Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 2.7.7.85 - diadenylate cyclase and Organism(s) Bacillus subtilis and UniProt Accession P37573

for references in articles please use BRENDA:EC2.7.7.85
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     2 Transferases
         2.7 Transferring phosphorus-containing groups
             2.7.7 Nucleotidyltransferases
                2.7.7.85 diadenylate cyclase
IUBMB Comments
Cyclic di-3',5'-adenylate is a bioactive molecule produced by some bacteria and archaea, which may function as a secondary signalling molecule . The intracellular bacterial pathogen Listeria monocytogenes secretes it into the host's cytosol, where it triggers a cytosolic pathway of innate immunity .
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Bacillus subtilis
UNIPROT: P37573
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Bacillus subtilis
The expected taxonomic range for this enzyme is: Bacteria, Archaea
Synonyms
diadenylate cyclase, dna integrity scanning protein, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
DNA integrity scanning protein DisA
-
Cyclic di-AMP synthase
cyclic-di-AMP synthase
-
-
-
-
SYSTEMATIC NAME
IUBMB Comments
ATP:ATP adenylyltransferase (cyclizing)
Cyclic di-3',5'-adenylate is a bioactive molecule produced by some bacteria and archaea, which may function as a secondary signalling molecule [1]. The intracellular bacterial pathogen Listeria monocytogenes secretes it into the host's cytosol, where it triggers a cytosolic pathway of innate immunity [2].
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
2 ATP
2 diphosphate + cyclic di-3',5'-adenylate
show the reaction diagram
-
-
-
?
2 ATP
2 diphosphate + cyclic di-3',5'-adenylate
show the reaction diagram
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
2 ATP
2 diphosphate + cyclic di-3',5'-adenylate
show the reaction diagram
-
-
-
?
2 ATP
2 diphosphate + cyclic di-3',5'-adenylate
show the reaction diagram
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
3'-deoxyATP
cordycepin triphosphate
cordycepin
3'-deoxy adenosine
GlmM
binds directly to enzyme CdaA in the CdaA-CdaR-GlmM protein complex
-
Tannic acid
-
inhibits both DisA and phosphodiesterase YybT
theaflavin-3'-gallate
-
specifically inhibits DisA but not phosphodiesterase YybT
theaflavin-3,3'-digallate
-
specifically inhibits DisA but not phosphodiesterase YybT
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
CdaR
binds directly to enzyme CdaA in the CdaA-CdaR-GlmM protein complex
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0236
theaflavin-3'-gallate
Bacillus subtilis
-
pH 7.5, 30°C
0.0085
theaflavin-3,3'-digallate
Bacillus subtilis
-
pH 7.5, 30°C
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
-
SwissProt
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
evolution
most bacteria possess only one diadenylate cyclase, either CdaA or DisA. In contrast, the spore-forming Gram-positive model organism Bacillus subtilis has the three enzymes, DisA, CdaA, and CdaS. The presence of three diadenylate cyclases is limited to members of the spore-forming genus Bacillus
malfunction
none of the corresponding genes is essential, but a strain lacking both DisA and CdaA is not viable under standard laboratory conditions
metabolism
CdaS is unable to replace the other enzymes since it is expressed only late during sporulation in the forespore but not in growing cells
physiological function
in the diadenylate cyclases, one type of catalytic domain, the diadenylate cyclase (DAC) domain, is coupled to various other domains that control the localization, the protein-protein interactions, and the regulation of the enzymes. None of the corresponding genes is essential
evolution
most bacteria possess only one diadenylate cyclase, either CdaA or DisA. In contrast, the spore-forming Gram-positive model organism Bacillus subtilis has the three enzymes, DisA, CdaA, and CdaS. The presence of three diadenylate cyclases is limited to members of the spore-forming genus Bacillus
malfunction
none of the corresponding genes is essential, but a strain lacking both DisA and CdaA is not viable under standard laboratory conditions
metabolism
physiological function
additional information
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
300000
gel filtration
42900
8 * 42900
167000
and 37000 and 17000 Da, gel filtration
17000
and 37000 and 167000 Da, gel filtration
37000
and 167000 and 17000 Da, gel filtration
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
octamer
8 * 42900
dimer
2 * 23000, calculated, plus hexamer and monomer
hexamer
6 * 23000, calculated, plus monomer and dimer
homodimer
the dimer-forming CdaA contains three transmembrane domains with the DAC domain (Dis_N Pfam PF02457) located intracellularly, while CdaR contains one transmembrane domain and several YbbR domains (Pfam PF07949) predicted to be located extracellularly
monomer
1 * 23000, calculated, plus hexamer and dimer
additional information
the DAC enzyme is organized in the CdaA-CdaR-GlmM protein complex
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
A61V
11.6fold increase in cyclic di-AMP production
A76V
4.3fold increase in cyclic di-AMP production
E46K
19.5fold increase in cyclic di-AMP production
L44F
90.5fold increase in cyclic di-AMP production
P201Q
12.8fold increase in cyclic di-AMP production
additional information
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expression in Escherichia coli
cdaA and cdaS genes are cloned into the expression vector pET28a, expression in Escherichia coli
-
gene cdaA, genetic organization of CdaA, CdaR, and GlmM encoding genes
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Mehne, F.M.; Gunka, K.; Eilers, H.; Herzberg, C.; Kaever, V.; Stuelke, J.
Cyclic di-AMP homeostasis in Bacillus subtilis: both lack and high level accumulation of the nucleotide are detrimental for cell growth
J. Biol. Chem.
288
2004-2017
2013
Bacillus subtilis, Bacillus subtilis 168
Manually annotated by BRENDA team
Witte, G.; Hartung, S.; Buettner, K.; Hopfner, K.P.
Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates
Mol. Cell
30
167-178
2008
Bacillus subtilis (P37573), Bacillus subtilis, Thermotoga maritima (Q9WY43)
Manually annotated by BRENDA team
Gundlach, J.; Mehne, F.M.; Herzberg, C.; Kampf, J.; Valerius, O.; Kaever, V.; Stuelke, J.
An essential poison: synthesis and degradation of cyclic di-AMP in Bacillus subtilis
J. Bacteriol.
197
3265-3274
2015
Bacillus subtilis (Q45589), Bacillus subtilis, Bacillus subtilis 168 (Q45589)
Manually annotated by BRENDA team
Mehne, F.M.; Schroeder-Tittmann, K.; Eijlander, R.T.; Herzberg, C.; Hewitt, L.; Kaever, V.; Lewis, R.J.; Kuipers, O.P.; Tittmann, K.; Stuelke, J.
Control of the diadenylate cyclase CdaS in Bacillus subtilis: an autoinhibitory domain limits cyclic di-AMP production
J. Biol. Chem.
289
21098-21107
2014
Bacillus subtilis (O31854), Bacillus subtilis, Bacillus subtilis 168 (O31854)
Manually annotated by BRENDA team
Opoku-Temeng, C.; Sintim, H.O.
Inhibition of cyclic diadenylate cyclase, DisA, by polyphenols
Sci. Rep.
6
25445
2016
Bacillus subtilis
Manually annotated by BRENDA team
Pham, T.H.; Liang, Z.X.; Marcellin, E.; Turner, M.S.
Replenishing the cyclic-di-AMP pool regulation of diadenylate cyclase activity in bacteria
Curr. Genet.
62
731-738
2016
Bacillus amyloliquefaciens (A0A0D7XMK3), Bacillus anthracis (A0A2A8KZ47), Bacillus licheniformis (Q65P49), Bacillus licheniformis ATCC 14580 (Q65P49), Bacillus licheniformis DSM 13 (Q65P49), Bacillus licheniformis Gibson 46 (Q65P49), Bacillus licheniformis JCM 2505 (Q65P49), Bacillus licheniformis NBRC 12200 (Q65P49), Bacillus licheniformis NCIMB 9375 (Q65P49), Bacillus licheniformis NRRL NRS-1264 (Q65P49), Bacillus subtilis (Q45589), Bacillus subtilis 168 (Q45589), Clostridium botulinum (A0A0C2N691), Clostridium ljungdahlii (D8GIJ7), Clostridium ljungdahlii ATCC 55383 (D8GIJ7), Clostridium ljungdahlii DSM 13528 (D8GIJ7), Clostridium ljungdahlii PETC (D8GIJ7), Clostridium novyi (A0PXZ3), Clostridium novyi NT (A0PXZ3), Clostridium perfringens (A0A0H2YU52), Clostridium perfringens DSM 756 (A0A0H2YU52), Clostridium perfringens JCM 1290 (A0A0H2YU52), Clostridium perfringens NCIMB 6125 (A0A0H2YU52), Clostridium perfringens NCTC 8237 (A0A0H2YU52), Clostridium perfringens type A (A0A0H2YU52), Enterococcus faecalis (A0A2Z6BU13), Enterococcus faecalis ERV62 (A0A2Z6BU13), Geobacter sulfurreducens (Q74EU1), Geobacter sulfurreducens ATCC 51573 (Q74EU1), Geobacter sulfurreducens PCA (Q74EU1), Lacticaseibacillus rhamnosus (A0A2A5L6R6), Lacticaseibacillus rhamnosus ATCC 8530 (A0A2A5L6R6), Lactobacillus acidophilus (Q5FL37), Lactobacillus acidophilus ATCC 700396 (Q5FL37), Lactobacillus acidophilus N2 (Q5FL37), Lactobacillus acidophilus NCFM (Q5FL37), Lactobacillus acidophilus NCK56 (Q5FL37), Lactococcus cremoris (A2RIF7), Lactococcus cremoris (Q031P4), Lactococcus cremoris MG1363 (A2RIF7), Lactococcus cremoris Sk11 (Q031P4), Listeria monocytogenes EGD (Q8Y5E4), Listeria monocytogenes EGD ATCC BAA-679 (Q8Y5E4), Listeria monocytogenes EGD EGD-e (Q8Y5E4), Staphylococcus aureus (Q2FW92), Staphylococcus aureus NCTC 8325 (Q2FW92), Staphylococcus aureus PS 47 (Q2FW92), Streptococcus equi subsp. zooepidemicus (A0A2X3T317), Streptococcus mutans serotype c (Q8DTC4), Streptococcus mutans serotype c ATCC 700610 (Q8DTC4), Streptococcus mutans serotype c UA159 (Q8DTC4), Streptococcus pneumoniae (A0A0B7L730), Streptococcus pneumoniae ATCC 700669 (A0A0B7L730), Streptococcus pyogenes serotype M2 (Q1JH51), Streptococcus pyogenes serotype M2 MGAS10270 (Q1JH51), Tetragenococcus halophilus (G4L7W3), Tetragenococcus halophilus DSM 20338 (G4L7W3), Tetragenococcus halophilus JCM 20259 (G4L7W3), Tetragenococcus halophilus NBRC 12172 (G4L7W3), Tetragenococcus halophilus NCIMB 9735 (G4L7W3), Geobacter sulfurreducens DSM 12127 (Q74EU1)
Manually annotated by BRENDA team
Commichau, F.M.; Heidemann, J.L.; Ficner, R.; Stuelke, J.
Making and breaking of an essential poison the cyclases and phosphodiesterases that produce and degrade the essential second messenger cyclic di-AMP in bacteria
J. Bacteriol.
201
e00462-18
2019
Bacillus subtilis (A0A6M3Z9Z6), Bacillus subtilis (O31854), Bacillus subtilis (P37573), Bacillus subtilis 168 (A0A6M3Z9Z6), Bacillus subtilis 168 (O31854), Bacillus subtilis 168 (P37573), Listeria monocytogenes EGD (Q8Y5E4), Listeria monocytogenes EGD ATCC BAA-679 (Q8Y5E4), Listeria monocytogenes EGD EGD-e (Q8Y5E4), Mycoplasma pneumoniae (P75528), Mycoplasma pneumoniae ATCC 29342 (P75528), Mycoplasma pneumoniae M129 (P75528), Staphylococcus aureus (Q9RL70), Streptococcus pneumoniae (A0A0B7L730)
Manually annotated by BRENDA team