-
-
-
-
?
N-acetyl-Leu-tRNA + H2O
N-acetyl-Leu + tRNA
N-acetyl-Lys-tRNA + H2O
N-acetyl-Lys + tRNA
N-acetyl-Met-tRNA + H2O
N-acetyl-Met + tRNA
-
-
-
-
?
N-acetyl-Phe-Phe-tRNA + H2O
N-acetyl-Phe-Phe + tRNA
-
-
-
-
?
N-acetyl-Phe-tRNA + H2O
N-acetyl-L-Phe + tRNA
-
-
-
?
N-acetyl-Phe-tRNA + H2O
N-acetyl-Phe + tRNA
N-acetyl-Phe-Val-tRNA + H2O
N-acetyl-Phe-Val + tRNA
-
-
-
-
?
N-acetyl-Ser-tRNA + H2O
N-acetyl-Ser + tRNA
N-acetyl-Trp-tRNA + H2O
N-acetyl-Trp + tRNA
-
-
-
-
?
N-acetyl-Tyr-tRNA + H2O
N-acetyl-Tyr + tRNA
-
-
-
-
?
N-acetyl-Val-tRNA + H2O
N-acetyl-Val + tRNA
N-benzoyl-Gly-Gly-Phe-tRNA + H2O
N-benzoyl-Gly-Gly-Phe + tRNA
-
-
-
-
?
N-benzoyl-Gly-GlyGly-Phe-tRNA + H2O
N-benzoyl-Gly-Gly-Gly-Phe + tRNA
-
-
-
-
?
N-carbobenzyloxy-Phe-tRNA + H2O
N-carbobenzyloxy-Phe + tRNA
-
-
-
-
?
N-formyl-Val-tRNA + H2O
N-formyl-Val + tRNA
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
oligolysyl-tRNA + H2O
oligo-Lys + tRNA
-
-
-
-
?
Oregon Green-methionine-tRNA + H2O
Oregon Green-methionine + tRNA
-
-
-
?
peptidyl-tRNA + H2O
peptide + tRNA
peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis
-
-
?
peptidyl-tRNAL + H2O
peptide + tRNA
peptidyl-tRNALys + H2O
peptide + tRNALys
Phe-Phe-tRNA + H2O
Phe-Phe + tRNA
-
-
-
-
?
Phe-tRNA + H2O
Phe + tRNA
phenyllactyl-Phe-tRNA + H2O
phenyllactyl-Phe + tRNA
-
-
-
-
?
poly-Val-tRNA + H2O
poly-Val + tRNA
-
-
-
-
?
Ser-tRNA + H2O
Ser + tRNA
Ser-tRNAAla + H2O
Ser + tRNAAla
-
-
-
?
Tyr-tRNA + H2O
Tyr + tRNA
-
-
-
-
?
Val-tRNA + H2O
Val + tRNA
Val-tRNAVal + H2O
Val + tRNAVal
-
-
-
-
?
additional information
?
-
bulk peptidyl-tRNA + H2O

?
-
-
-
-
?
bulk peptidyl-tRNA + H2O
?
-
-
-
-
?
D-tyrosine-tRNA + H2O

D-tyrosine + tRNA
-
-
-
?
D-tyrosine-tRNA + H2O
D-tyrosine + tRNA
-
-
-
?
diacetyl-Lys-tRNALys + H2O

diacetyl-Lys + tRNA
-
-
-
?
diacetyl-Lys-tRNALys + H2O
diacetyl-Lys + tRNA
-
-
-
?
diacetyl-Lys-tRNALys + H2O
diacetyl-Lys + tRNA
-
-
-
-
?
diacetyl-Lys-tRNALys + H2O
diacetyl-Lys + tRNA
-
-
-
-
?
diacetyl-Lys-tRNALys + H2O
diacetyl-Lys + tRNA
-
diacetyl-Lys-tRNALys from E. coli
-
-
?
diacetyl-lysine-tRNA + H2O

diacetyl-lysine + tRNA
-
-
-
?
diacetyl-lysine-tRNA + H2O
diacetyl-lysine + tRNA
-
-
-
?
diacetyl-lysine-tRNA + H2O
diacetyl-lysine + tRNA
-
-
?
diacetyl-lysine-tRNA + H2O
diacetyl-lysine + tRNA
-
-
-
?
diacetyl-lysine-tRNA + H2O
diacetyl-lysine + tRNA
-
-
?
diacetyl-lysine-tRNA + H2O
diacetyl-lysine + tRNA
-
-
-
?
diacetyl-lysine-tRNA + H2O
diacetyl-lysine + tRNA
-
-
-
?
diacetyl-lysyl-tRNALys + H2O

diacetyl-lysine + tRNALys
diacetyl-lysyl-tRNALys is hydrolyzed by the wild type enzyme 360fold more efficiently than Lys-tRNALys
-
-
?
diacetyl-lysyl-tRNALys + H2O
diacetyl-lysine + tRNALys
-
-
-
-
?
diacetyl-lysyl-tRNALys + H2O
diacetyl-lysine + tRNALys
-
-
-
-
?
diacetyl-lysyl-tRNALys + H2O
diacetyl-lysine + tRNALys
-
-
-
-
?
diacetyl-lysyl-tRNALys + H2O
diacetyl-lysine + tRNALys
-
Escherichia coli diacetyl-lysyl-tRNALys, phosphorylated and dephosphorylated substrate
-
-
?
Leu-tRNA + H2O

Leu + tRNA
-
-
-
-
?
Leu-tRNA + H2O
Leu + tRNA
-
-
-
-
?
Lys-tRNA + H2O

Lys + tRNA
-
-
-
-
?
Lys-tRNA + H2O
Lys + tRNA
-
-
-
-
?
N-acetyl-Leu-tRNA + H2O

N-acetyl-Leu + tRNA
-
-
-
-
?
N-acetyl-Leu-tRNA + H2O
N-acetyl-Leu + tRNA
-
-
-
-
?
N-acetyl-Leu-tRNA + H2O
N-acetyl-Leu + tRNA
-
-
-
-
?
N-acetyl-Leu-tRNA + H2O
N-acetyl-Leu + tRNA
-
-
-
-
?
N-acetyl-Leu-tRNA + H2O
N-acetyl-Leu + tRNA
-
-
-
-
?
N-acetyl-Lys-tRNA + H2O

N-acetyl-Lys + tRNA
-
-
-
?
N-acetyl-Lys-tRNA + H2O
N-acetyl-Lys + tRNA
-
-
-
-
?
N-acetyl-Lys-tRNA + H2O
N-acetyl-Lys + tRNA
-
-
-
-
?
N-acetyl-Lys-tRNA + H2O
N-acetyl-Lys + tRNA
-
-
-
-
?
N-acetyl-Phe-tRNA + H2O

N-acetyl-Phe + tRNA
-
enzyme from encysted embryos is specific for acetyl-Phe-tRNA
-
-
?
N-acetyl-Phe-tRNA + H2O
N-acetyl-Phe + tRNA
-
-
-
-
?
N-acetyl-Phe-tRNA + H2O
N-acetyl-Phe + tRNA
-
enzyme with broad specificity
-
-
?
N-acetyl-Phe-tRNA + H2O
N-acetyl-Phe + tRNA
-
enzyme with broad specificity
-
-
?
N-acetyl-Phe-tRNA + H2O
N-acetyl-Phe + tRNA
-
-
-
-
?
N-acetyl-Phe-tRNA + H2O
N-acetyl-Phe + tRNA
-
-
-
-
?
N-acetyl-Phe-tRNA + H2O
N-acetyl-Phe + tRNA
-
enzyme with broad specificity
-
-
?
N-acetyl-Ser-tRNA + H2O

N-acetyl-Ser + tRNA
-
-
-
-
?
N-acetyl-Ser-tRNA + H2O
N-acetyl-Ser + tRNA
-
-
-
-
?
N-acetyl-Val-tRNA + H2O

N-acetyl-Val + tRNA
-
-
-
-
?
N-acetyl-Val-tRNA + H2O
N-acetyl-Val + tRNA
-
-
-
-
?
N-acetyl-Val-tRNA + H2O
N-acetyl-Val + tRNA
-
-
-
-
?
N-acetyl-Val-tRNA + H2O
N-acetyl-Val + tRNA
-
-
-
-
?
N-acetyl-Val-tRNA + H2O
N-acetyl-Val + tRNA
-
-
-
-
?
N-formyl-Val-tRNA + H2O

N-formyl-Val + tRNA
-
reaction at a lower rate than with the N-acetyl derivative
-
-
?
N-formyl-Val-tRNA + H2O
N-formyl-Val + tRNA
-
reaction at a lower rate than with the N-acetyl derivative
-
-
?
N-substituted aminoacyl-tRNA + H2O

N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
the enzyme or an element directly controlled by the enzyme, is the target for the lethal effect by bacterophage lambda
-
-
-
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
Pth recycles N-acetyl-aminoacyl tRNAs and peptidyl-tRNAs by cleaving the ester bond between tRNA and peptide
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
peptidyl-tRNA + H2O

?
D0ZJ57;
-
-
-
?
peptidyl-tRNA + H2O
?
D0ZJ57;
-
-
-
?
peptidyl-tRNAL + H2O

peptide + tRNA
-
Pth is a key protein at the crossroads to the function of several translational factors, accumulation of peptidyl-tRNA in the cells leads to depletion of aminoacyl-tRNA pools and halts protein biosynthesis, it is vital for cells to maintain Pth activity to deal with the pollution of peptidyl-tRNAs generated during the initiation, elongation and termination steps of protein biosynthesis, overview
-
-
?
peptidyl-tRNAL + H2O
peptide + tRNA
-
Pth prefers substrates with two or more peptide bonds compared to those with a single peptide bond
-
-
?
peptidyl-tRNAL + H2O
peptide + tRNA
cleavage of the ester bond between tRNA and the attached peptide in peptidyl-tRNA, substrate binding channel structure, overview
-
-
?
peptidyl-tRNALys + H2O

peptide + tRNALys
-
-
-
-
?
peptidyl-tRNALys + H2O
peptide + tRNALys
-
accumulation of peptidyl-tRNA due to enzyme misfunction is toxic to the cells, overproduction of tRNALys suppresses the effects of pthTs mutation at 41°C but not at 43°C, and increases the levels of aminoacyl-tRNA
-
-
?
Phe-tRNA + H2O

Phe + tRNA
-
-
-
-
?
Phe-tRNA + H2O
Phe + tRNA
-
-
-
-
?
Ser-tRNA + H2O

Ser + tRNA
-
-
-
-
?
Ser-tRNA + H2O
Ser + tRNA
-
-
-
-
?
Val-tRNA + H2O

Val + tRNA
-
-
-
-
?
Val-tRNA + H2O
Val + tRNA
-
-
-
-
?
additional information

?
-
-
no activity with N-formyl-methionyl-tRNA
-
-
-
additional information
?
-
-
very slow hydrolysis of denatured N-acetyl-aminoacyl-tRNA, no hydrolysis of partly deaminated N-acetyl-Val-tRNA
-
-
-
additional information
?
-
-
derivatives of tRNAMetf with various combinations of bases at position 1 and 72 in the acceptor stem have been produced, aminoacylated and chemically acetylated. TrNAmetd derivatives with either C1A72, c1C72, U1G72, U1C72 or A1C72 behave as poor substrates of the enzyme compared to those with C1G72, U1A72, G1C72, A1U72 or G1U72
-
-
-
additional information
?
-
-
the enzyme plays a central role and is indispensable in Escherichia coli
-
-
-
additional information
?
-
-
genetic interactions and the mechanism of peptidyl-tRNA drop-off of translating ribosomes leading to accumutaion of peptidyl-tRNA, overview
-
-
-
additional information
?
-
-
no activity with N-formyl-methionyl-tRNA
-
-
-
additional information
?
-
-
very slow hydrolysis of denatured N-acetyl-aminoacyl-tRNA, no hydrolysis of partly deaminated N-acetyl-Val-tRNA
-
-
-
additional information
?
-
-
no activity with N-formyl-methionyl-tRNA
-
-
-
additional information
?
-
-
enzyme shows species specificity. Aminoacyl-tRNAs in which the tRNA comes from eucaryotes are equally efficient as substrates of the enzyme, when tRNA comes from procaryotic organisms it is hydrolyzed 40% less efficiently
-
-
-
additional information
?
-
no activity with N-formyl-methionyl-tRNA
-
-
-
additional information
?
-
-
no activity with N-formyl-methionyl-tRNA
-
-
-
additional information
?
-
-
the enzyme and its conserved active-site residues N12, H22 and D95 are essential for the viability of the bacteria
-
-
-
additional information
?
-
-
the enzyme salvages tRNA from peptidyl-tRNA by hydrolyzing the ester link between the peptide and the 2'-or 3'-OH of the sugar at the end of tRNA, since accumulation of peptidyl-tRNA, due to drop-off of translating ribosomes, is toxic to the cell, overview
-
-
-
additional information
?
-
-
no activity with N-formyl-methionyl-tRNA
-
-
-
additional information
?
-
-
the enzyme salvages tRNA from peptidyl-tRNA by hydrolyzing the ester link between the peptide and the 2'-or 3'-OH of the sugar at the end of tRNA, since accumulation of peptidyl-tRNA, due to drop-off of translating ribosomes, is toxic to the cell, overview
-
-
-
additional information
?
-
-
the enzyme and its conserved active-site residues N12, H22 and D95 are essential for the viability of the bacteria
-
-
-
additional information
?
-
-
no activity with N-formyl-methionyl-tRNA
-
-
-
additional information
?
-
no activity with N-formyl-methionyl-tRNA
-
-
-
additional information
?
-
no activity with N-formyl-methionyl-tRNA
-
-
-
additional information
?
-
-
N-acetyl-Val-adenosine is not a substrate, N-acetyl-Val-oligonucleotide is hydrolyzed very slowly. The specificity for the tRNA moiety does not seem to be directed towards a particular species of organism
-
-
-
additional information
?
-
-
the enzyme is involved in the recycling of peptidyl-tRNA, it shows poor D-aminoacyl-tRNA hydrolysis
-
-
-
additional information
?
-
-
no activity with N-formyl-methionyl-tRNA
-
-
-
additional information
?
-
-
no activity with N-formyl-methionyl-tRNA
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
diacetyl-lysyl-tRNALys + H2O
diacetyl-lysine + tRNALys
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
peptidyl-tRNA + H2O
peptide + tRNA
P9WHN7
peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis
-
-
?
peptidyl-tRNAL + H2O
peptide + tRNA
-
Pth is a key protein at the crossroads to the function of several translational factors, accumulation of peptidyl-tRNA in the cells leads to depletion of aminoacyl-tRNA pools and halts protein biosynthesis, it is vital for cells to maintain Pth activity to deal with the pollution of peptidyl-tRNAs generated during the initiation, elongation and termination steps of protein biosynthesis, overview
-
-
?
peptidyl-tRNALys + H2O
peptide + tRNALys
-
accumulation of peptidyl-tRNA due to enzyme misfunction is toxic to the cells, overproduction of tRNALys suppresses the effects of pthTs mutation at 41°C but not at 43°C, and increases the levels of aminoacyl-tRNA
-
-
?
additional information
?
-
diacetyl-lysyl-tRNALys + H2O

diacetyl-lysine + tRNALys
-
-
-
-
?
diacetyl-lysyl-tRNALys + H2O
diacetyl-lysine + tRNALys
-
-
-
-
?
diacetyl-lysyl-tRNALys + H2O
diacetyl-lysine + tRNALys
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O

N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
D0C9L6
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
the enzyme or an element directly controlled by the enzyme, is the target for the lethal effect by bacterophage lambda
-
-
-
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
Pth recycles N-acetyl-aminoacyl tRNAs and peptidyl-tRNAs by cleaving the ester bond between tRNA and peptide
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
Q9Y3E5
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
Q60363
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
O74017
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
O74017
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
Q6YP15
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
N-substituted aminoacyl-tRNA + H2O
N-substituted amino acid + tRNA
-
-
-
-
?
additional information

?
-
-
the enzyme plays a central role and is indispensable in Escherichia coli
-
-
-
additional information
?
-
-
genetic interactions and the mechanism of peptidyl-tRNA drop-off of translating ribosomes leading to accumutaion of peptidyl-tRNA, overview
-
-
-
additional information
?
-
-
the enzyme and its conserved active-site residues N12, H22 and D95 are essential for the viability of the bacteria
-
-
-
additional information
?
-
-
the enzyme salvages tRNA from peptidyl-tRNA by hydrolyzing the ester link between the peptide and the 2'-or 3'-OH of the sugar at the end of tRNA, since accumulation of peptidyl-tRNA, due to drop-off of translating ribosomes, is toxic to the cell, overview
-
-
-
additional information
?
-
-
the enzyme salvages tRNA from peptidyl-tRNA by hydrolyzing the ester link between the peptide and the 2'-or 3'-OH of the sugar at the end of tRNA, since accumulation of peptidyl-tRNA, due to drop-off of translating ribosomes, is toxic to the cell, overview
-
-
-
additional information
?
-
-
the enzyme and its conserved active-site residues N12, H22 and D95 are essential for the viability of the bacteria
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
Archaeoglobus fulgidus (strain ATCC 49558 / VC-16 / DSM 4304 / JCM 9628 / NBRC 100126);
Q2T1B9
Burkholderia thailandensis (strain ATCC 700388 / DSM 13276 / CIP 106301 / E264);
Escherichia coli (strain K12);
D6J9H8
Escherichia coli B354;
Q5NGZ6
Francisella tularensis subsp. tularensis (strain SCHU S4 / Schu 4);
Q60363
Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440);
Mycobacterium smegmatis (strain ATCC 700084 / mc(2)155);
Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv);
Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1);
Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3);
A0A0F6B281
Salmonella typhimurium (strain 14028s / SGSC 2262);
Q6YP15
Staphylococcus aureus;
B5XIP6
Streptococcus pyogenes serotype M49 (strain NZ131);
Q980V1
Sulfolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2);
Thermus thermophilus (strain HB8 / ATCC 27634 / DSM 579);
Vibrio cholerae serotype O1 (strain ATCC 39315 / El Tor Inaba N16961);
Vibrio cholerae serotype O1 (strain ATCC 39541 / Classical Ogawa 395 / O395);
C3LPI9
Vibrio cholerae serotype O1 (strain M66-2);
D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);

D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
D0C9L6
Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / CIP 70.34 / JCM 6841 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81);
O28185
Archaeoglobus fulgidus (strain ATCC 49558 / VC-16 / DSM 4304 / JCM 9628 / NBRC 100126);

O28185
Archaeoglobus fulgidus (strain ATCC 49558 / VC-16 / DSM 4304 / JCM 9628 / NBRC 100126);
P0A7D1
Escherichia coli (strain K12);

P40711
Escherichia coli (strain K12);
P0A7D1
Escherichia coli (strain K12);
A0R3D3
Mycobacterium smegmatis (strain ATCC 700084 / mc(2)155);

A0R3D3
Mycobacterium smegmatis (strain ATCC 700084 / mc(2)155);
A0R3D3
Mycobacterium smegmatis (strain ATCC 700084 / mc(2)155);
A0R3D3
Mycobacterium smegmatis (strain ATCC 700084 / mc(2)155);
A0R3D3
Mycobacterium smegmatis (strain ATCC 700084 / mc(2)155);
P9WHN7
Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv);

P9WHN7
Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv);
P9WHN7
Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv);
P9WHN7
Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv);
P9WHN7
Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv);
P9WHN7
Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv);
P9WHN7
Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv);
P9WHN7
Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv);
Q9HVC3
Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1);

Q9HVC3
Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1);
Q9HVC3
Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1);
Q9HVC3
Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1);
Q9HVC3
Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1);
Q9HVC3
Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1);
Q9HVC3
Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1);
Q9HVC3
Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1);
Q9HVC3
Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1);
O74017
Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3);

O74017
Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3);
O57848
Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3);
Q5SHN7
Thermus thermophilus (strain HB8 / ATCC 27634 / DSM 579);

Q5SHZ2
Thermus thermophilus (strain HB8 / ATCC 27634 / DSM 579);
Q9KQ21
Vibrio cholerae serotype O1 (strain ATCC 39315 / El Tor Inaba N16961);

Q9KQ21
Vibrio cholerae serotype O1 (strain ATCC 39315 / El Tor Inaba N16961);
Q9KQ21
Vibrio cholerae serotype O1 (strain ATCC 39315 / El Tor Inaba N16961);
Q9KQ21
Vibrio cholerae serotype O1 (strain ATCC 39315 / El Tor Inaba N16961);
Q9KQ21
Vibrio cholerae serotype O1 (strain ATCC 39315 / El Tor Inaba N16961);
Q9KQ21
Vibrio cholerae serotype O1 (strain ATCC 39315 / El Tor Inaba N16961);
Q9KQ21
Vibrio cholerae serotype O1 (strain ATCC 39315 / El Tor Inaba N16961);
A5F686
Vibrio cholerae serotype O1 (strain ATCC 39541 / Classical Ogawa 395 / O395);

A5F686
Vibrio cholerae serotype O1 (strain ATCC 39541 / Classical Ogawa 395 / O395);
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Paulin, D.; Yot, P.; Chapeville, F.
Enzymatic hydrolysis of N-substituted aminoacyl-tRNA
FEBS Lett.
1
163-165
1968
Escherichia coli, Escherichia coli MRE 600
brenda
Jost, J.P.; Bock, R.M.
Enzymatic hydrolysis of N-substituted aminoacyl transfer ribonucleic acid in yeast
J. Biol. Chem.
244
5866-5873
1969
Saccharomyces cerevisiae
brenda
Vogel, Z.; Vogel, T.; Zamir, A.; Elson, D.
The protection by 70 S ribosomes of N-acyl-aminoacyl-tRNA against cleavage by peptidyl-tRNA hydrolase and its use to assay ribosomal association
Eur. J. Biochem.
21
582-592
1971
Escherichia coli
brenda
Neth, R.; Dunlop, N.; Heller-Sch÷ch, G.; Winkler, K.
Hydrolase activity for N-substituted aminoacyl-tRNA in ribosomes and supernatant fractions from human tissues and tumors
Hoppe-Seyler's Z. Physiol. Chem.
353
117-121
1972
Homo sapiens, Rattus norvegicus, Rattus norvegicus Wistar
brenda
de Pereda, J.M.; Waas, W.F.; Jan, Y.; Ruoslathi, E.; Schimmel, P.; Pascual, J.
Crystral structure of a human peptidyl-tRNA hydrolase eveals a new fold and suggests basis for a bifunctional activity
J. Biol. Chem.
279
8111-8115
2003
Escherichia coli, Homo sapiens, Homo sapiens (Q9Y3E5), Sulfolobus solfataricus
brenda
Miralles, J.; Sebastian, J.; Heredia, C.F.
Independent temporal expression of two N-substituted aminoacyl-tRNA hydrolases during the development of Artemia salina
Biochim. Biophys. Acta
518
326-333
1978
Artemia salina
brenda
Fromant, M.; Ferri-Fioni, M.L.; Plateau, P.; Blanquet, S.
Peptidyl-tRNA hydrolase from Sulfolobus solfataricus
Nucleic Acids Res.
31
3227-3235
2003
Escherichia coli, Saccharomyces cerevisiae, Sulfolobus solfataricus
brenda
Gallego, M.E.; Heredia, C.F.
Purification and properties of an inducible aminoacyl-tRNA hydrolase from Artemia larvae
Biochim. Biophys. Acta
696
57-65
1982
Artemia sp.
-
brenda
Ferreiro, C.; Heredia, C.F.
Purification and characterization of an aminoacyl-tRNA hydrolase from the filamentous fungus Fusarium culmorum
Biochim. Biophys. Acta
882
410-418
1986
Fusarium culmorum
-
brenda
Refugio Garcia-Villegas, M.; De La Vega, F.; Galindo, J.M.; Segura, M.; Buckingham, R.H.; Guarneros, G.
Peptidyl-tRNA hydrolase is involved in lambda inhibition of host protein synthesis
EMBO J.
10
3549-3555
1991
Escherichia coli
brenda
Rosas-Sandoval, G.; Amrogelly, A.; Rinehart, J.; Wei, D.; Cruz-Vera, L.R.; Graham, D.E.; Stetter, K.O.; Guarneros, G.; Soell, D.
Orthologs of a novel archaeal and of the bacterial peptidyl-tRNA hydrolase are nonessential in yeast
Proc. Natl. Acad. Sci. USA
99
16707-16712
2002
Methanocaldococcus jannaschii
brenda
Dutka, S.; Meinnel, T.; Lazennec, C.; Mechulam, Y.; Blanquet, S.
Role of the 1-72 base pair in tRNAs for the activity of Escherichia coli peptidyl-tRNA hydrolase
Nucleic Acids Res.
21
4025-4030
1993
Escherichia coli
brenda
Schmitt, E.; Mechulam, Y.; Fromant, M.; Plateau, P.; Blanquet, S.
Crystal structure at 1.2 A resolution and active site mapping of Escherichia coli peptidyl-tRNA hydrolase
EMBO J.
16
4760-4769
1997
Escherichia coli, Escherichia coli (P0A7D1)
brenda
Schmitt, E.; Fromant, M.; Plateau, P.; Mechulam, Y.; Blanquet, S.
Crystallization and preliminary X-ray analysis of Escherichia coli peptidyl-tRNA hydrolase
Proteins Struct. Funct. Genet.
28
135-136
1997
Escherichia coli
brenda
Goodall, J.J.; Chen, G.J.; Page, M.G.
Essential role of histidine 20 in the catalytic mechanism of Escherichia coli peptidyl-tRNA hydrolase
Biochemistry
43
4583-4591
2004
Escherichia coli
brenda
Menez, J.; Remy, E.; Buckingham, R.H.
Suppression of thermosensitive peptidyl-tRNA hydrolase mutation in Escherichia coli by gene duplication
Microbiology
147
1581-1589
2001
Escherichia coli
brenda
Menez, J.; Buckingham, R.H.; de Zamaroczy, M.; Campelli, C.K.
Peptidyl-tRNA hydrolase in Bacillus subtilis, encoded by spoVC, is essential to vegetative growth, whereas the homologous enzyme in Saccharomyces cerevisiae is dispensable
Mol. Microbiol.
45
123-129
2002
Bacillus subtilis, Saccharomyces cerevisiae
brenda
Bonin, P.D.; Choi, G.H.; Trepod, C.M.; Mott, J.E.; Lyle, S.B.; Cialdella, J.I.; Sarver, R.W.; Marshall, V.P.; Erickson, L.A.
Expression, purification, and characterization of peptidyl-tRNA hydrolase from Staphylococcus aureus
Protein Expr. Purif.
24
123-130
2002
Staphylococcus aureus (Q6YP15), Staphylococcus aureus
brenda
Fromant, M.; Scvhmitt, E.; Mechulam, Y.; Lazennec, C.; Plateau, P.; Blanquet, S.
Crystal structure at 1.8 A resolution and identification of active site residues of Sulfolobus solfataricus peptidyl-tRNA hydrolase
Biochemistry
44
4292-4301
2005
Sulfolobus solfataricus
-
brenda
Singh, N.S.; Varshney, U.
A physiological connection between tmRNA and peptidyl-tRNA hydrolase functions in Escherichia coli
Nucleic Acids REs.
32
6028-2037
2004
Escherichia coli
brenda
Powers, R.; Mirkovic, N.; et.al
Solution structure of Archaeglobus fulgidis peptidyl-tRNA hydrolase (Pth2) provides evidence for an extensive conserved family of Pth2 enzymes in archea, bacteria, and eukaryotes
Protein SCi.
14
2849-2861
2005
Archaeoglobus fulgidus (O28185)
brenda
Selvaraj, M.; Singh, N.S.; Roy, S.; Sangeetha, R.; Varshney, U.; Vijayan, M.
Cloning, expression, purification, crystallization and preliminary X-ray analysis of peptidyl-tRNA hydrolase from Mycobacterium tuberculosis
Acta Crystallogr. Sect. F
62
913-915
2006
Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv
brenda
Fromant, M.; Schmitt, E.; Mechulam, Y.; Lazennec, C.; Plateau, P.; Blanquet, S.
Crystal structure at 1.8 A resolution and identification of active site residues of Sulfolobus solfataricus peptidyl-tRNA hydrolase
Biochemistry
44
4294-4301
2005
Sulfolobus solfataricus (Q980V1)
brenda
Bal, N.C.; Agrawal, H.; Meher, A.K.; Arora, A.
Characterization of peptidyl-tRNA hydrolase encoded by open reading frame Rv1014c of Mycobacterium tuberculosis H37Rv
Biol. Chem.
388
467-479
2007
Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv
brenda
Selvaraj, M.; Roy, S.; Singh, N.S.; Sangeetha, R.; Varshney, U.; Vijayan, M.
Structural plasticity and enzyme action: crystal structures of Mycobacterium tuberculosis peptidyl-tRNA hydrolase
J. Mol. Biol.
372
186-193
2007
Mycobacterium tuberculosis, Mycobacterium tuberculosis (P9WHN7), Mycobacterium tuberculosis H37Rv (P9WHN7)
brenda
Das, G.; Varshney, U.
Peptidyl-tRNA hydrolase and its critical role in protein biosynthesis
Microbiology
152
2191-2195
2006
Escherichia coli
brenda
Vivanco-Dominguez, S.; Cruz-Vera, L.R.; Guarneros, G.
Excess of charged tRNALys maintains low levels of peptidyl-tRNA hydrolase in pth(Ts) mutants at a non-permissive temperature
Nucleic Acids Res.
34
1564-1570
2006
Escherichia coli
brenda
Shimizu, K.; Kuroishi, C.; Sugahara, M.; Kunishima, N.
Structure of peptidyl-tRNA hydrolase 2 from Pyrococcus horikoshii OT3: insight into the functional role of its dimeric state
Acta Crystallogr. Sect. D
64
444-453
2008
Pyrococcus horikoshii (O74017), Pyrococcus horikoshii OT-3 (O74017)
brenda
Pulavarti, S.V.; Jain, A.; Pathak, P.P.; Mahmood, A.; Arora, A.
Solution structure and dynamics of peptidyl-tRNA hydrolase from Mycobacterium tuberculosis H37Rv
J. Mol. Biol.
378
165-177
2008
Mycobacterium tuberculosis, Mycobacterium tuberculosis (P9WHN7), Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis H37Rv (P9WHN7)
brenda
Richter, R.; Rorbach, J.; Pajak, A.; Smith, P.M.; Wessels, H.J.; Huynen, M.A.; Smeitink, J.A.; Lightowlers, R.N.; Chrzanowska-Lightowlers, Z.M.
A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome
EMBO J.
29
1116-1125
2010
Homo sapiens, Homo sapiens (Q14197)
brenda
Singarapu, K.; Xiao, R.; Acton, T.; Rost, B.; Montelione, G.; Szyperski, T.
NMR structure of the peptidyl-tRNA hydrolase domain from Pseudomonas syringae expands the structural coverage of the hydrolysis domains of class 1 peptide chain release factors
Proteins Struct. Funct. Genet.
71
1027-1031
2008
Pseudomonas syringae pv. tomato (Q885L4)
brenda
Giorgi, L.; Plateau, P.; O'Mahony, G.; Aubard, C.; Fromant, M.; Thureau, A.; Grotli, M.; Blanquet, S.; Bontems, F.
NMR-based substrate analog docking to Escherichia coli peptidyl-tRNA hydrolase
J. Mol. Biol.
412
619-633
2011
Escherichia coli, Escherichia coli (P0A7D1)
brenda
Fukunaga, R.; Yokoyama, S.
Structure of the AlaX-M trans-editing enzyme from Pyrococcus horikoshii
Acta Crystallogr. Sect. D
63
390-400
2007
Pyrococcus horikoshii (O57848), Pyrococcus horikoshii
brenda
Selvaraj, M.; Ahmad, R.; Varshney, U.; Vijayan, M.
Structures of new crystal forms of Mycobacterium tuberculosis peptidyl-tRNA hydrolase and functionally important plasticity of the molecule
Acta Crystallogr. Sect. F
68
124-128
2012
Mycobacterium tuberculosis, Mycobacterium tuberculosis (P9WHN7)
brenda
Matsumoto, A.; Shimizu, Y.; Takemoto, C.; Ueda, T.; Uchiumi, T.; Ito, K.
Crystallization and preliminary X-ray analysis of peptidyl-tRNA hydrolase from Thermus thermophilus HB8
Acta Crystallogr. Sect. F
69
332-335
2013
Thermus thermophilus, Thermus thermophilus HB8 / ATCC 27634 / DSM 579
brenda
Vandavasi, V.; Taylor-Creel, K.; McFeeters, R.L.; Coates, L.; McFeeters, H.
Recombinant production, crystallization and X-ray crystallographic structure determination of peptidyl-tRNA hydrolase from Salmonella typhimurium
Acta Crystallogr. Sect. F
70
872-877
2014
Salmonella enterica subsp. enterica serovar Typhimurium 14028s (D0ZJ57), Salmonella enterica subsp. enterica serovar Typhimurium (D0ZJ57), Salmonella enterica subsp. enterica serovar Typhimurium
brenda
Goedeke, J.; Pustelny, C.; Haeussler, S.
Recycling of peptidyl-tRNAs by peptidyl-tRNA hydrolase counteracts azithromycin-mediated effects on Pseudomonas aeruginosa
Antimicrob. Agents Chemother.
57
1617-1624
2013
Pseudomonas aeruginosa
brenda
Singh, A.; Kumar, A.; Gautam, L.; Sharma, P.; Sinha, M.; Bhushan, A.; Kaur, P.; Sharma, S.; Arora, A.; Singh, T.P.
Structural and binding studies of peptidyl-tRNA hydrolase from Pseudomonas aeruginosa provide a platform for the structure based inhibitor design against peptidyl-tRNA hydrolase
Biochem. J.
463
329-337
2014
Pseudomonas aeruginosa, Pseudomonas aeruginosa (Q9HVC3)
brenda
Sharma, S.; Kaushik, S.; Sinha, M.; Kushwaha, G.S.; Singh, A.; Sikarwar, J.; Chaudhary, A.; Gupta, A.; Kaur, P.; Singh, T.P.
Structural and functional insights into peptidyl-tRNA hydrolase
Biochim. Biophys. Acta
1844
1279-1288
2014
Acinetobacter baumannii, Escherichia coli, Francisella tularensis, Methanocaldococcus jannaschii (Q60363), Mycobacterium smegmatis, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Pyrococcus horikoshii (O74017), Pyrococcus horikoshii OT-3 (O74017), Sulfolobus solfataricus, Sulfolobus solfataricus P2
brenda
Kumar, A.; Singh, N.; Yadav, R.; Kumar, R.P.; Sharma, S.; Arora, A.; Singh, T.P.
Crystal structure of peptidyl-tRNA hydrolase from Mycobacterium smegmatis reveals novel features related to enzyme dynamics
Int. J. Biochem. Mol. Biol.
3
58-69
2012
Mycobacterium smegmatis
brenda
Dujeancourt, L.; Richter, R.; Chrzanowska-Lightowlers, Z.M.; Bonnefoy, N.; Herbert, C.J.
Interactions between peptidyl tRNA hydrolase homologs and the ribosomal release factor Mrf1 in S. pombe mitochondria
Mitochondrion
13
871-880
2013
Schizosaccharomyces pombe
brenda
McFeeters, H.; Gilbert, M.J.; Thompson, R.M.; Setzer, W.N.; Cruz-Vera, L.R.; McFeeters, R.L.
Inhibition of essential bacterial peptidyl-tRNA hydrolase activity by tropical plant extracts
Nat. Prod. Commun.
7
1107-1110
2012
Escherichia coli
brenda
Ito, K.; Murakami, R.; Mochizuki, M.; Qi, H.; Shimizu, Y.; Miura, K.; Ueda, T.; Uchiumi, T.
Structural basis for the substrate recognition and catalysis of peptidyl-tRNA hydrolase
Nucleic Acids Res.
40
10521-10531
2012
Escherichia coli, Escherichia coli (P0A7D1)
brenda
Kaushik, S.; Singh, N.; Yamini, S.; Singh, A.; Sinha, M.; Arora, A.; Kaur, P.; Sharma, S.; Singh, T.P.
The mode of inhibitor binding to peptidyl-tRNA hydrolase: binding studies and structure determination of unbound and bound peptidyl-tRNA hydrolase from Acinetobacter baumannii
PLoS ONE
8
e67547
2013
Acinetobacter baumannii, Acinetobacter baumannii (D0C9L6)
brenda
Taylor-Creel, K.; Hames, M.C.; Holloway, W.B.; McFeeters, H.; McFeeters, R.L.
Expression, purification, and solubility optimization of peptidyl-tRNA hydrolase 1 from Bacillus cereus
Protein Expr. Purif.
95
259-264
2014
Bacillus cereus, Bacillus cereus ATCC 14579
brenda