Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 2.8.1.7 - cysteine desulfurase and Organism(s) Escherichia coli and UniProt Accession P77444

for references in articles please use BRENDA:EC2.8.1.7
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     2 Transferases
         2.8 Transferring sulfur-containing groups
             2.8.1 Sulfurtransferases
                2.8.1.7 cysteine desulfurase
IUBMB Comments
A pyridoxal-phosphate protein. The sulfur from free L-cysteine is first transferred to a cysteine residue in the active site, and then passed on to various other acceptors. The enzyme is involved in the biosynthesis of iron-sulfur clusters, thio-nucleosides in tRNA, thiamine, biotin, lipoate and pyranopterin (molybdopterin) . In Azotobacter vinelandii, this sulfur provides the inorganic sulfide required for nitrogenous metallocluster formation .
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Escherichia coli
UNIPROT: P77444
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Escherichia coli
The enzyme appears in selected viruses and cellular organisms
Reaction Schemes
hide(Overall reactions are displayed. Show all >>)
Synonyms
cysteine desulfurase, nfs1p, cpnifs, l-cysteine desulfurase, cysteine desulphurase, stringent starvation protein a, sufs2, lecsl, slr0077, cpsit_0959, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
CSD
-
-
-
-
cysteine desulfurase
-
-
cysteinedesulfurylase
-
-
-
-
Nfs1
-
-
-
-
NIFS
-
-
-
-
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
L-cysteine + acceptor = L-alanine + S-sulfanyl-acceptor
show the reaction diagram
mechanism
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
sulfur atom transfer
PATHWAY SOURCE
PATHWAYS
-
-, -, -, -, -, -, -
SYSTEMATIC NAME
IUBMB Comments
L-cysteine:acceptor sulfurtransferase
A pyridoxal-phosphate protein. The sulfur from free L-cysteine is first transferred to a cysteine residue in the active site, and then passed on to various other acceptors. The enzyme is involved in the biosynthesis of iron-sulfur clusters, thio-nucleosides in tRNA, thiamine, biotin, lipoate and pyranopterin (molybdopterin) [2]. In Azotobacter vinelandii, this sulfur provides the inorganic sulfide required for nitrogenous metallocluster formation [1].
CAS REGISTRY NUMBER
COMMENTARY hide
149371-08-4
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
L-cysteine + acceptor
L-alanine + S-sulfanyl-acceptor
show the reaction diagram
overall reaction
-
-
?
L-cysteine + SufE
L-alanine + SufE-SSH
show the reaction diagram
-
-
-
?
L-selenocysteine
L-alanine + selenium
show the reaction diagram
-
-
-
?
L-cysteine + ?
?
show the reaction diagram
-
in the presence of cysteine, IscS’s ability to bind iron improves significantly
-
-
?
L-cysteine + acceptor
L-alanine + S-sulfanyl-acceptor
show the reaction diagram
-
-
-
?
L-cysteine + c-IscU
L-alanine + c-IscU-SSH
show the reaction diagram
-
-
-
-
?
L-cysteine + IscS
L-alanine + IscS-SSH
show the reaction diagram
-
-
-
-
?
L-cysteine + N,N-dimethyl-4-phenylenediamine
L-alanine + N,N-dimethyl-4-phenylenediamine sulfate
show the reaction diagram
-
-
-
-
?
L-cysteine + RhdA
L-alanine + RhdA-SSH
show the reaction diagram
L-cysteine + SufE
L-alanine + S-sulfanyl-SufE
show the reaction diagram
-
-
-
-
?
L-cysteine + [enzyme]-cysteine
L-alanine + [enzyme]-S-sulfanylcysteine
show the reaction diagram
L-cysteine + [IscU]-cysteine
L-alanine + [IscU]-S-sulfanylcysteine
show the reaction diagram
-
each enzyme subunit binds an IscU molecule and transfers sulfane sulfur generated from the conversion of cysteine to alanine to the cluster ligand cysteines of IscU. The enzyme binds preferentially to and stabilizes the D state of apo-IscU
-
-
?
L-cysteine + [ThiI]-cysteine
L-alanine + [ThiI]-S-sulfanylcysteine
show the reaction diagram
-
-
-
-
?
L-cysteine sulfinic acid
L-alanine + sulfite
show the reaction diagram
-
-
-
-
?
L-selenocysteine
L-alanine + selenium
show the reaction diagram
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
L-cysteine + acceptor
L-alanine + S-sulfanyl-acceptor
show the reaction diagram
-
-
-
?
L-cysteine + IscS
L-alanine + IscS-SSH
show the reaction diagram
-
-
-
-
?
L-cysteine + RhdA
L-alanine + RhdA-SSH
show the reaction diagram
-
-
-
-
?
L-cysteine + SufE
L-alanine + S-sulfanyl-SufE
show the reaction diagram
-
-
-
-
?
L-cysteine + [enzyme]-cysteine
L-alanine + [enzyme]-S-sulfanylcysteine
show the reaction diagram
additional information
?
-
COFACTOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
pyridoxal 5'-phosphate
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Iron
-
iron alone or iron together with sulfide binds to IscS to make IscS-iron or IscS-iron-sulfide complexes. The formation of such complexes allows the activity of IscS to be modulated effectively
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
Fe2+
-
the low desulfurase activity is caused by the modification of IscS rather than by the formation of FeS in the solution
K2TeO3
-
mutant strains csdA::Kn, csdB::Kn, ascS::Kn
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
IcsU
-
forms disulfide bonds with IcsS and stimulates its activity 6fold
-
pyridoxal-5'-phosphate
-
-
pyruvate
-
increases activity of CSD towards L-selenocysteine, but not towards L-cysteine
Suf protein family
-
SufE protein can stimulate up to 8fold, addition of the SufBCD complex further stimulates up to 32fold
-
SufE
-
SufE protein
-
the enzyme requires the SufE partner protein to transfer the persulfide to the Fe-S cluster scaffold
-
additional information
-
SufE participates in allosteric regulation of the enzyme activity
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.05 - 0.095
L-cysteine
3.5 - 190
L-cysteine sulfinic acid
1.1 - 2.6
L-selenocysteine
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.123 - 0.65
L-cysteine
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1.2 - 8.3
L-cysteine
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
0.0022
-
mutant S326A for s4U synthesis
0.0034
-
mutant S328A for s4U synthesis
0.0036
-
wild type for s4U synthesis
0.0038
-
mutant S336A for s4U synthesis
0.0043
-
mutant L333A for s4U synthesis
0.008
-
recombinant enzyme with L-cysteine as substrate
0.05
-
H123 mutant with L-selenocysteine as substrate
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
physiological function
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
45000
-
2 * 45000, SDS-PAGE
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
homodimer
additional information
-
cysteine desulfurase SufS interacts with protein SufE which transfers sulfur to the SufBCD complex to facilitate sulfur liberation from cysteine and donation for Fe-cluster assembly
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
structure of a SufS Cys-aldimine, a SufS Cys-ketimine and structure of mutant H123A which shows loss of the pi-pi stacking or H-bonding interactions from His-123
structure of the SufS homodimer which adopts a state in which the two monomers are rotated relative to their resting state, displacing a beta-hairpin from its typical position blocking transpersulfurase access to the SufS active site. The active-site beta-hairpin is likely to require adjacent structural elements to function as a beta-latch regulating access to the SufS active site
structures of SufS including a structure containing an inward-facing persulfide intermediate on residue C364. Structures of SufS variants with substitutions at the dimer interface show changes in dimer geometry, a conserved beta-hairpin structure may play a role in mediating interactions with SufE
CsdA and CsdACsdE complex, hanging drop vapor diffusion method, using 20-30% (w/v) PEG 8000, 0.05 M potassium di-hydrogen phosphate, and 0.1 M MES, pH 6.5 (or pH 5.5), or 20-30% (w/v) PEG 8000, 0.05 M sodium di-hydrogen phosphate, and 0.1 M MES, pH 6.5 (or 0.1 M Tris, pH 8.5)
hanging drop vapor diffusion method, complexed with L-propargylglycine
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
C364A
mutation abolishes the ability of SufS to generate persulfide from L-cysteine. Cys364 is essential for positioning the Cys-aldimine for Calpha deprotonation
E250A
about 7fold decrease in kcat/Km value, mutant displays altered dimer geometries
E96A
about 6fold decrease in kcat/Km value, mutant displays altered dimer geometries
H123A
mutation abolishes the ability of SufS to generate persulfide from L-cysteine. His123 acts to protonate the Ala-enamine intermediate
H55A
about 3fold increase in kcat/Km value
R92A
about 3fold decrease in kcat/Km value, dimer geometry is identical to that of wild-type
C328A
-
IscS mutant, activity towards L-cysteine is almost completely abolished, activity toward L-selenocysteine is much less affected
C328S
-
inactive
C358A
-
CSD mutant, activity towards L-cysteine is almost completely abolished, activity toward L-selenocysteine is much less affected
C364A
-
CsdB mutant, activity towards L-cysteine is almost completely abolished, activity toward L-selenocysteine is much less affected
H123A
-
decreased specific activity towards L-selenocysteine
H55A
-
normal activity towards L-selenocysteine and L-cysteine
L333A
-
mutant defective in Fe-S biosynthesis in vivo but functional in persulfide formation and transfer in vitro
R379A
-
significant loss of activity towards L-selenocysteine
S326A
-
mutant defective in Fe-S biosynthesis in vivo but functional in persulfide formation and transfer in vitro
additional information
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
copurified with IscU
-
DEAE-Toyopearl column chromatography and phenyl-Toyopearl column chromatography
-
Ni-NTA bead chromatography and Superdex 200 gel filtration
purified as the N-terminal His6 fusion protein
-
Q-Sepharose column chromatography, and Superdex 75 gel filtration
-
three homologs: CSD, CsdB and IscS
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expression in Escherichia coli
expressed in Escherichia coli BL21(DE3) cells
expression in Escherichia coli
-
expression in Escherichia coli DH5a
-
wild-type and null mutant
-
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
the IscS activity is stimulated up to 1.6fold in the presence of 10fold molar excess of MoeB subunit, the addition of MoaD subunit to a mixture of IscS and MoeB subunit detectably enhances the desulfurase activity to levels much higher than those observed for the addition of MoeB subunit alone to IscS
-
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Kiyasu, T.; Asakura, A.; Nagahashi, Y.; Hoshino, T.
Contribution of cysteine desulfurase (NifS protein) to the biotin synthase reaction of Escherichia coli
J. Bacteriol.
182
2879-2885
2000
Escherichia coli, Klebsiella pneumoniae, Klebsiella pneumoniae M5a1
Manually annotated by BRENDA team
Mihara, H.; Esaki, N.
Bacterial cysteine desulfurases: their function and mechanisms
Appl. Microbiol. Biotechnol.
60
12-23
2002
Azotobacter vinelandii, Synechocystis sp., Saccharomyces cerevisiae, Escherichia coli, Haemophilus influenzae, Homo sapiens, Mus musculus, Pseudomonas aeruginosa, Synechocystis sp. PCC6714
Manually annotated by BRENDA team
Cupp-Vickery, J.R.; Urbina, H.; Vickery, L.E.
Crystal structure of IscS, a cysteine desulfurase from Escherichia coli
J. Mol. Biol.
330
1049-1059
2003
Escherichia coli
Manually annotated by BRENDA team
Lima, C.D.
Analysis of the E. coli NifS CsdB protein at 2.0 A reveals the structural basis for perselenide and persulfide intermediate formation
J. Mol. Biol.
315
1199-1208
2002
Escherichia coli (P77444)
Manually annotated by BRENDA team
Kambampati, R.; Lauhon, C.T.
MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli
Biochemistry
42
1109-1117
2003
Escherichia coli (P25745), Escherichia coli
Manually annotated by BRENDA team
Lauhon, C.T.
Requirement for IscS in biosynthesis of all thionucleosides in Escherichia coli
J. Bacteriol.
184
6820-6829
2002
Escherichia coli
Manually annotated by BRENDA team
Lauhon, C.T.; Kambampati, R.
The iscS gene in Escherichia coli is required for the biosynthesis of 4-thiouridine, thiamin, and NAD
J. Biol. Chem.
275
20096-20103
2000
Escherichia coli, Escherichia coli MC1061
Manually annotated by BRENDA team
Loiseau, L.; Ollagnier-de-Choudens, S.; Nachin, L.; Fontecave, M.; Barras, F.
Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase
J. Biol. Chem.
278
38352-38359
2003
Escherichia coli, Dickeya chrysanthemi, Escherichia coli TG1
Manually annotated by BRENDA team
Mihara, H.; Fujii, T.; Kato, S.; Kurihara, T.; Hata, Y.; Esaki, N.
Structure of external aldimine of Escherichia coli CsdB, an IscS/NifS homolog: implications for its specificity toward selenocysteine
J. Biochem.
131
679-685
2002
Escherichia coli
Manually annotated by BRENDA team
Mihara, H.; Kurihara, T.; Yoshimura, T.; Esaki, N.
Kinetic and mutational studies of three NifS homologs from Escherichia coli: mechanistic difference between L-cysteine desulfurase and L-selenocysteine lyase reactions
J. Biochem.
127
559-567
2000
Escherichia coli
Manually annotated by BRENDA team
Nilsson, K.; Lundgren, H.K.; Hagervall, T.G.; Bjork, G.R.
The cysteine desulfurase IscS is required for synthesis of all five thiolated nucleosides present in tRNA from Salmonella enterica serovar typhimurium
J. Bacteriol.
184
6830-6835
2002
Escherichia coli, Salmonella enterica
Manually annotated by BRENDA team
Outten, F.W.; Wood, M.J.; Munoz, F.M.; Storz, G.
The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli
J. Biol. Chem.
278
45713-45719
2003
Escherichia coli
Manually annotated by BRENDA team
Yang, W.; Rogers, P.A.; Ding, H.
Repair of nitric oxide-modified ferredoxin [2Fe-2S] cluster by cysteine desulfurase (IscS)
J. Biol. Chem.
277
12868-12873
2002
Escherichia coli
Manually annotated by BRENDA team
Schwartz, C.J.; Djaman, O.; Imlay, J.A.; Kiley, P.J.
The cysteine desulfurase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli
Proc. Natl. Acad. Sci. USA
97
9009-9014
2000
Escherichia coli
Manually annotated by BRENDA team
Kurihara, T.; Mihara, H.; Kato, S.; Yoshimura, T.; Esaki, N.
Assembly of iron-sulfur clusters mediated by cysteine desulfurases, IscS, CsdB and CSD, from Escherichia coli
Biochim. Biophys. Acta
1647
303-309
2003
Escherichia coli
Manually annotated by BRENDA team
Forlani, F.; Cereda, A.; Freuer, A.; Nimtz, M.; Leimkhler, S.; Pagani, S.
The cysteine-desulfurase IscS promotes the production of the rhodanese RhdA in the persulfurated form
FEBS Lett.
579
6786-6790
2005
Escherichia coli
Manually annotated by BRENDA team
Lauhon, C.T.; Skovran, E.; Urbina, H.D.; Downs, D.M.; Vickery, L.E.
Substitutions in an active site loop of Escherichia coli IscS result in specific defects in Fe-S cluster and thionucleoside biosynthesis in vivo
J. Biol. Chem.
279
19551-19558
2004
Escherichia coli, Escherichia coli MC1061
Manually annotated by BRENDA team
Rojas, D.M.; Vasquez, C.C.
Sensitivity to potassium tellurite of Escherichia coli cells deficient in CSD, CsdB and IscS cysteine desulfurases
Res. Microbiol.
156
465-471
2005
Escherichia coli, Escherichia coli DH5-alpha
Manually annotated by BRENDA team
Layer, G.; Gaddam, S.A.; Ayala-Castro, C.N.; Ollagnier-de Choudens, S.; Lascoux, D.; Fontecave, M.; Outten, F.W.
SufE transfers sulfur from SufS to SufB for iron-sulfur cluster assembly
J. Biol. Chem.
282
13342-13350
2007
Escherichia coli
Manually annotated by BRENDA team
Mihara, H.; Hidese, R.; Yamane, M.; Kurihara, T.; Esaki, N.
The iscS gene deficiency affects the expression of pyrimidine metabolism genes
Biochem. Biophys. Res. Commun.
372
407-411
2008
Escherichia coli
Manually annotated by BRENDA team
Wu, G.; Li, P.; Wu, X.
Regulation of Escherichia coli IscS desulfurase activity by ferrous iron and cysteine
Biochem. Biophys. Res. Commun.
374
399-404
2008
Escherichia coli
Manually annotated by BRENDA team
Sendra, M.; Ollagnier de Choudens, S.; Lascoux, D.; Sanakis, Y.; Fontecave, M.
The SUF iron-sulfur cluster biosynthetic machinery: sulfur transfer from the SUFS-SUFE complex to SUFA
FEBS Lett.
581
1362-1368
2007
Escherichia coli
Manually annotated by BRENDA team
Zhang, W.; Urban, A.; Mihara, H.; Leimkuehler, S.; Kurihara, T.; Esaki, N.
IscS functions as a primary sulfur-donating enzyme by interacting specifically with MoeB and MoaD in the biosynthesis of molybdopterin in Escherichia coli
J. Biol. Chem.
285
2302-2308
2010
Escherichia coli
Manually annotated by BRENDA team
Adinolfi, S.; Iannuzzi, C.; Prischi, F.; Pastore, C.; Iametti, S.; Martin, S.R.; Bonomi, F.; Pastore, A.
Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS
Nat. Struct. Mol. Biol.
16
390-396
2009
Escherichia coli
Manually annotated by BRENDA team
Hidese, R.; Mihara, H.; Esaki, N.
Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors
Appl. Microbiol. Biotechnol.
91
47-61
2011
Azotobacter vinelandii, Bacillus subtilis, Saccharomyces cerevisiae, Escherichia coli, Helicobacter pylori
Manually annotated by BRENDA team
Kim, J.H.; Frederick, R.O.; Reinen, N.M.; Troupis, A.T.; Markley, J.L.
[2Fe-2S]-Ferredoxin binds directly to cysteine desulfurase and supplies an electron for iron-sulfur cluster assembly but is displaced by the scaffold protein or bacterial frataxin
J. Am. Chem. Soc.
135
8117-8120
2013
Escherichia coli
Manually annotated by BRENDA team
Kim, J.H.; Tonelli, M.; Markley, J.L.
Disordered form of the scaffold protein IscU is the substrate for iron-sulfur cluster assembly on cysteine desulfurase
Proc. Natl. Acad. Sci. USA
109
454-459
2012
Escherichia coli
Manually annotated by BRENDA team
Dai, Y.; Kim, D.; Dong, G.; Busenlehner, L.S.; Frantom, P.A.; Outten, F.W.
SufE D74R substitution alters active site loop dynamics to further enhance SufE interaction with the SufS cysteine desulfurase
Biochemistry
54
4824-4833
2015
Escherichia coli
Manually annotated by BRENDA team
Kim, S.; Park, S.
Structural changes during cysteine desulfurase CsdA and sulfur acceptor CsdE interactions provide insight into the trans-persulfuration
J. Biol. Chem.
288
27172-27180
2013
Escherichia coli (Q46925), Escherichia coli
Manually annotated by BRENDA team
Singh, H.; Dai, Y.; Outten, F.W.; Busenlehner, L.S.
Escherichia coli SufE sulfur transfer protein modulates the SufS cysteine desulfurase through allosteric conformational dynamics
J. Biol. Chem.
288
36189-36200
2013
Escherichia coli
Manually annotated by BRENDA team
Dunkle, J.; Bruno, M.; Frantom, P.
Structural evidence for a latch mechanism regulating access to the active site of SufS-family cysteine desulfurases
Acta Crystallogr. Sect. D
76
291-301
2020
Escherichia coli (P77444), Escherichia coli
Manually annotated by BRENDA team
Dunkle, J.A.; Bruno, M.R.; Outten, F.W.; Frantom, P.A.
Structural evidence for dimer-interface-driven regulation of the type II cysteine desulfurase, SufS
Biochemistry
58
687-696
2019
Escherichia coli (P77444), Escherichia coli
Manually annotated by BRENDA team
Wang, J.; Guo, X.; Li, H.; Qi, H.; Qian, J.; Yan, S.; Shi, J.; Niu, W.
Hydrogen sulfide from cysteine desulfurase, not 3-mercaptopyruvate sulfurtransferase, contributes to sustaining cell growth and bioenergetics in E. coli under anaerobic conditions
Front. Microbiol.
10
2357
2019
Escherichia coli
Manually annotated by BRENDA team
Blahut, M.; Wise, C.E.; Bruno, M.R.; Dong, G.; Makris, T.M.; Frantom, P.A.; Dunkle, J.A.; Outten, F.W.
Direct observation of intermediates in the SufS cysteine desulfurase reaction reveals functional roles of conserved active-site residues
J. Biol. Chem.
294
12444-12458
2019
Escherichia coli (P77444), Escherichia coli
Manually annotated by BRENDA team