Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
2-mercaptoethanol + cyanide
ethanol + thiocyanate
2-oxo-3-sulfanylpropanoate + [3-mercaptopyruvate sulfurtransferase]-L-cysteine
pyruvate + [3-mercaptopyruvate sulfurtransferase]-S-sulfanyl-L-cysteine
-
-
-
?
3-mercaptopyruvate + 2 glutathione
pyruvate + glutathione disulfide
-
-
-
?
3-mercaptopyruvate + 2-mercaptoethanol
?
-
-
-
?
3-mercaptopyruvate + 2-mercaptoethanol
pyruvate + ?
-
-
-
-
?
3-mercaptopyruvate + cyanide
H2S + ?
H2S is produced by 3-mercaptopyruvate sulfurtransferase with cysteine aminotransferase in the presence of cysteine and alpha-ketoglutarate, supporting the existence of 3-mercaptopyruvate which has not been identified. Mercaptopyruvate can be provided by the metabolism of cysteine and alpha-ketoglutarate by cysteine aminotransferase (CAT)
a major source of H2S production in the brain is from the enzyme 3-mercaptopyruvate sulfurtransferase
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
3-mercaptopyruvate + dihydrolipoic acid
?
-
-
-
?
3-mercaptopyruvate + dithiothreitol
?
3-mercaptopyruvate + glutathione
?
-
-
-
?
3-mercaptopyruvate + HSO3-
pyruvate + S2O3-
-
-
-
-
?
3-mercaptopyruvate + HSO3-
pyruvate + S2O32-
-
-
-
?
3-mercaptopyruvate + L-cysteine
?
3-mercaptopyruvate + L-homocysteine
?
-
-
-
?
3-mercaptopyruvate + N-acetyl-L-cysteine
?
3-mercaptopyruvate + thioredoxin
?
thioredoxin is the preferred persulfide acceptor
-
-
?
3-mercaptopyruvate + thioredoxin
pyruvate + persulfurated thioredoxin
3-mercaptopyruvate + thiosulfate
pyruvate + H2S
-
-
-
-
?
7-azido-4-methylcoumarin + L-cysteine
?
-
-
-
?
7-azido-4-methylcoumarin + N-acetyl-L-cysteine
?
-
-
-
?
cysteine + 2-mercaptoethanol
? + ?
-
-
-
-
?
sulfane sulfur + cyanide
thiocyanate + ?
thioredoxin + 2-mercaptoethanol
thioredoxin persulfide + ?
-
-
-
-
?
thiosulfate + 2-mercaptoethanol
sulfate + ?
-
-
-
-
?
thiosulfate + cyanide
SO32- + thiocyanate
-
-
-
?
thiosulfate + cyanide
sulfite + thiocyanate
thiosulfate + glutathione
sulfite + glutathione disulfide
-
-
-
?
thiosulfate + thioredoxin
?
thiosulfate + [3-mercaptopyruvate sulfurtransferase]-L-cysteine
sulfate + [3-mercaptopyruvate sulfurtransferase]-S-sulfanyl-L-cysteine
[3-mercaptopyruvate sulfurtransferase]-S-sulfanyl-L-cysteine + reduced thioredoxin
hydrogen sulfide + [3-mercaptopyruvate sulfurtransferase]-L-cysteine + oxidized thioredoxin
additional information
?
-
2-mercaptoethanol + cyanide

ethanol + thiocyanate
-
-
-
-
?
2-mercaptoethanol + cyanide
ethanol + thiocyanate
-
-
-
-
?
3-mercaptopyruvate + cyanide

pyruvate + thiocyanate
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
?
3-mercaptopyruvate + cyanide
pyruvate + thiocyanate
-
-
-
-
?
3-mercaptopyruvate + dithiothreitol

?
-
-
-
?
3-mercaptopyruvate + dithiothreitol
?
-
-
-
-
?
3-mercaptopyruvate + dithiothreitol
?
-
-
-
?
3-mercaptopyruvate + L-cysteine

?
-
-
-
?
3-mercaptopyruvate + L-cysteine
?
-
-
-
-
?
3-mercaptopyruvate + L-cysteine
?
-
-
-
?
3-mercaptopyruvate + N-acetyl-L-cysteine

?
-
-
-
?
3-mercaptopyruvate + N-acetyl-L-cysteine
?
-
-
-
?
3-mercaptopyruvate + thioredoxin

pyruvate + persulfurated thioredoxin
-
-
-
-
?
3-mercaptopyruvate + thioredoxin
pyruvate + persulfurated thioredoxin
-
-
-
-
?
3-mercaptopyruvate + thioredoxin
pyruvate + persulfurated thioredoxin
-
-
-
?
3-mercaptopyruvate + thioredoxin
pyruvate + persulfurated thioredoxin
-
-
-
-
?
3-mercaptopyruvate + thioredoxin
pyruvate + persulfurated thioredoxin
-
-
-
?
3-mercaptopyruvate + thioredoxin
pyruvate + persulfurated thioredoxin
-
-
-
?
sulfane sulfur + cyanide

thiocyanate + ?
-
-
?
sulfane sulfur + cyanide
thiocyanate + ?
-
-
?
thiosulfate + cyanide

sulfite + thiocyanate
-
-
-
?
thiosulfate + cyanide
sulfite + thiocyanate
-
-
-
?
thiosulfate + thioredoxin

?
-
-
-
?
thiosulfate + thioredoxin
?
-
-
-
?
thiosulfate + [3-mercaptopyruvate sulfurtransferase]-L-cysteine

sulfate + [3-mercaptopyruvate sulfurtransferase]-S-sulfanyl-L-cysteine
-
-
-
?
thiosulfate + [3-mercaptopyruvate sulfurtransferase]-L-cysteine
sulfate + [3-mercaptopyruvate sulfurtransferase]-S-sulfanyl-L-cysteine
-
-
-
?
[3-mercaptopyruvate sulfurtransferase]-S-sulfanyl-L-cysteine + reduced thioredoxin

hydrogen sulfide + [3-mercaptopyruvate sulfurtransferase]-L-cysteine + oxidized thioredoxin
-
-
-
?
[3-mercaptopyruvate sulfurtransferase]-S-sulfanyl-L-cysteine + reduced thioredoxin
hydrogen sulfide + [3-mercaptopyruvate sulfurtransferase]-L-cysteine + oxidized thioredoxin
-
-
-
?
additional information

?
-
-
the enzyme plays a role in iron-sulfur chromophore formation in adrenal cortex
-
-
?
additional information
?
-
-
cyanide detoxification
-
-
?
additional information
?
-
-
participates in L-cysteine desulfuration
-
-
?
additional information
?
-
-
3-mercaptopyruvate sulfurtransferase in conjunction with cysteine (aspartate) aminotransferase contributes significantly in generating H2S from L-cysteine in the presence of alpha-ketoglutarate
-
-
?
additional information
?
-
3-mercaptopyruvate sulfurtransferase produces bound sulfane sulfur
-
-
?
additional information
?
-
-
in the catalytic process of the enzyme, hydrogen peroxide is possibly produced by persulfide of the sulfur-accepted substrate and sulfur oxides are possibly produced in the redox cycle of persulfide formed at the catalytic site cysteine of the reaction intermediate
-
-
?
additional information
?
-
-
the enzyme produces hydrogen sulfide in the presence of both cysteine and 2-oxoglutarate. Thioredoxin and dihydrolipoic acid associate with 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Other reducing substances, such as NADPH, NADH, GSH, cysteine and CoA, do not have any effect on the reaction
-
-
?
additional information
?
-
the enzyme 3MST also produces H2S2 and H2S5 from 3-mercaptopyruvate. H2S3 production from H2S occurs by the enzyme rhodanese
-
-
?
additional information
?
-
3MST produces Cys-SSH and GSSH together with the potential signaling molecules hydrogen per- and tri-sulfide (H2S2 and H2S3). Cys-SSH and GSSH are produced in the presence of physiological concentrations of cysteine and glutathione, while those with longer sulfur chains, Cys-SSnH and GSSnH, are produced in the presence of lower than physiological concentrations of cysteine and glutathione
-
-
-
additional information
?
-
-
role in metabolism of some amino acids and low molecular weight sulfur compounds
-
-
?
additional information
?
-
-
cyanide detoxification
-
-
?
additional information
?
-
-
MST contributes to maintain redox homeostasis
-
-
?
additional information
?
-
MST contributes to maintain redox homeostasis
-
-
?
additional information
?
-
MST contributes to maintain redox homeostasis via exerting control over cysteine catabolism
-
-
?
additional information
?
-
-
3MST and cytosolic and mitochondrial cysteine aminotransferases are localized to endothelial cells of the thoracic aorta and together enzymes produce H2S in this cell type. H2S is a smooth muscle relaxant released from endothelium
-
-
?
additional information
?
-
-
in the catalytic process of the enzyme, hydrogen peroxide is possibly produced by persulfide of the sulfur-accepted substrate and sulfur oxides are possibly produced in the redox cycle of persulfide formed at the catalytic site cysteine of the reaction intermediate
-
-
?
additional information
?
-
after prolonged incubation of MST with thiosulfate, a trisulfide adduct becomes predominant at the sulfurated catalytic-site cysteine. When these adducts are reduced by Trx with reducing system H2S2 first appears, and then H2S and H2S3
-
-
-
additional information
?
-
-
role in metabolism of some amino acids and low molecular weight sulfur compounds
-
-
?
additional information
?
-
-
has high activity with 3-MP as a sulfur donor and can use several thiol compounds as sulfur acceptor substrates
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
3-mercaptopyruvate sulfurtransferase deficiency
Effect of 3-mercaptopyruvate Sulfurtransferase Deficiency on the Development of Multiorgan Failure, Inflammation, and Wound Healing in Mice Subjected to Burn Injury.
3-mercaptopyruvate sulfurtransferase deficiency
The Effects of Genetic 3-Mercaptopyruvate Sulfurtransferase Deficiency in Murine Traumatic-Hemorrhagic Shock.
Adenocarcinoma
Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway in cancer cells.
Adenocarcinoma of Lung
Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway in cancer cells.
Anaphylaxis
Increased Urinary 3-Mercaptolactate Excretion and Enhanced Passive Systemic Anaphylaxis in Mice Lacking Mercaptopyruvate Sulfurtransferase, a Model of Mercaptolactate-Cysteine Disulfiduria.
Astrocytoma
The expression and activity of cystathionine-gamma-lyase and 3-mercaptopyruvate sulfurtransferase in human neoplastic cell lines.
Brain Injuries, Traumatic
Upregulation of 3-MST Relates to Neuronal Autophagy After Traumatic Brain Injury in Mice.
Carcinoma
Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway in cancer cells.
Carcinoma, Ehrlich Tumor
Transamination and transsulphuration of L-cysteine in Ehrlich ascites tumor cells and mouse liver. The nonenzymatic reaction of L-cysteine with pyruvate.
Cardiomegaly
?MST and the Regulation of Cardiac CSE and OTR Expression in Trauma and Hemorrhage.
Cardiomegaly
Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase.
Cerebral Infarction
3-Mercaptopyruvate sulfurtransferase/hydrogen sulfide protects cerebral endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury via mitoprotection and inhibition of the RhoA/ROCK pathway.
Colonic Neoplasms
N-Acetylcysteine Serves as Substrate of 3-Mercaptopyruvate Sulfurtransferase and Stimulates Sulfide Metabolism in Colon Cancer Cells.
Colonic Neoplasms
Novel Aryl-Substituted Pyrimidones as Inhibitors of 3-Mercaptopyruvate Sulfurtransferase with Antiproliferative Efficacy in Colon Cancer.
Colonic Neoplasms
Role of 3-Mercaptopyruvate Sulfurtransferase in the Regulation of Proliferation, Migration, and Bioenergetics in Murine Colon Cancer Cells.
Down Syndrome
Role of 3-Mercaptopyruvate Sulfurtransferase in the Regulation of Proliferation and Cellular Bioenergetics in Human Down Syndrome Fibroblasts.
Dyspnea
Three-minute constant rate step test for detecting exertional dyspnea relief after bronchodilation in COPD.
Endotoxemia
Effect of endotoxemia in mice genetically deficient in cystathionine-?-lyase, cystathionine-?-synthase or 3-mercaptopyruvate sulfurtransferase.
Glaucoma
Relevant variations and neuroprotecive effect of hydrogen sulfide in a rat glaucoma model.
Glioma
Is development of high-grade gliomas sulfur-dependent?
Hypertension
?MST and the Regulation of Cardiac CSE and OTR Expression in Trauma and Hemorrhage.
Hypertension
Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase.
Hypertension
Maternal N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and prevents programmed hypertension in male offspring exposed to prenatal dexamethasone and postnatal high-fat diet.
Hypertension
N-Acetylcysteine Prevents Programmed Hypertension in Male Rat Offspring Born to Suramin-Treated Mothers.
Hyperthyroidism
Altered gene expression of hydrogen sulfide-producing enzymes in the liver and muscles tissues of hyperthyroid rats.
Melanoma
The expression and activity of cystathionine-gamma-lyase and 3-mercaptopyruvate sulfurtransferase in human neoplastic cell lines.
Mucopolysaccharidosis III
Murine cellular model of mucopolysaccharidosis, type IIIB (MPS IIIB) - A preliminary study with particular emphasis on the non-oxidative l-cysteine metabolism.
Myocardial Ischemia
Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase.
Neoplasms
A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer?
Neoplasms
Aerobic Training-induced Upregulation of YAP1 and Prevention of Cardiac Pathological Hypertrophy in Male Rats.
Neoplasms
Crocin reverses 1-methyl-3-nitroso-1-nitroguanidine (MNNG)-induced malignant transformation in GES-1 cells through the Nrf2/Hippo signaling pathway.
Neoplasms
Cysteine Aminotransferase (CAT): A Pivotal Sponsor in Metabolic Remodeling and an Ally of 3-Mercaptopyruvate Sulfurtransferase (MST) in Cancer.
Neoplasms
Endogenous H2S producing enzymes are involved in apoptosis induction in clear cell renal cell carcinoma.
Neoplasms
Hydrogen Sulfide and Hydrogen Sulfide-Synthesizing Enzymes Are Altered in a Case of Oral Adenoid Cystic Carcinoma.
Neoplasms
Hydrogen Sulfide and Polysulfide Signaling.
Neoplasms
Hydrogen Sulfide-Synthesizing Enzymes Are Altered in a Case of Oral Cavity Mucoepidermoid Carcinoma.
Neoplasms
Is development of high-grade gliomas sulfur-dependent?
Neoplasms
Novel Aryl-Substituted Pyrimidones as Inhibitors of 3-Mercaptopyruvate Sulfurtransferase with Antiproliferative Efficacy in Colon Cancer.
Neoplasms
Polysulfide inhibits hypoxia-elicited hypoxia-inducible factor activation in a mitochondria-dependent manner.
Neoplasms
Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway in cancer cells.
Neoplasms
Role of 3-Mercaptopyruvate Sulfurtransferase in the Regulation of Proliferation, Migration, and Bioenergetics in Murine Colon Cancer Cells.
Neoplasms
Transamination and transsulphuration of L-cysteine in Ehrlich ascites tumor cells and mouse liver. The nonenzymatic reaction of L-cysteine with pyruvate.
Neuroblastoma
Inhibition of Human Neuroblastoma Cell Proliferation by N-acetyl-L-cysteine as a Result of Increased Sulfane Sulfur Level.
Neuroblastoma
The expression and activity of cystathionine-gamma-lyase and 3-mercaptopyruvate sulfurtransferase in human neoplastic cell lines.
Non-alcoholic Fatty Liver Disease
Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway.
Obesity
[Adipocytic Endogenous Hydrogen Sulfide-Function,Regulation and Diseases].
Osteoarthritis
The protective role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway against experimental osteoarthritis.
Osteoporosis
Association of Hydrogen Sulfide with Femoral Bone Mineral Density in Osteoporosis Patients: A Preliminary Study.
Polycythemia Vera
The activity of 3-mercaptopyruvate sulfurtransferase in erythrocytes from patients with polycythemia vera.
Pulmonary Disease, Chronic Obstructive
Three-minute constant rate step test for detecting exertional dyspnea relief after bronchodilation in COPD.
Reperfusion Injury
Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase.
Sepsis
Hydrogen sulfide prevents diaphragm weakness in cecal ligation puncture-induced sepsis by preservation of mitochondrial function.
Stroke
Brain 3-Mercaptopyruvate Sulfurtransferase (3MST): Cellular Localization and Downregulation after Acute Stroke.
Stroke
Sequential butylphthalide therapy combined with dual antiplatelet therapy in the treatment of acute cerebral infarction.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
19 - 155
2-mercaptoethanol
0.015 - 73
3-Mercaptopyruvate
8.2
cysteine
-
pH 8.4, 30ưC
4.4
dihydrolipoic acid
in 200 mM of HEPES, pH 7.4, at 37ưC
2.59 - 4.6
dithiothreitol
28
glutathione
in 200 mM of HEPES, pH 7.4, at 37ưC
12.5
L-homocysteine
in 200 mM of HEPES, pH 7.4, at 37ưC
11.4 - 17
N-acetyl-L-cysteine
0.3
reduced thioredoxin
pH 7.3, 37ưC
0.0025 - 0.0031
thioredoxin
19
2-mercaptoethanol

-
pH 8.4, 30ưC
108
2-mercaptoethanol
in 200 mM of HEPES, pH 7.4, at 37ưC
152 - 155
2-mercaptoethanol
-
-
0.015
3-Mercaptopyruvate

cosubstrate N-acetyl-L-cysteine, mitochondrial splice variant MPST2, Hill coefficient 1.1, pH 7.4, 37ưC
0.02
3-Mercaptopyruvate
glutathione as cosubstrate, in 200 mM of HEPES, pH 7.4, at 37ưC
0.02
3-Mercaptopyruvate
cosubstrate N-acetyl-L-cysteine, cytosolic splice variant MPST1, Hill coefficient 1.3, pH 7.4, 37ưC
0.022
3-Mercaptopyruvate
using L-cysteine as cosubstrate, in 200 mM of HEPES, pH 7.4, at 37ưC
0.022
3-Mercaptopyruvate
cosubstrate L-cysteine, mitochondrial splice variant MPST2, Hill coefficient 1.4, pH 7.4, 37ưC
0.024
3-Mercaptopyruvate
cosubstrate L-cysteine, cytosolic splice variant MPST1, Hill coefficient 1.6, pH 7.4, 37ưC
0.025
3-Mercaptopyruvate
using dihydrolipioic acid as cosubstrate, in 200 mM of HEPES, pH 7.4, at 37ưC
0.026
3-Mercaptopyruvate
using dithiothreitol as cosubstrate, in 200 mM of HEPES, pH 7.4, at 37ưC
0.03
3-Mercaptopyruvate
using L-homocysteine as cosubstrate, in 200 mM of HEPES, pH 7.4, at 37ưC
0.053
3-Mercaptopyruvate
-
pH 8.4, 30ưC
0.13
3-Mercaptopyruvate
using 2-mercaptoethanol as cosubstrate, in 200 mM of HEPES, pH 7.4, at 37ưC
0.2
3-Mercaptopyruvate
pH 7.3, 37ưC
0.24
3-Mercaptopyruvate
-
mutant S239A, pH 8.0, 30ưC
0.35
3-Mercaptopyruvate
using cyanide as cosubstrate, in 200 mM of HEPES, pH 7.4, at 37ưC
0.35
3-Mercaptopyruvate
using thioredoxin as cosubstrate, in 200 mM of HEPES, pH 7.4, at 37ưC
0.358
3-Mercaptopyruvate
cosubstrate thioredoxin, cytosolic splice variant MPST1, Hill coefficient 2.0, pH 7.4, 37ưC
0.36
3-Mercaptopyruvate
cosubstrate thioredoxin, mitochondrial splice variant MPST2, Hill coefficient 2.1, pH 7.4, 37ưC
0.43
3-Mercaptopyruvate
-
mutant H66A, pH 8.0, 30ưC
0.49
3-Mercaptopyruvate
S249A mutant
0.54
3-Mercaptopyruvate
isoform TUM1-Iso2, with dithiothreitol as cosubstrate, at pH 10.5 and 37ưC
0.55
3-Mercaptopyruvate
isoform TUM1-Iso1, with dithiothreitol as cosubstrate, at pH 10.5 and 37ưC
0.6
3-Mercaptopyruvate
mutant S239A, enzyme displays kinetic cooperativity with respect to 3-mercaptopyruvate and thioredoxin, pH 8.0, 30ưC
0.79
3-Mercaptopyruvate
mutant H66A, enzyme displays kinetic cooperativity with respect to 3-mercaptopyruvate and thioredoxin, pH 8.0, 30ưC
0.9
3-Mercaptopyruvate
-
mutant R102L, pH 8.0, 30ưC
1
3-Mercaptopyruvate
-
wild-type, pH 8.0, 30ưC
1
3-Mercaptopyruvate
-
mutant H66A/R102L, pH 8.0, 30ưC
1
3-Mercaptopyruvate
-
mutant R102K, pH 8.0, 30ưC
1.1
3-Mercaptopyruvate
S249K mutant
1.2
3-Mercaptopyruvate
wild-type enzyme
1.29
3-Mercaptopyruvate
isoform TUM1-Iso2, with cyanide as cosubstrate, at pH 10.5 and 37ưC
1.33
3-Mercaptopyruvate
isoform TUM1-Iso1, with cyanide as cosubstrate, at pH 10.5 and 37ưC
1.4
3-Mercaptopyruvate
-
mutant H66N, pH 8.0, 30ưC
1.7
3-Mercaptopyruvate
wild-type, enzyme displays kinetic cooperativity with respect to 3-mercaptopyruvate and thioredoxin, pH 8.0, 30ưC
2 - 3
3-Mercaptopyruvate
-
mutant R178L/R187L, pH 8.0, 30ưC
2.1
3-Mercaptopyruvate
G248R mutant
2.4
3-Mercaptopyruvate
-
mutant D53A, pH 8.0, 30ưC
4
3-Mercaptopyruvate
-
mutant R187L, pH 8.0, 30ưC
4.08
3-Mercaptopyruvate
-
pH 8, 30ưC
7.02
3-Mercaptopyruvate
pH 8.0, 37ưC
7.3
3-Mercaptopyruvate
-
cytosolic enzyme
7.4 - 7.7
3-Mercaptopyruvate
-
-
7.6
3-Mercaptopyruvate
-
mitochondrial enzyme
8.34
3-Mercaptopyruvate
-
determination of pyruvate formation, 37ưC, pH 9.55
11
3-Mercaptopyruvate
R196G mutant
11
3-Mercaptopyruvate
MST1, 30ưC
12.5
3-Mercaptopyruvate
-
determination of thiocyanate formation, 37ưC, pH 9.55
15
3-Mercaptopyruvate
-
mutant R178L, pH 8.0, 30ưC
70
3-Mercaptopyruvate
R187G mutant
72
3-Mercaptopyruvate
MST2, 30ưC
73
3-Mercaptopyruvate
-
pH 9.6
1.66
cyanide

pH 8.0, 37ưC
4.45
cyanide
isoform TUM1-Iso1, with cyanide as cosubstrate, at pH 10.5 and 37ưC
4.5
cyanide
isoform TUM1-Iso2, with cyanide as cosubstrate, at pH 10.5 and 37ưC
6
cyanide
in 200 mM of HEPES, pH 7.4, at 37ưC
2.59
dithiothreitol

isoform TUM1-Iso2, with dithiothreitol as cosubstrate, at pH 10.5 and 37ưC
2.69
dithiothreitol
isoform TUM1-Iso1, with dithiothreitol as cosubstrate, at pH 10.5 and 37ưC
4.6
dithiothreitol
in 200 mM of HEPES, pH 7.4, at 37ưC
3.8
L-cysteine

cytosolic splice variant MPST1, Hill coefficient 1.4, pH 7.4, 37ưC
4.1
L-cysteine
in 200 mM of HEPES, pH 7.4, at 37ưC
4.5
L-cysteine
mitochondrial splice variant MPST2, Hill coefficient 1.6, pH 7.4, 37ưC
6
L-cysteine
pH 8.0, 37ưC
11.4
N-acetyl-L-cysteine

pH 8.0, 37ưC
16
N-acetyl-L-cysteine
mitochondrial splice variant MPST2, Hill coefficient 2.7, pH 7.4, 37ưC
17
N-acetyl-L-cysteine
cytosolic splice variant MPST1, Hill coefficient 2.2, pH 7.4, 37ưC
0.0025
thioredoxin

in 200 mM of HEPES, pH 7.4, at 37ưC
0.0028
thioredoxin
-
pH 8.4, 30ưC
0.003
thioredoxin
cytosolic splice variant MPST1, Hill coefficient 1.6, pH 7.4, 37ưC
0.0031
thioredoxin
mitochondrial splice variant MPST2, Hill coefficient 1.4, pH 7.4, 37ưC
1.7
thiosulfate

pH 7.3, 37ưC
266
thiosulfate
-
pH 8.4, 30ưC
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
D53A
-
mutation of catalytic triad, does not change the kinetic parameters of for the first reaction step
H66A
-
the first step of sulfur transfer becomes rate-limiting in the mutant
H66A/R102L
-
the first step of sulfur transfer becomes rate-limiting in the mutant, with cumulative effects of the mutations
H66N
-
kinetic properties are identical with those of the wild type
R102K
-
the first step of sulfur transfer becomes rate-limiting in the mutant
R102L
-
the first step of sulfur transfer becomes rate-limiting in the mutant
R178L
-
moderate decrease in kmax1/K3-mercaptopyruvate, the first step of sulfur transfer is not drastically impaired
R178L/R187L
-
substituting both Arg residues does not fully abolish the sulfur transfer step
R187L
-
moderate decrease in kmax1/K3-mercaptopyruvate, the first step of sulfur transfer is not drastically impaired
S239A
-
strong decrease in kcat value
D53A
-
mutation of catalytic triad, does not change the kinetic parameters of for the first reaction step
-
H66A
-
the first step of sulfur transfer becomes rate-limiting in the mutant
-
H66N
-
kinetic properties are identical with those of the wild type
-
R102L
-
the first step of sulfur transfer becomes rate-limiting in the mutant
-
R187L
-
moderate decrease in kmax1/K3-mercaptopyruvate, the first step of sulfur transfer is not drastically impaired
-
D63A
mitochondrial splice variant MPST2, mutation of catalytic triad, mutation of catalytic triad, specific activity in presence of cysteine is comparable to wild-type, specific activity with thioredoxin is 2.3fold decreased
H66A
10fold decrease in kmax1/K3-mercaptopyruvate ratio relative to the wild-type
H74A
mitochondrial splice variant MPST2, mutation of catalytic triad, specific activity in presence of cysteine is comparable to wild-type, specific activity with thioredoxin is 1.9fold decreased
S239A
no key role of residue S239 in the activation of the 3-mercaptopyruvate thiol group
S250A
mitochondrial splice variant MPST2, mutation of catalytic triad, specific activity with cysteine is 2.6fold lower than wild-type, with thioredoxin, specific activity is similar to wild-type
C154S
-
active site mutant
C263S
-
active site mutant
D63A
mitochondrial splice variant MPST2, mutation of catalytic triad, mutation of catalytic triad, specific activity in presence of cysteine is comparable to wild-type, specific activity with thioredoxin is 2.3fold decreased
H74A
mitochondrial splice variant MPST2, mutation of catalytic triad, specific activity in presence of cysteine is comparable to wild-type, specific activity with thioredoxin is 1.9fold decreased
S250A
mitochondrial splice variant MPST2, mutation of catalytic triad, specific activity with cysteine is 2.6fold lower than wild-type, with thioredoxin, specific activity is similar to wild-type
C248R
slightly increased Km
C32S
mutant lacks formation of a disulfide bond with a protein and is not able to produce H2Sn
R187G
-
Ki-value for 3-chloropyruvate similar to wild-type
R248G
facilitated catalysis of thiosulfate
S249A
no significant difference in Km compared to wild-type enzyme
C247S

-
inactive
C247S
site-directed mutagenesis, transient transfection of human embryonic kidney HEK 293-F cells, mutant completely lose the activity to metabolize 3-mercaptopyruvate that is assessed by measuring its products either pyruvate or H2S, the levels of bound sulfane sulfur are not increased
R187G

-
inactive
R187G
site-directed mutagenesis, transient transfection of human embryonic kidney HEK 293-F cells, mutant, which greatly lose the activity, decreases the levels of bound sulfane sulfur, but not statistically significant, no H2S production
R196G

site-directed mutagenesis, transient transfection of human embryonic kidney HEK 293-F cells, mutant, which partially lose the activity, does not decrease the levels of bound sulfane sulfur, no H2S production
R196G
-
the mutant shows reduced H2S-producing activity
C154S

-
active site mutant
C154S
-
SH group titration, susceptibility to hydrogen peroxide and tetrathionate and renaturation by dithiothreitol similar to wild-type
C154S
site-directed mutagenesis, expression in Escherichia coli BL21 (DE3), overexpressed, structurally resembles an active form of MST
C247S

no enzyme activity
C247S
-
SH group titration, susceptibility to hydrogen peroxide and tetrathionate and renaturation by dithiothreitol similar to wild-type
C254S

-
SH group titration, susceptibility to hydrogen peroxide and tetrathionate and renaturation by dithiothreitol similar to wild-type
C254S
site-directed mutagenesis, expression in Escherichia coli BL21 (DE3), overexpressed, activation with reduced thioredoxin
C263S

-
active site mutant
C263S
-
SH group titration, susceptibility to hydrogen peroxide and tetrathionate and renaturation by dithiothreitol similar to wild-type
C263S
site-directed mutagenesis, expression in Escherichia coli BL21 (DE3), overexpressed, structurally resembles an active form of MST
C64S

-
SH group titration, susceptibility to hydrogen peroxide and tetrathionate and renaturation by dithiothreitol similar to wild-type
C64S
site-directed mutagenesis, expression in Escherichia coli BL21 (DE3), overexpressed, activation with reduced thioredoxin
R196G

increased Km
R196G
-
decrease in kcat/Km
R196G
-
5fold increase in Ki-value for 3-chloropyruvate
S249K

-
decrease in kcat/Km
S249K
facilitated catalysis of thiosulfate
additional information

-
the level of 3-mercaptopyruvate sulfurtransferase remains largely unaffected in mutants mecB, cysB, metR, metG, sconB, metG/mecB of Aspergillus nidulans, which are impaired in regulatory genes involved in the sulfur metabolite repression system
additional information
-
identification of two intronic polymorphisms and a nonsense mutation in the enzyme gene of 50 unrelated French individuals. The nonsense mutation Y85Stop likely results in a severely truncated protein without enzymatic activity
additional information
-
C154S/C263S mutant, site-directed mutagenesis, expression in Escherichia coli BL21 (DE3), overexpressed, structurally resembles an active form of MST
additional information
C154S/C263S mutant, site-directed mutagenesis, expression in Escherichia coli BL21 (DE3), overexpressed, structurally resembles an active form of MST
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Scott, E.M.; Wright, R.C.
Identity of beta-mercaptopyruvate sulfurtransferase and rhodanese in human erythrocytes
Biochem. Biophys. Res. Commun.
97
1334-1338
1980
Homo sapiens
brenda
Wrobel, M.; Frendo, J.
Comparison of some molecular and catalytic properties of mitochondrial and cytosolic rhodanese and mercaptopyruvate sulphurtransferase from frog (Rana temporaria) liver
Bull. Pol. Acad. Sci. Biol. Sci.
32
303-313
1984
Rana temporaria
-
brenda
Van den Hamer, C.J.A.; morell, A.G.; Scheinberg, I.H.
A study of the cooper content of beta-mercaptopyruvate trans-sulfurase
J. Biol. Chem.
242
2514-2516
1967
Rattus norvegicus
brenda
Vachek, H.; Wood, J.L.
Purification and properties of mercaptopyruvate sulfur transferase of Escherichia coli
Biochim. Biophys. Acta
258
133-146
1972
Escherichia coli
brenda
Wlodek, L.; Ostrowski, W.S.
3-Mercaptopyruvate sulphurtransferase from rat erythrocytes
Acta Biochim. Pol.
29
121-133
1982
Rattus norvegicus
brenda
Kasperczyk, H.; Koj, A.; Wasylewski, Z.
Similarity of some molecular and catalytic parameters of mitochondrial and cytosolic mercaptopyruvate sulfurtransferase from rat liver
Bull. Acad. Pol. Sci. Biol. Sci.
25
7-13
1977
Rattus norvegicus
brenda
Jarabak, R.
3-Mercaptopyruvate sulfurtransferase
Methods Enzymol.
77
291-297
1981
Bos taurus
brenda
Jarabak, R.; Westley, J.
3-Mercaptopyruvate sulfurtransferase: rapid equilibrium-ordered mechanism with cyanide as the acceptor substrate
Biochemistry
19
900-904
1980
Bos taurus
brenda
Koj, A.; Frendo, J.; Wojtczak, L.
Subcellular distribution and intramitochondrial localization of three sulfurtransferases in rat liver
FEBS Lett.
57
42-46
1975
Rattus norvegicus, Rattus norvegicus Wistar
brenda
Jarabak, R.; Westley, J.
Steady-state kinetics of 3-mercaptopyruvate sulfurtransferase from bovine kidney
Arch. Biochem. Biophys.
185
458-465
1978
Bos taurus
brenda
Taniguchi, T.; Kimura, T.
Role of 3-mercaptopyruvate sulfurtransferase in the formation of the iron-sulfur chromophore of adrenal ferredoxin
Biochim. Biophys. Acta
364
284-295
1974
Bos taurus
brenda
Alphey, M.S.; Williams, R.A.; Mottram, J.C.; Coombs, G.H.; Hunter, W.N.
The crystal structure of Leishmania major 3-mercaptopyruvate sulfurtransferase. A three-domain architecture with a serine protease-like triad at the active site
J. Biol. Chem.
278
48219-48227
2003
Leishmania major
brenda
Frendo, J.; Wrobel, M.; Was, K.
3-Mercaptopyruvate sulfurtransferase and rhodanese activities in human myometrium and leiomyomas of the uterus
Nowotwory J. Oncol.
52
123-125
2002
Homo sapiens
-
brenda
Meyer, T.; Burow, M.; Bauer, M.; Papenbrock, J.
Arabidopsis sulfurtransferases: investigation of their function during senescence and in cyanide detoxification
Planta
217
1-10
2003
Arabidopsis thaliana
brenda
Nagahara, N.; Ito, T.; Kitamura, H.; Nishino, T.
Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis
Histochem. Cell Biol.
110
243-250
1998
Rattus norvegicus
brenda
Magahara, N.; Ito, T.; Minami, M.
Mercaptopyruvate sulfurtransferase as a defense against cyanide toxication: molecular properties and mode of detoxification
Histol. Histopathol.
14
1277-1286
1999
Rattus norvegicus
brenda
Magahara, N.; Nishino, T.
Role of amino acid residues in the active site of rat liver mercaptopyruvate sulfurtransferase. CDNA cloning, overexpression, and site-directed mutagenesis
J. Biol. Chem.
271
27395-27401
1996
Rattus norvegicus (P97532)
brenda
Magahara, N.; Okazaki, T.; Nishino, T.
Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis
J. Biol. Chem.
270
16230-16235
1995
Rattus norvegicus, Rattus norvegicus Wistar
brenda
Makamura, T.; Yamaguchi, Y.; Sano, H.
Plant mercaptopyruvate sulfurtransferases: molecular cloning, subcellular localization and enzymatic activities
Eur. J. Biochem.
267
5621-5630
2000
Arabidopsis thaliana (Q24JL3)
brenda
Porter, D.W.; Baskin, S.I.
Specificity studies of 3-mercaptopyruvate sulfurtransferase
J. Biochem. Toxicol.
10
287-292
1995
Bos taurus
brenda
Porter, D.W.; Baskin, S.I.
The effect of three alpha-keto acids on 3-mercaptopyruvate sulfurtransferase activity
J. Biochem. Toxicol.
11
45-50
1996
Bos taurus
brenda
Spallarossa, A.; Forlani, F.; Carpen, A.; Armirotti, A.; Pagani, S.; Bolognesi, M.; Bordo, D.
The "rhodanese" fold and catalytic mechanism of 3-mercaptopyruvate sulfurtransferases: Crystal structure of SseA from Escherichia coli
J. Mol. Biol.
335
583-593
2004
Escherichia coli (P31142)
brenda
Williams, R.A.; Kelly, S.M.; Mottram, J.C.; Coombs, G.H.
3-Mercaptopyruvate sulfurtransferase of Leishmania contains an unusual C-terminal extension and is involved in thioredoxin and antioxidant metabolism
J. Biol. Chem.
278
1480-1486
2003
Leishmania major (Q7K9G0), Leishmania major, Leishmania mexicana (Q8T381), Leishmania mexicana
brenda
Nagahara, N.; Sawada, N.; Nakagawa, T.
Affinity labeling of a catalytic site, cysteine(247), in rat mercaptopyruvate sulfurtransferase by chloropyruvate as an analog of a substrate
Biochimie
86
723-729
2004
Rattus norvegicus
brenda
Nagahara, N.; Katayama, A.
Post-translational regulation of mercaptopyruvate sulfurtransferase via a low redox potential cysteine-sulfenate in the maintenance of redox homeostasis
J. Biol. Chem.
280
34569-34576
2005
Rattus norvegicus
brenda
Wrobel, M.; Jurkowska, H.
Menadione effect on L-cysteine desulfuration in U373 cells
Acta Biochim. Pol.
54
407-411
2007
Homo sapiens
brenda
Iciek, M.; Marcinek, J.; Mleczko, U.; Wlodek, L.
Selective effects of diallyl disulfide, a sulfane sulfur precursor, in the liver and Ehrlich ascites tumor cells
Eur. J. Pharmacol.
569
1-7
2007
Mus musculus
brenda
Nagahara, N.; Yoshii, T.; Abe, Y.; Matsumura, T.
Thioredoxin-dependent enzymatic activation of mercaptopyruvate sulfurtransferase. An intersubunit disulfide bond serves as a redox switch for activation
J. Biol. Chem.
282
1561-1569
2007
Rattus norvegicus, Rattus norvegicus (P97532)
brenda
Billaut-Laden, I.; Rat, E.; Allorge, D.; Crunelle-Thibaut, A.; Cauffiez, C.; Chevalier, D.; Lo-Guidice, J.M.; Broly, F.
Evidence for a functional genetic polymorphism of the human mercaptopyruvate sulfurtransferase (MPST), a cyanide detoxification enzyme
Toxicol. Lett.
165
101-111
2006
Homo sapiens
brenda
Wrobel, M.; Lewandowska, I.; Bronowicka-Adamska, P.; Paszewski, A.
The level of sulfane sulfur in the fungus Aspergillus nidulans wild type and mutant strains
Amino Acids
37
565-571
2008
Aspergillus nidulans
brenda
Shibuya, N.; Tanaka, M.; Yoshida, M.; Ogasawara, Y.; Togawa, T.; Ishii, K.; Kimura, H.
3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain
Antioxid. Redox Signal.
11
703-714
2009
Mus musculus (Q99J99)
brenda
Nagahara, N.
A novel mercaptopyruvate sulfurtransferase thioredoxin-dependent redox-sensing molecular switch: a mechanism for the maintenance of cellular redox equilibrium
Mini Rev. Med. Chem.
8
585-589
2008
Rattus norvegicus (P97532)
brenda
Shibuya, N.; Mikami, Y.; Kimura, Y.; Nagahara, N.; Kimura, H.
Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide
J. Biochem.
146
623-626
2009
Rattus norvegicus
brenda
Westrop, G.D.; Georg, I.; Coombs, G.H.
The mercaptopyruvate sulfurtransferase of Trichomonas vaginalis links cysteine catabolism to the production of thioredoxin persulfide
J. Biol. Chem.
284
33485-33494
2009
Trichomonas vaginalis
brenda
Jurkowska, H.; Placha, W.; Nagahara, N.; Wrobel, M.
The expression and activity of cystathionine-gamma-lyase and 3-mercaptopyruvate sulfurtransferase in human neoplastic cell lines
Amino Acids
41
151-158
2011
Homo sapiens
brenda
Nagahara, N.
Regulation of mercaptopyruvate sulfurtransferase activity via intrasubunit and intersubunit redox-sensing switches
Antioxid. Redox Signal.
19
1792-1802
2013
Mus musculus, Rattus norvegicus
brenda
Mikami, Y.; Shibuya, N.; Ogasawara, Y.; Kimura, H.
Hydrogen sulfide is produced by cystathionine gamma-lyase at the steady-state low intracellular Ca2+ concentrations
Biochem. Biophys. Res. Commun.
431
131-135
2013
Rattus norvegicus
brenda
Modis, K.; Asimakopoulou, A.; Coletta, C.; Papapetropoulos, A.; Szabo, C.
Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway
Biochem. Biophys. Res. Commun.
433
401-407
2013
Mus musculus
brenda
Mikami, Y.; Shibuya, N.; Kimura, Y.; Nagahara, N.; Ogasawara, Y.; Kimura, H.
Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide
Biochem. J.
439
479-485
2011
Mus musculus
brenda
Tanizawa, K.
Production of H2S by 3-mercaptopyruvate sulphurtransferase
J. Biochem.
149
357-359
2011
Homo sapiens
brenda
Yadav, P.K.; Yamada, K.; Chiku, T.; Koutmos, M.; Banerjee, R.
Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase
J. Biol. Chem.
288
20002-20013
2013
Homo sapiens (P25325), Homo sapiens
brenda
Modis, K.; Coletta, C.; Erdelyi, K.; Papapetropoulos, A.; Szabo, C.
Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics
FASEB J.
27
601-611
2013
Mus musculus (Q99J99), Mus musculus
brenda
Singh, P.; Rao, P.; Bhattacharya, R.
Dose and time-dependent effects of cyanide on thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine lambda-lyase activities
J. Biochem. Mol. Toxicol.
27
499-507
2013
Mus musculus (Q99J99)
brenda
Fraesdorf, B.; Radon, C.; Leimkuehler, S.
Characterization and interaction studies of two isoforms of the dual localized 3-mercaptopyruvate sulfurtransferase TUM1 from humans
J. Biol. Chem.
289
34543-34556
2014
Homo sapiens (P25325), Homo sapiens
brenda
Miyamoto, R.; Otsuguro, K.; Yamaguchi, S.; Ito, S.
Contribution of cysteine aminotransferase and mercaptopyruvate sulfurtransferase to hydrogen sulfide production in peripheral neurons
J. Neurochem.
130
29-40
2014
Rattus norvegicus (P97532)
brenda
Nagahara, N.; Nagano, M.; Ito, T.; Suzuki, H.
Redox regulation of mammalian 3-mercaptopyruvate sulfurtransferase
Methods Enzymol.
554
229-254
2015
Rattus norvegicus (P97532)
brenda
Zhao, H.; Chan, S.J.; Ng, Y.K.; Wong, P.T.
Brain 3-mercaptopyruvate sulfurtransferase (3MST): cellular localization and downregulation after acute stroke
PLoS ONE
8
e67322
2013
Rattus norvegicus (P97532)
brenda
Nagahara, N.; Nagano, M.; Ito, T.; Shimamura, K.; Akimoto, T.; Suzuki, H.
Antioxidant enzyme, 3-mercaptopyruvate sulfurtransferase-knockout mice exhibit increased anxiety-like behaviors: a model for human mercaptolactate-cysteine disulfiduria
Sci. Rep.
3
1986
2013
Mus musculus (Q99J99)
brenda
Kimura, Y.; Toyofuku, Y.; Koike, S.; Shibuya, N.; Nagahara, N.; Lefer, D.; Ogasawara, Y.; Kimura, H.
Identification of H2S3 and H2S produced by 3-mercaptopyruvate sulfurtransferase in the brain
Sci. Rep.
5
14774
2015
Mus musculus (Q99J99)
brenda
Lec, J.; Boutserin, S.; Mazon, H.; Mulliert, G.; Boschi-Muller, S.; Talfournier, F.
Unraveling the mechanism of cysteine persulfide formation catalyzed by 3-mercaptopyruvate sulfurtransferases
ACS Catal.
8
2049-2059
2018
Escherichia coli, Homo sapiens (P25325), Escherichia coli DH5alpha
-
brenda
Nagahara, N.; Koike, S.; Nirasawa, T.; Kimura, H.; Ogasawara, Y.
Alternative pathway of H2S and polysulfides production from sulfurated catalytic-cysteine of reaction intermediates of 3-mercaptopyruvate sulfurtransferase
Biochem. Biophys. Res. Commun.
496
648-653
2018
Rattus norvegicus (P97532)
brenda
Panagaki, T.; Randi, E.B.; Szabo, C.
Role of 3-mercaptopyruvate sulfurtransferase in the regulation of proliferation and cellular bioenergetics in human Down syndrome fibroblasts
Biomolecules
10
653
2020
Homo sapiens (P25325), Homo sapiens
brenda
Abdollahi Govar, A.; Toero, G.; Szaniszlo, P.; Pavlidou, A.; Bibli, S.I.; Thanki, K.; Resto, V.A.; Chao, C.; Hellmich, M.R.; Szabo, C.; Papapetropoulos, A.; Modis, K.
3-Mercaptopyruvate sulfurtransferase supports endothelial cell angiogenesis and bioenergetics
Br. J. Pharmacol.
177
866-883
2020
Homo sapiens (P25325), Homo sapiens
brenda
Zuhra, K.; Tome, C.S.; Masi, L.; Giardina, G.; Paulini, G.; Malagrino, F.; Forte, E.; Vicente, J.B.; Giuffre, A.
N-acetylcysteine serves as substrate of 3-mercaptopyruvate sulfurtransferase and stimulates sulfide metabolism in colon cancer cells
Cells
8
828
2019
Homo sapiens (P25325), Homo sapiens
brenda
Wang, J.; Guo, X.; Li, H.; Qi, H.; Qian, J.; Yan, S.; Shi, J.; Niu, W.
Hydrogen sulfide from cysteine desulfurase, not 3-mercaptopyruvate sulfurtransferase, contributes to sustaining cell growth and bioenergetics in E. coli under anaerobic conditions
Front. Microbiol.
10
2357
2019
Escherichia coli, Escherichia coli BW25113
brenda
Bronowicka-Adamska, P.; Bentke, A.; Lasota, M.; Wrobel, M.
Effect of S-allyl-L-cysteine on MCF-7 cell line 3-mercaptopyruvate sulfurtransferase/sulfane sulfur system, viability and apoptosis
Int. J. Mol. Sci.
21
1090
2020
Homo sapiens (P25325), Homo sapiens
brenda
Yadav, P.; Vitvitsky, V.; Carballal, S.; Seravalli, J.; Banerjee, R.
Thioredoxin regulates human mercaptopyruvate sulfurtransferase at physiologically-relevant concentrations
J. Biol. Chem.
295
6299-6310
2020
Homo sapiens (P25325), Homo sapiens, Mus musculus (Q99J99), Mus musculus
brenda
Tomita, M.; Nagahara, N.; Ito, T.
Expression of 3-mercaptopyruvate sulfurtransferase in the mouse
Molecules
21
1707
2016
Mus musculus (Q99J99), Mus musculus
brenda
Hoefler, S.; Lorenz, C.; Busch, T.; Brinkkoetter, M.; Tohge, T.; Fernie, A.R.; Braun, H.P.; Hildebrandt, T.M.
Dealing with the sulfur part of cysteine four enzymatic steps degrade l-cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria
Physiol. Plant.
157
352-366
2016
Arabidopsis thaliana (O64530)
brenda
Kimura, Y.; Koike, S.; Shibuya, N.; Lefer, D.; Ogasawara, Y.; Kimura, H.
3-Mercaptopyruvate sulfurtransferase produces potential redox regulators cysteine- and glutathione-persulfide (Cys-SSH and GSSH) together with signaling molecules H2S2, H2S3 and H2S
Sci. Rep.
7
10459
2017
Mus musculus (Q99J99)
brenda
Hanaoka, K.; Sasakura, K.; Suwanai, Y.; Toma-Fukai, S.; Shimamoto, K.; Takano, Y.; Shibuya, N.; Terai, T.; Komatsu, T.; Ueno, T.; Ogasawara, Y.; Tsuchiya, Y.; Watanabe, Y.; Kimura, H.; Wang, C.; Uchiyama, M.; Kojima, H.; Okabe, T.; Urano, Y.; Shimizu, T.; Nagano, T.
Discovery and mechanistic characterization of selective inhibitors of H2S-producing enzyme 3-mercaptopyruvate sulfurtransferase (3MST) targeting active-site cysteine persulfide
Sci. Rep.
7
40227
2017
Homo sapiens (P25325)
brenda
Meza, A.; Cambui, C.; Moreno, A.; Fessel, M.; Balan, A.
Mycobacterium tuberculosis CysA2 is a dual sulfurtransferase with activity against thiosulfate and 3-mercaptopyruvate and interacts with mammalian cells
Sci. Rep.
9
16791
2019
Mycobacterium tuberculosis (P9WHF9), Mycobacterium tuberculosis H37Rv (P9WHF9)
brenda