Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 2.7.7.6 - DNA-directed RNA polymerase and Organism(s) Escherichia coli and UniProt Accession P0A8V2

for references in articles please use BRENDA:EC2.7.7.6
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     2 Transferases
         2.7 Transferring phosphorus-containing groups
             2.7.7 Nucleotidyltransferases
                2.7.7.6 DNA-directed RNA polymerase
IUBMB Comments
Catalyses DNA-template-directed extension of the 3'- end of an RNA strand by one nucleotide at a time. Can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. See also EC 2.7.7.19 (polynucleotide adenylyltransferase) and EC 2.7.7.48 (RNA-directed RNA polymerase).
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Escherichia coli
UNIPROT: P0A8V2 not found.
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Escherichia coli
The enzyme appears in selected viruses and cellular organisms
Synonyms
rna polymerase ii, pol ii, t7 rna polymerase, rna polymerase i, pol iii, rna polymerase iii, pol i, rnapii, rnap ii, dna-dependent rna polymerase, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
C RNA formation factors
-
-
-
-
chloroplast soluble RNA polymerase
-
-
-
-
deoxyribonucleic acid-dependent ribonucleic acid polymerase
-
-
-
-
DNA-dependent ribonucleate nucleotidyltransferase
-
-
-
-
DNA-dependent RNA nucleotidyltransferase
-
-
-
-
DNA-dependent RNA polymerase
nucleotidyltransferase, ribonucleate
-
-
-
-
Pol II
pol III
-
-
ribonucleate nucleotidyltransferase
-
-
-
-
ribonucleate polymerase
-
-
-
-
ribonucleic acid formation factors, C
-
-
-
-
ribonucleic acid nucleotidyltransferase
-
-
-
-
ribonucleic acid polymerase
-
-
-
-
ribonucleic acid transcriptase
-
-
-
-
ribonucleic polymerase
-
-
-
-
ribonucleic transcriptase
-
-
-
-
RNA formation factors, C
-
-
-
-
RNA nucleotidyltransferase
-
-
-
-
RNA nucleotidyltransferase (DNA-directed)
-
-
-
-
RNA polymerase
RNA polymerase I
-
-
-
-
RNA polymerase II
-
-
-
-
RNA polymerase III
-
-
-
-
RNA transcriptase
-
-
-
-
RNAP I
-
-
-
-
RNAP II
-
-
-
-
RNAP III
-
-
-
-
RNAP sigma70
-
-
sigma38 RNA polymerase
-
-
sigmaS-containing RNA polymerase
-
-
transcriptase
-
-
-
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
nucleotidyl group transfer
-
-
-
-
SYSTEMATIC NAME
IUBMB Comments
nucleoside-triphosphate:RNA nucleotidyltransferase (DNA-directed)
Catalyses DNA-template-directed extension of the 3'- end of an RNA strand by one nucleotide at a time. Can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. See also EC 2.7.7.19 (polynucleotide adenylyltransferase) and EC 2.7.7.48 (RNA-directed RNA polymerase).
CAS REGISTRY NUMBER
COMMENTARY hide
9014-24-8
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
d(Ap4T) + RNAn
?
show the reaction diagram
-
primer elongation
-
-
?
d(TP4C) + RNAn
?
show the reaction diagram
-
primer elongation
-
-
?
d(Tp4G) + RNAn
?
show the reaction diagram
-
primer elongation
-
-
?
d(Tp4T) + RNAn
?
show the reaction diagram
-
primer elongation
-
-
?
dTTP + RNAn
?
show the reaction diagram
-
primer elongation
-
-
?
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
show the reaction diagram
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
nucleoside triphosphate + RNAn
diphosphate + RNAn+1
show the reaction diagram
additional information
?
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
K+
-
activates
Zinc
-
a conserved zinc binding domain in the largest subunit of DNA-dependent RNA polymerase modulates intrinsic transcription termination and antitermination but does not stabilize the elongation complex
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(S)-2-((1-amino-1-oxo-3-phenylpropan-2-ylamino)methyl)-3-(4-amino phenoxy)-5-methoxy phenyl acetate
-
-
(S)-2-((1-amino-1-oxo-3-phenylpropan-2-ylamino)methyl)-5-methoxy-3-(4-nitrophenoxy)phenyl acetate
-
-
(S)-2-((1-amino-3-(4-hydroxyphenyl)-1-oxopropan-2-ylamino)methyl)-3-(4-aminophenoxy)-5-methoxyphenyl acetate
-
-
(S)-2-((1-amino-3-(4-hydroxyphenyl)-1-oxopropan-2-ylamino)methyl)-5-methoxy-3-(4-nitrophenoxy)phenyl acetate
-
-
1,3-dimethoxy-5-(4-nitrophenoxy) benzene
-
-
1-[2-[3-(4-Chloro-3-trifluoromethylphenyl)ureido]-4-trifluoromethyl phenoxy]-4,5-dichlorobenzene sulfonic acid
-
-
2,4-dimethoxy-6-(4-nitrophenoxy) benzaldehyde
-
-
2-([[(1S)-2-amino-1-(4-hydroxybenzyl)-2-oxoethyl]amino]methyl)-5-methoxy-3-(4-nitrophenoxy)phenyl acetate
-
-
2-acetyl-3-hydroxy-5-methoxyphenyl acetate
-
-
2-acetyl-5-methoxy-3-(4-nitrophenoxy)phenyl acetate
-
-
2-formyl-5-methoxy-3-(4-nitrophenoxy)phenyl acetate
-
-
2-hydroxy-4-methoxy-6-(4-nitrophenoxy) benzaldehyde
-
-
4-[2-([[(1S)-2-amino-1-(4-hydroxybenzyl)ethyl]amino]methyl)-5-methoxy-3-(2-oxopropyl)benzyl]benzaldehyde
-
-
ABI-1131
-
-
actinomycin
-
-
amanitin
-
-
aureolic acid
-
-
CBR-703
-
-
CBR703
-
the IC50s values are significantly decreased with template Kool NC-45, or increased with template poly(dA-dT)
chromomycin
-
-
Cinerubin B
-
-
corallopyronin
-
inhibition is not affected by template Kool NC-45
corallopyronin A
-
-
Cordycepin triphosphate
-
-
d(Ap4C)
-
d(Ap4T), d(Ap4C) and d(Ap4G) inhibit the incorporation of dATP into DNA less effectively than d(Ap4T), d(Tp4T) and d(Tp4C) the dTTP incorporation
d(Ap4G)
-
d(Ap4T), d(Ap4C) and d(Ap4G) inhibit the incorporation of dATP into DNA less effectively than d(Ap4T), d(Tp4T) and d(Tp4C) the dTTP incorporation
d(Ap4T)
-
d(Ap4T), d(Ap4C) and d(Ap4G) inhibit the incorporation of dATP into DNA less effectively than d(Ap4T), d(Tp4T) and d(Tp4C) the dTTP incorporation
d(Tp4C)
-
d(Ap4T), d(Ap4C) and d(Ap4G) inhibit the incorporation of dATP into DNA less effectively than d(Ap4T), d(Tp4T) and d(Tp4C) the dTTP incorporation
d(Tp4T)
-
d(Ap4T), d(Ap4C) and d(Ap4G) inhibit the incorporation of dATP into DNA less effectively than d(Ap4T), d(Tp4T) and d(Tp4C) the dTTP incorporation
daunomycin
-
-
echinomycin
-
-
Eruticulomycin A
-
-
-
Ethidium bromide
-
-
etnangien
-
from the myxobacterium Sorangium cellulosum, a poly-unsaturated 22-membered polyketide macrolide, inhibits bacterial RNA polymerase, shows no cross-resistance to rifampicin, poor inhibition
etnangien methyl ester
-
weak inhibition
Exotoxin of Bacillus thuringiensis
-
-
-
GE-23077-A
-
-
GE-23077-B
-
-
heparin
-
-
Isoquinocyclin
-
-
-
lipiarmycin
-
-
myxopyronin
-
an alpha-pyrone antibiotic, targets the RNAP switch region, which is the hinge that mediates opening and closing of the RNAP active-center cleft. Lower values for inhibition by myxopyronin in the presence of template Kool NC-45
myxopyronin A
-
-
Nogalamycin
-
-
Olivomycin
-
-
proflavin sulfate
-
-
protein gp76
-
the Thermus phage protein gp76 inhibits Escherichia coli RNAP highlighting the template-DNA binding site as a target site for developing antibacterial agents
-
RBL-1
-
oligonucleotide, efficiently inhibits
-
rifabutin
-
-
rifalazil
-
-
rifampicin
-
-
ripostatin A
-
-
sorangicin A
-
-
Streptolydigin
-
-
streptovaricin
-
-
ureidothiophene
-
-
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
glutamate
-
glutamate remodels the sigma38 transcription complex for activation. Accumulation of the simple signaling molecule glutamate can reprogram RNA polymerase in vitro without the need for specific protein receptors. During osmotic activation, glutamate appears to act as a Hofmeister series osmolyte to facilitate promoter escape. Escape is accompanied by a remodeling of the key interaction between the sigma38 stress protein and the beta-flap of the bacterial core RNA polymerase. This activation event contrasts with the established mechanism of inhibition in which glutamate, by virtue of its electrostatic properties, helps to inhibit binding to ribosomal promoters after osmotic shock
histone-like nucleoid structuring protein
-
i.e. H-NS, H-NS stimulates transcription from the F3 fragment, it can facilitate specific DNA-binding by RNA polymerase in AT-rich gene regulatory regions. Correct positioning of RNA polymerase at PehxCABD requires H-NS. Footprint of RNA polymerase (s70 RC461-FeBABE) interactions with -10 elements in the ehxCABD regulatory region in the presence of H-NS, overview
-
potassium acetate
-
activates
potassium aspartate
-
activates
potassium chloride
-
activates
potassium glutamate
-
activates highly, role of potassium ion in the activation of osmotic transcription
potassium nitrate
-
activates
Rho
-
in response to the Rho termination factor, RNA synthesis ceases and the completed transcript is released
-
sigma factor
-
a dissociable specificity sigma factor, regulated by factors such as anti-sigma factors, which can sequester r factors and prevent core association, and possibly by factors that enhance sigma-core association
-
sigma70
-
the sigma factor increases the transcription efficiency of templates with nonphysiological nonprokaryotic promoters
-
additional information
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.00211
d(Ap4T)
-
-
0.00222
d(Tp4C)
-
-
0.00174
d(Tp4G)
-
-
0.00072
d(Tp4T)
-
-
0.0004
dTTP
-
-
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
-
assay for RNA polymerase activity that uses the dye RiboGreen to detect transcripts by fluorescence and is thus free of the expense, short shelf life, and high handling costs of radioisotopes. The method is relatively quick and can be performed entirely in microplate formate, allowing for the processing of dozens to hundreds of samples in parallel
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
7.9
-
assay at
8
-
assay at
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
drug target
-
the template-DNA binding site is a target site for developing antibacterial agents
malfunction
-
reverse translocation, i.e. backtracking, by a distance of one or more nucleotides disrupts the configuration of the catalytic center, leading to a temporary, spontaneously resolved, halt of the RNAP, called pausing, or to a transition into an irreversible arrested state. The latter can be restored to functionality by the endonucleolytic cleavage of the RNA or by pushing the backtracked complex from behind. Non-backtracked paused complexes are also described for bacterial RNAPs, where addition of the incoming NTP is hindered owing to isomerization of the active site into an inactive conformation
physiological function
additional information
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
A0A8F9BTL5_ECOLX
1407
0
155145
TrEMBL
-
A0A2A6Q1M6_ECOLX
1407
0
155130
TrEMBL
-
A0A0K4G266_ECOLX
1342
0
150582
TrEMBL
-
A0A8H1QVC1_ECOLX
329
0
36454
TrEMBL
-
A0A224AJL0_ECOLX
323
0
35262
TrEMBL
-
A0A037Y7Y9_ECOLX
379
0
40119
TrEMBL
-
A0A376TPF1_ECOLX
216
0
24232
TrEMBL
-
A0A376RC51_ECOLX
44
0
4904
TrEMBL
-
A0A2X1KBQ0_ECOLX
143
0
16460
TrEMBL
-
A0A7A3BXW2_ECOLX
1407
0
155150
TrEMBL
-
A0A2U2V486_ECOLX
1342
0
150648
TrEMBL
-
A0A377A8J6_ECOLX
512
0
58266
TrEMBL
-
A0A224AIV5_ECOLX
323
0
35193
TrEMBL
-
A0A4C4JKH4_ECOLX
329
0
36539
TrEMBL
-
A0A377CE41_ECOLX
46
0
5467
TrEMBL
-
A0A377D258_ECOLX
73
0
8591
TrEMBL
-
G9J641_ECOLX
75
0
8295
TrEMBL
-
A0A0B5HLZ9_ECOLX
1342
0
150574
TrEMBL
-
A0A1Y2Y006_ECOLX
1407
0
155159
TrEMBL
-
W0U189_ECOLX
183
0
20238
TrEMBL
-
A0A376J7T1_ECOLX
1219
0
136253
TrEMBL
-
A0A447Y4P7_ECOLX
392
0
44093
TrEMBL
-
A0A2X1NBC1_ECOLX
64
0
7125
TrEMBL
-
A0A2X1NZN0_ECOLX
94
0
10179
TrEMBL
-
A0A2W6PFY7_ECOLX
1367
0
150762
TrEMBL
-
A0A376VSK3_ECOLX
238
0
26760
TrEMBL
-
A0A6D0ZP72_ECOLX
145
0
16104
TrEMBL
-
A0A376KII4_ECOLX
44
0
4756
TrEMBL
-
A0A826TUI6_ECOLX
1342
0
150577
TrEMBL
-
A0A8H0PKA1_ECOLX
1342
0
150646
TrEMBL
-
A0A6N9SE70_ECOLX
1342
0
150660
TrEMBL
-
A0A8I2WFE2_ECOLX
745
0
85102
TrEMBL
-
A0A376TPR3_ECOLX
84
0
9285
TrEMBL
-
A0A8B5LCT6_ECOLX
329
0
36468
TrEMBL
-
A0A3L0W0B5_ECOLX
1434
0
158199
TrEMBL
-
A0A2X3KPE0_ECOLX
183
0
19516
TrEMBL
-
A0A2X1KPT8_ECOLX
96
0
10920
TrEMBL
-
A0A2X1KCT9_ECOLX
243
0
27375
TrEMBL
-
A0A3L0W372_ECOLX
91
0
10015
TrEMBL
-
A0A4S1NBU2_ECOLX
1407
0
155192
TrEMBL
-
A0A376HNX4_ECOLX
1407
0
155183
TrEMBL
-
A0A6D0EV85_ECOLX
106
0
11943
TrEMBL
-
E1CBR6_ECOLX
1407
0
155190
TrEMBL
-
A0A376YGY0_ECOLX
216
0
25081
TrEMBL
-
A0A377JZI8_ECOLX
225
0
24725
TrEMBL
-
A0A376TNJ8_ECOLX
123
0
13915
TrEMBL
-
A0A8B5R9U8_ECOLX
92
0
10194
TrEMBL
-
A0A2J1D5D1_ECOLX
141
0
15070
TrEMBL
-
A0A418GL53_ECOLX
424
0
48812
TrEMBL
-
A0A5P0PYK2_ECOLX
74
0
8828
TrEMBL
-
A0A376L6N8_ECOLX
548
0
62190
TrEMBL
-
A0A377D1C5_ECOLX
210
0
22818
TrEMBL
-
A0A6L9DSL4_ECOLX
474
0
54617
TrEMBL
-
A0A1M0D356_ECOLX
1407
0
155160
TrEMBL
-
A0A811VPV5_ECOLX
1407
0
155144
TrEMBL
-
A0A377BZ44_ECOLX
297
0
32977
TrEMBL
-
Q5K0B4_ECOLX
238
0
25910
TrEMBL
-
A0A376LGV2_ECOLX
1372
0
154091
TrEMBL
-
A0A659GYB8_ECOLX
1407
0
155218
TrEMBL
-
A0A2X1KCU3_ECOLX
124
0
13659
TrEMBL
-
A0A6D1ACQ6_ECOLX
91
0
9937
TrEMBL
-
A0A7U5TKW2_ECOLX
1407
0
155142
TrEMBL
-
A0A376LI37_ECOLX
141
0
16352
TrEMBL
-
A0A2X3KM22_ECOLX
65
0
7423
TrEMBL
-
A0A8G9NDK3_ECOLX
498
0
57312
TrEMBL
-
A0A376LF79_ECOLX
264
0
28502
TrEMBL
-
A0A377BPH2_ECOLX
185
0
21043
TrEMBL
-
A0A6L8ZA59_ECOLX
129
0
15122
TrEMBL
-
A0A377DCJ6_ECOLX
422
0
48690
TrEMBL
-
A0A6D0FD96_ECOLX
185
0
20876
TrEMBL
-
A0A023KIA3_ECOLX
212
0
23505
TrEMBL
-
A0A5B9AW69_ECOLX
329
0
36500
TrEMBL
-
A0A418GGK1_ECOLX
127
0
14828
TrEMBL
-
A0A418GK68_ECOLX
279
0
32332
TrEMBL
-
A0A854PIH6_ECOLX
329
0
36526
TrEMBL
-
A0A377BMY5_ECOLX
196
0
22115
TrEMBL
-
A0A8H2B9N5_ECOLX
129
0
14304
TrEMBL
-
A0A2X1KBN9_ECOLX
203
0
22676
TrEMBL
-
A0A1V2G1U2_ECOLX
474
0
54631
TrEMBL
-
A0A418GBE1_ECOLX
232
0
25874
TrEMBL
-
A0A2X1MUM2_ECOLX
199
0
22472
TrEMBL
-
A0A0A0GQ73_ECOLX
1353
0
151882
TrEMBL
-
A0A376NY51_ECOLX
92
0
10088
TrEMBL
-
A0A0K4K0L0_ECOLX
91
0
10150
TrEMBL
-
A0A0L6ZVJ1_ECOLX
1407
0
155160
TrEMBL
-
W8TB66_ECOLX
171
0
19254
TrEMBL
-
A0A827LA13_ECOLX
1407
0
155117
TrEMBL
-
A0A376Y0E2_ECOLX
78
0
8526
TrEMBL
-
A0A418GST6_ECOLX
69
0
7565
TrEMBL
-
A0A828J7I5_ECOLX
1407
0
155188
TrEMBL
-
A0A2J1D4U6_ECOLX
122
0
13282
TrEMBL
-
A0A2J1D481_ECOLX
104
0
11345
TrEMBL
-
A0A7X1T329_ECOLX
183
0
20401
TrEMBL
-
A0A484Y6V8_ECOLX
261
0
29127
TrEMBL
-
A0A377CBR8_ECOLX
73
0
8108
TrEMBL
-
A0A8F8ESX1_ECOLX
329
0
36542
TrEMBL
-
A0A1V2GF11_ECOLX
860
0
95136
TrEMBL
-
A0A376WV16_ECOLX
334
0
37241
TrEMBL
-
A0A4U9UAZ0_ECOLX
1407
0
155196
TrEMBL
-
A0A828G9T9_ECOLX
329
0
36512
TrEMBL
-
A0A377BMA0_ECOLX
71
0
7912
TrEMBL
-
W8GHM1_ECOLX
277
0
30402
TrEMBL
-
A0A5C9ALL3_ECOLX
1190
0
133503
TrEMBL
-
A0A5F1DLR8_ECOLX
1407
0
155161
TrEMBL
-
A0A826R7X7_ECOLX
91
0
10237
TrEMBL
-
A0A5E9S3A2_ECOLX
1342
0
150606
TrEMBL
-
C3SM87_ECOLX
91
0
10237
TrEMBL
-
A0A376TN50_ECOLX
164
0
17879
TrEMBL
-
A0A6C9Q8B2_ECOLX
1407
0
155114
TrEMBL
-
A0A377JZB3_ECOLX
111
0
12609
TrEMBL
-
A0A078BMN9_ECOLX
317
0
34502
TrEMBL
-
A0A377D0X8_ECOLX
146
0
15555
TrEMBL
-
A0A346GD04_ECOLX
1407
0
155130
TrEMBL
-
A0A0A0GWV9_ECOLX
1353
0
151886
TrEMBL
-
A0A6D0EPR5_ECOLX
99
0
10839
TrEMBL
-
A0A7X1T316_ECOLX
174
0
19656
TrEMBL
-
A0A377CC22_ECOLX
51
0
5897
TrEMBL
-
Q6TAH5_ECOLX
110
0
12250
TrEMBL
-
A0A6D0ZPE1_ECOLX
136
0
15046
TrEMBL
-
A0A8G1CBH8_ECOLX
1342
0
150690
TrEMBL
-
A0A5B9AXC3_ECOLX
91
0
10265
TrEMBL
-
A0A377KEV6_ECOLX
1107
0
120651
TrEMBL
-
A0A3L0W134_ECOLX
329
0
36195
TrEMBL
-
A0A376TSV3_ECOLX
132
0
14352
TrEMBL
-
A0A377D0V3_ECOLX
1015
0
113772
TrEMBL
-
A0A376TZF8_ECOLX
580
0
65779
TrEMBL
-
A0A0K4G280_ECOLX
1407
0
155128
TrEMBL
-
A0A1M2TX39_ECOLX
1407
0
155146
TrEMBL
-
A0A376TPP4_ECOLX
264
0
30873
TrEMBL
-
A0A078BNJ4_ECOLX
292
0
31849
TrEMBL
-
A0A447Y4T2_ECOLX
447
0
49202
TrEMBL
-
A0A2X1NTH9_ECOLX
895
0
96832
TrEMBL
-
A0A3A6TBE1_ECOLX
1342
0
150617
TrEMBL
-
A0A8G9L9Q1_ECOLX
1342
0
150647
TrEMBL
-
A0A377DEE0_ECOLX
911
0
99156
TrEMBL
-
A0A2X1KAM9_ECOLX
881
0
95397
TrEMBL
-
A0A376MMW4_ECOLX
99
0
10409
TrEMBL
-
A0A5B9AVC6_ECOLX
503
0
56598
TrEMBL
-
A0A8I0NMV8_ECOLX
1342
0
150708
TrEMBL
-
A0A376LFI8_ECOLX
433
0
49014
TrEMBL
-
A0A444RBV8_ECOLX
1012
0
112599
TrEMBL
-
A0A376L3J7_ECOLX
600
0
64611
TrEMBL
-
A0A376NZU9_ECOLX
422
0
48561
TrEMBL
-
A0A377CBI5_ECOLX
914
0
101293
TrEMBL
-
A0A2X1N4N8_ECOLX
702
0
75653
TrEMBL
-
A0A377D9S2_ECOLX
68
0
7493
TrEMBL
-
A0A6L9DQ07_ECOLX
646
0
71491
TrEMBL
-
A0A376L5A1_ECOLX
231
0
25465
TrEMBL
-
A0A2X1M777_ECOLX
67
0
7514
TrEMBL
-
A0A5D8M1Q8_ECOLX
1407
0
155160
TrEMBL
-
A0A377DBP7_ECOLX
304
0
33761
TrEMBL
-
A0A2X3K6U4_ECOLX
103
0
11428
TrEMBL
-
A0A7H9LNE3_ECOLX
1407
0
155128
TrEMBL
-
A0A8G8P3R8_ECOLX
1407
0
155156
TrEMBL
-
C3SIA7_ECOLX
1342
0
150632
TrEMBL
-
A0A377BMA2_ECOLX
224
0
24838
TrEMBL
-
A0A376U0T2_ECOLX
170
0
17863
TrEMBL
-
A0A8F7LPM8_ECOLX
883
0
98855
TrEMBL
-
A0A8H0MU61_ECOLX
1342
0
150646
TrEMBL
-
Q9R5V1_ECOLX
106
0
11578
TrEMBL
-
A0A7H9SEU9_ECOLX
1407
0
155132
TrEMBL
-
A0A376TNK0_ECOLX
1110
0
120717
TrEMBL
-
A0A2X1KCU9_ECOLX
123
0
13832
TrEMBL
-
A0A376VU55_ECOLX
426
0
49508
TrEMBL
-
A0A377KEI0_ECOLX
263
0
30248
TrEMBL
-
A0A2X1PUP0_ECOLX
118
0
13328
TrEMBL
-
A0A3A6T292_ECOLX
1342
0
150613
TrEMBL
-
A0A2S1P8V9_ECOLX
95
0
10462
TrEMBL
-
A0A418H0S0_ECOLX
136
0
15474
TrEMBL
-
A0A376MMZ2_ECOLX
313
0
34016
TrEMBL
-
A0A0K4VMU0_ECOLX
329
0
36498
TrEMBL
-
A0A2X1N431_ECOLX
1342
0
150618
TrEMBL
-
A0A377MT69_ECOLX
329
0
36498
TrEMBL
-
A0A376TZJ1_ECOLX
372
0
40370
TrEMBL
-
A0A2X1MCY3_ECOLX
84
0
9677
TrEMBL
-
A0A376YIH2_ECOLX
1171
0
127716
TrEMBL
-
A0A377D363_ECOLX
68
0
7749
TrEMBL
-
A0A826SK64_ECOLX
1407
0
155118
TrEMBL
-
A0A8F8W3K4_ECOLX
1342
0
150579
TrEMBL
-
A0A377D1D4_ECOLX
150
0
16653
TrEMBL
-
A0A377D9Q8_ECOLX
257
0
28485
TrEMBL
-
A0A377BN07_ECOLX
212
0
24084
TrEMBL
-
A0A2X3KIB2_ECOLX
148
0
15670
TrEMBL
-
A0A061YDR6_ECOLX
1407
0
155174
TrEMBL
-
A0A777XRF8_ECOLX
1342
0
150596
TrEMBL
-
E1CBR5_ECOLX
1342
0
150690
TrEMBL
-
A0A8G8PFB6_ECOLX
1342
0
150646
TrEMBL
-
A0A376TN94_ECOLX
77
0
8711
TrEMBL
-
A0A6D0ZSQ4_ECOLX
81
0
8898
TrEMBL
-
A0A5C9A7J4_ECOLX
174
0
19077
TrEMBL
-
A0A376LFA8_ECOLX
252
0
27561
TrEMBL
-
A0A7A2XQP6_ECOLX
1407
0
155174
TrEMBL
-
A0A2X3KKD8_ECOLX
828
0
91624
TrEMBL
-
A0A7D7HBZ3_ECOLX
1342
0
150634
TrEMBL
-
A0A377D0Z3_ECOLX
143
0
15683
TrEMBL
-
A0A444RBF4_ECOLX
356
0
41065
TrEMBL
-
A0A376TZX4_ECOLX
155
0
17485
TrEMBL
-
A0A377BNG1_ECOLX
302
0
34231
TrEMBL
-
A0A2J1D5R7_ECOLX
179
0
20333
TrEMBL
-
A0A0B5HQP6_ECOLX
1342
0
150662
TrEMBL
-
A0A2X1M763_ECOLX
200
0
21848
TrEMBL
-
G9J644_ECOLX
72
0
7953
TrEMBL
-
A0A0L6ZVX2_ECOLX
1342
0
150630
TrEMBL
-
A0A2U9KYU0_ECOLX
1407
0
155145
TrEMBL
-
A0A418GHI9_ECOLX
962
0
104052
TrEMBL
-
A0A377BWR9_ECOLX
40
0
4409
TrEMBL
-
A0A376SEY4_ECOLX
164
0
17924
TrEMBL
-
A0A376VSC9_ECOLX
280
0
31296
TrEMBL
-
A0A3S4KJ53_ECOLX
522
0
59719
TrEMBL
-
A0A8B4NJX9_ECOLX
163
0
18248
TrEMBL
-
M1FUZ4_ECOLX
175
0
19401
TrEMBL
-
A7LG97_ECOLX
167
0
18152
TrEMBL
-
A0A2K3TLC1_ECOLX
329
0
36544
TrEMBL
-
A0A4C4JJJ3_ECOLX
1342
0
150662
TrEMBL
-
A0A369F490_ECOLX
1407
0
155188
TrEMBL
-
A0A6C9DZ17_ECOLX
329
0
36443
TrEMBL
-
A0A2X3M7W4_ECOLX
642
0
73061
TrEMBL
-
G9J645_ECOLX
73
0
8067
TrEMBL
-
A0A376TN51_ECOLX
100
0
11533
TrEMBL
-
H6UYL7_ECOLX
1342
0
150579
TrEMBL
-
A0A2X1KBM6_ECOLX
289
0
33558
TrEMBL
-
A0A5C9ASX6_ECOLX
193
0
21623
TrEMBL
-
A0A376MMW0_ECOLX
97
0
10687
TrEMBL
-
A0A2X1PS66_ECOLX
60
0
6702
TrEMBL
-
A0A2X1MT62_ECOLX
205
0
23871
TrEMBL
-
A0A2X3JU61_ECOLX
59
0
6580
TrEMBL
-
A0A376MNT7_ECOLX
331
0
36207
TrEMBL
-
A0A792CIY1_ECOLX
1342
0
150618
TrEMBL
-
C3SGW2_ECOLX
111
0
12345
TrEMBL
-
A0A2X3M984_ECOLX
48
0
5175
TrEMBL
-
A0A376JR78_ECOLX
329
0
36459
TrEMBL
-
G9J646_ECOLX
73
0
8068
TrEMBL
-
A0A3L0VV97_ECOLX
1342
0
150252
TrEMBL
-
A0A376JQK8_ECOLX
1407
0
155190
TrEMBL
-
A0A2X1P137_ECOLX
974
0
108155
TrEMBL
-
A0A2X3JTM5_ECOLX
522
0
59772
TrEMBL
-
A0A377BPD9_ECOLX
69
0
7797
TrEMBL
-
A0A7B7AJH0_ECOLX
1342
0
150646
TrEMBL
-
A0A5B9AVI4_ECOLX
99
0
11408
TrEMBL
-
A0A859VN46_ECOLX
1342
0
150579
TrEMBL
-
A0A6D0EPS3_ECOLX
137
0
15285
TrEMBL
-
A0A2X1KBR5_ECOLX
55
0
5656
TrEMBL
-
A0A2X3K8E1_ECOLX
83
0
9128
TrEMBL
-
A0A2X1MT35_ECOLX
72
0
8631
TrEMBL
-
A0A6D0ZUP5_ECOLX
92
0
10658
TrEMBL
-
A0A376MN93_ECOLX
188
0
21748
TrEMBL
-
A0A827X1Z5_ECOLX
1407
0
155176
TrEMBL
-
A0A0A1AFE8_ECOLX
1407
0
155174
TrEMBL
-
C3SIA2_ECOLX
1407
0
155160
TrEMBL
-
C3SR67_ECOLX
329
0
36512
TrEMBL
-
A0A376MJJ2_ECOLX
257
0
28476
TrEMBL
-
A0A827X463_ECOLX
1407
0
155102
TrEMBL
-
A0A6C9QA67_ECOLX
1342
0
150598
TrEMBL
-
A0A418GV37_ECOLX
1303
0
146204
TrEMBL
-
A0A376TPB7_ECOLX
131
0
15302
TrEMBL
-
A0A5F0PYH4_ECOLX
329
0
36528
TrEMBL
-
A0A8B4NLE6_ECOLX
1195
0
134319
TrEMBL
-
A0A377D2R9_ECOLX
451
0
50811
TrEMBL
-
A0A377LNE5_ECOLX
1342
0
150646
TrEMBL
-
A0A8G8SR65_ECOLX
1407
0
155134
TrEMBL
-
A0A789RQM8_ECOLX
1407
0
155128
TrEMBL
-
A0A7D7DQQ9_ECOLX
1407
0
155144
TrEMBL
-
W8TBL9_ECOLX
261
0
28507
TrEMBL
-
A0A6D1AE01_ECOLX
93
0
10611
TrEMBL
-
A0A4T5TAS6_ECOLX
329
0
36502
TrEMBL
-
A0A3P5DUY2_ECOLX
329
0
36443
TrEMBL
-
A0A8G9NNN5_ECOLX
886
0
98062
TrEMBL
-
A0A376J9P1_ECOLX
113
0
13175
TrEMBL
-
A0A5P0Q2E4_ECOLX
70
0
7763
TrEMBL
-
A0A377D2P2_ECOLX
110
1
11952
TrEMBL
-
A0A447X659_ECOLX
106
0
12063
TrEMBL
-
A0A7L5P3U6_ECOLX
1407
0
155236
TrEMBL
-
A0A8G1CSV5_ECOLX
1407
0
155220
TrEMBL
-
A0A793CTS4_ECOLX
1342
0
150660
TrEMBL
-
A0A0F3T3S6_ECOLX
200
0
22634
TrEMBL
-
A0A2X1MW35_ECOLX
265
0
30575
TrEMBL
-
A0A2X1KAL4_ECOLX
73
0
8462
TrEMBL
-
A0A376TZ99_ECOLX
593
0
67839
TrEMBL
-
A0A376NYM3_ECOLX
567
0
61824
TrEMBL
-
A0A6N8NSC6_ECOLX
144
0
15269
TrEMBL
-
A0A377D0T1_ECOLX
183
0
19359
TrEMBL
-
A0A376MMX4_ECOLX
249
0
28786
TrEMBL
-
A0A376TQ87_ECOLX
262
0
30532
TrEMBL
-
G9J642_ECOLX
67
0
7483
TrEMBL
-
A0A2X1MVS0_ECOLX
61
0
6612
TrEMBL
-
A0A2X1LMU6_ECOLX
67
0
8204
TrEMBL
-
A0A376FW45_ECOLX
1342
0
150604
TrEMBL
-
A0A418GMG7_ECOLX
813
0
89736
TrEMBL
-
A0A7H9Q7R3_ECOLX
1342
0
150632
TrEMBL
-
A0A377CDI4_ECOLX
117
0
13806
TrEMBL
-
A0A8H1FQR9_ECOLX
1407
0
155176
TrEMBL
-
A0A5C9AT68_ECOLX
197
0
22201
TrEMBL
-
A0A3P5DWB2_ECOLX
1342
0
150609
TrEMBL
-
A0A376VU88_ECOLX
412
0
45350
TrEMBL
-
A0A5B9AH39_ECOLX
329
0
36480
TrEMBL
-
A0A376X6R2_ECOLX
1264
0
141536
TrEMBL
-
A0A8E2PQA9_ECOLX
1407
0
155175
TrEMBL
-
A0A376U036_ECOLX
749
0
82807
TrEMBL
-
A0A3S5DWE7_ECOLX
707
0
79842
TrEMBL
-
A0A3W5Y4I8_ECOLX
1342
0
150646
TrEMBL
-
A0A8H0IDS2_ECOLX
1342
0
150642
TrEMBL
-
A0A418H0K3_ECOLX
971
0
107975
TrEMBL
-
PDB
SCOP
CATH
UNIPROT
ORGANISM
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
145000
-
beta‘x,beta,sigma,alpha, x * 160000 + x * 145000 + x * 85000 + x * 40000, SDS-PAGE
160000
-
beta‘x,beta,sigma,alpha, x * 160000 + x * 145000 + x * 85000 + x * 40000, SDS-PAGE
40000
-
beta‘x,beta,sigma,alpha, x * 160000 + x * 145000 + x * 85000 + x * 40000, SDS-PAGE
480000
-
about
85000
-
beta‘x,beta,sigma,alpha, x * 160000 + x * 145000 + x * 85000 + x * 40000, SDS-PAGE
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
?
-
beta‘x,beta,sigma,alpha, x * 160000 + x * 145000 + x * 85000 + x * 40000, SDS-PAGE
multimer
-
bacterial RNAP is a multisubunit enzyme and consists of a core polymerase containing the beta, beta' , and two alpha subunits, together with one or more omega subunits, and a dissociable specificity factor sigma
pentamer
-
subunits structure alpha2betabeta'sigmaomega
additional information
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
hanging drop vapor diffusion
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
C70A/C72H/C85A/C88H
-
mutant enzyme is defective in intrinsic termination and antitermination in vitro. Mutation likely causes a recessive-lethal phenotype
C70H
-
mutant enzyme terminates more poorly than wild-type enzyme on put(-) templates, and responds weakly on put. Mutation likely causes a recessive-lethal phenotype
C72H
-
mutant enzyme terminates more poorly than wild-type enzyme on put(-) templates, and responds weakly on put. Mutation likely causes a recessive-lethal phenotype
C85H
-
mutant enzyme terminates more poorly than wild-type enzyme on put(-) templates, and responds weakly on put. Mutation likely causes a recessive-lethal phenotype
del70-88insGGGG
-
mutant enzyme terminates more poorly than wild-type enzyme on put(-) templates, and responds weakly on put. Mutation likely causes a recessive-lethal phenotype
del74-84insGGGG
-
mutant enzyme terminates more poorly than wild-type enzyme on put(-) templates, and responds weakly on put. Mutation likely causes a recessive-lethal phenotype
E813A/D814A
-
significantly decreased elongation rate, the mutation changes the effect of diphosphate on the 3'-5'-exonuclease reaction, whose addition stimulates the production of UMP through hydrolysis rather than of UTP through diphosphorolysis. The mutation makes the 3'-exonuclease activity independent of TTP. The mutation changes the response of TEC to diphosphate: instead of causing diphosphorolysis it stimulates the exonuclease reaction
N458A
-
significantly decreased elongation rate
R1106A
-
significantly decreased elongation rate, enhanced exonuclease activity
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
the genes rpoA, rpoB and rpoC which encode the RNA polymerase, alpha-, beta- and beta‘subunits, respectively, have been individually placed on expression plasmids under control of the bacteriophage T7 promoter. Induction of the T7 RNA polymerase gene in hist cells harbouring each of the three plasmids, results in the extensive overproduction of the three polypeptides
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
analysis
-
assay for RNA polymerase activity that uses the dye RiboGreen to detect transcripts by fluorescence and is thus free of the expense, short shelf life, and high handling costs of radioisotopes. The method is relatively quick and can be performed entirely in microplate formate, allowing for the processing of dozens to hundreds of samples in parallel
medicine
-
the enzyme is a promising target for the discovery of new antimicrobial agents
synthesis
-
the enzyme is useful for in vitro transcription reactions to produce preparative quantities of transcribed RNA and labeled RNA probes, method evaluation, overview
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Zalenskaya, K.; Lee, J.; Gujuluva, C.N.; Shin, Y.K.; Slutsky, M.; Goldfarb, A.
Recombinant RNA polymerase: inducible overexpression, purification and assembly of Escherichia coli rpo gene products
Gene
89
7-12
1990
Escherichia coli
Manually annotated by BRENDA team
Sethi, V.S.
Structure and function of DNA-dependent RNA-polymerase
Prog. Biophys. Mol. Biol.
23
67-101
1971
Escherichia coli
Manually annotated by BRENDA team
Imburgio, D.; Anikin, M.; McAllister, W.T.
Effects of substitutions in a conserved DX2GR sequence motif, found in many DNA-dependent nucleotide polymerases, on transcription by T7 RNA polymerase
J. Mol. Biol.
319
37-51
2002
Escherichia phage T7, Escherichia coli
Manually annotated by BRENDA team
Callaci, S.; Heyduk, T.
Conformation and DNA binding properties of a single-stranded DNA binding region of sigma 70 subunit from Escherichia coli RNA polymerase are modulated by an interaction with the core enzyme
Biochemistry
37
3312-3320
1998
Escherichia coli
Manually annotated by BRENDA team
Kuhlman, P.; Duff, H.L.; Galant, A.
A fluorescence-based assay for multisubunit DNA-dependent RNA polymerases
Anal. Biochem.
324
183-190
2004
Escherichia coli
Manually annotated by BRENDA team
Tan, X.X.; Chen, Y.
A novel genomic approach identifies bacterial DNA-dependent RNA polymerase as the target of an antibacterial oligodeoxynucleotide, RBL1
Biochemistry
44
6708-6714
2005
Escherichia coli
Manually annotated by BRENDA team
King, R.A.; Markov, D.; Sen, R.; Severinov, K.; Weisberg, R.A.
A conserved zinc binding domain in the largest subunit of DNA-dependent RNA polymerase modulates intrinsic transcription termination and antitermination but does not stabilize the elongation complex
J. Mol. Biol.
342
1143-1154
2004
Escherichia coli
Manually annotated by BRENDA team
Skoblov, A.Y.; Sosunov, V.V.; Victorova, L.S.; Skoblov, Y.S.; Kukhanova, M.K.
Substrate properties of dinucleoside 5',5''-oligophosphates in the reactions catalyzed by HIV reverse transcriptase, E. coli DNA polymerase I, and E. coli RNA polymerase
Russ. J. Bioorg. Chem.
31
48-57
2005
Escherichia coli
-
Manually annotated by BRENDA team
Chopra, I.
Bacterial RNA polymerase: a promising target for the discovery of new antimicrobial agents
Curr. Opin. Investig. Drugs
8
600-607
2007
Escherichia coli
Manually annotated by BRENDA team
Zenkin, N.; Naryshkina, T.; Kuznedelov, K.; Severinov, K.
The mechanism of DNA replication primer synthesis by RNA polymerase
Nature
439
617-620
2006
Escherichia coli
Manually annotated by BRENDA team
Gralla, J.D.; Huo, Y.X.
Remodeling and activation of Escherichia coli RNA polymerase by osmolytes
Biochemistry
47
13189-13196
2008
Escherichia coli
Manually annotated by BRENDA team
Menche, D.; Li, P.; Irschik, H.
Design, synthesis and biological evaluation of simplified analogues of the RNA polymerase inhibitor etnangien
Bioorg. Med. Chem. Lett.
20
939-941
2009
Corynebacterium glutamicum, Saccharomyces cerevisiae, Escherichia coli, Micrococcus luteus, Staphylococcus aureus, Mycolicibacterium phlei, Gordonia rubripertincta
Manually annotated by BRENDA team
Svetlov, V.; Nudler, E.
Macromolecular micromovements: how RNA polymerase translocates
Curr. Opin. Struct. Biol.
19
701-707
2009
Saccharomyces cerevisiae, Escherichia coli, Thermus thermophilus, Saccharolobus solfataricus, Thermus aquaticus
Manually annotated by BRENDA team
Paschal, B.M.; McReynolds, L.A.; Noren, C.J.; Nichols, N.M.
RNA polymerases
Curr. Protoc. Mol. Biol.
Chapter 3
Unit3.8
2008
Enterobacteria phage T3, Escherichia phage T7, Escherichia coli, Zindervirus SP6
Manually annotated by BRENDA team
Helmann, J.D.
RNA polymerase: a nexus of gene regulation
Methods
47
1-5
2009
Bacillus subtilis, Escherichia coli
Manually annotated by BRENDA team
Agarwal, A.; Johnson, A.; Fishwick, C.
Synthesis of de novo designed small-molecule inhibitors of bacterial RNA polymerase
Tetrahedron
64
10049-10054
2008
Escherichia coli, Thermus aquaticus
-
Manually annotated by BRENDA team
Kwapisz, M.; Beckouet, F.; Thuriaux, P.
Early evolution of eukaryotic DNA-dependent RNA polymerases
Trends Genet.
24
211-215
2008
Saccharomyces cerevisiae, Cenarchaeum symbiosum, Escherichia coli, Emiliania huxleyi, Methanocaldococcus jannaschii, Pyrococcus furiosus, Sulfolobus acidocaldarius, Saccharolobus solfataricus, Nanoarchaeum equitans, Caldivirga maquilingensis, Nitrosopumilus maritimus, Thermofilum pendens
Manually annotated by BRENDA team
Haupenthal, J.; Huesecken, K.; Negri, M.; Maurer, C.K.; Hartmann, R.W.
Influence of DNA template choice on transcription and inhibition of Escherichia coli RNA polymerase
Antimicrob. Agents Chemother.
56
4536-4539
2012
Escherichia coli
Manually annotated by BRENDA team
Pesavento, C.; Hengge, R.
The global repressor FliZ antagonizes gene expression by sigmaS-containing RNA polymerase due to overlapping DNA binding specificity
Nucleic Acids Res.
40
4783-4793
2012
Escherichia coli
Manually annotated by BRENDA team
Abe, Y.; Fujisaki, N.; Miyoshi, T.; Watanabe, N.; Katayama, T.; Ueda, T.
Functional analysis of CedA based on its structure: residues important in binding of DNA and RNA polymerase and in the cell division regulation
J. Biochem.
159
217-223
2016
Escherichia coli (P0A8T7 AND P0A8V2 AND P0A7Z4)
Manually annotated by BRENDA team
Singh, S.S.; Grainger, D.C.
H-NS can facilitate specific DNA-binding by RNA polymerase in AT-rich gene regulatory regions
PLoS Genet.
9
e1003589
2013
Escherichia coli
Manually annotated by BRENDA team
Lara-Gonzalez, S.; Dantas Machado, A.C.; Rao, S.; Napoli, A.A.; Birktoft, J.; Di Felice, R.; Rohs, R.; Lawson, C.L.
The RNA polymerase alpha subunit recognizes the DNA shape of the upstream promoter element
Biochemistry
59
4523-4532
2020
Escherichia coli (P0A7Z4), Escherichia coli K12 (P0A7Z4)
Manually annotated by BRENDA team
Glyde, R.; Ye, F.; Jovanovic, M.; Kotta-Loizou, I.; Buck, M.; Zhang, X.
Structures of bacterial RNA polymerase complexes reveal the mechanism of DNA loading and transcription initiation
Mol. Cell
70
1111-1120
2018
Escherichia coli (P0A8T7 AND P0A8V2 AND P0A7Z4 AND P0A800), Escherichia coli K12 (P0A8T7 AND P0A8V2 AND P0A7Z4 AND P0A800)
Manually annotated by BRENDA team
Kang, W.; Ha, K.S.; Uhm, H.; Park, K.; Lee, J.Y.; Hohng, S.; Kang, C.
Transcription reinitiation by recycling RNA polymerase that diffuses on DNA after releasing terminated RNA
Nat. Commun.
11
450
2020
Escherichia coli
Manually annotated by BRENDA team
Fujita, K.; Iwaki, M.; Yanagida, T.
Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA
Nat. Commun.
7
13788
2016
Escherichia coli
Manually annotated by BRENDA team
Ooi, W.Y.; Murayama, Y.; Mekler, V.; Minakhin, L.; Severinov, K.; Yokoyama, S.; Sekine, S.I.
A Thermus phage protein inhibits host RNA polymerase by preventing template DNA strand loading during open promoter complex formation
Nucleic Acids Res.
46
431-441
2018
Escherichia coli, Thermus thermophilus (Q5SHR6 AND Q8RQE9 AND Q8RQE8 AND Q8RQE7)
Manually annotated by BRENDA team