Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 2.7.11.24 - mitogen-activated protein kinase and Organism(s) Danio rerio and UniProt Accession Q9DGD9

for references in articles please use BRENDA:EC2.7.11.24
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
IUBMB Comments
Phosphorylation of specific tyrosine and threonine residues in the activation loop of this enzyme by EC 2.7.12.2, mitogen-activated protein kinase kinase (MAPKK) is necessary for enzyme activation. Once activated, the enzyme phosphorylates target substrates on serine or threonine residues followed by a proline . A distinguishing feature of all MAPKs is the conserved sequence Thr-Xaa-Tyr (TXY). Mitogen-activated protein kinase (MAPK) signal transduction pathways are among the most widespread mechanisms of cellular regulation. Mammalian MAPK pathways can be recruited by a wide variety of stimuli including hormones (e.g. insulin and growth hormone), mitogens (e.g. epidermal growth factor and platelet-derived growth factor), vasoactive peptides (e.g. angiotensin-II and endothelin), inflammatory cytokines of the tumour necrosis factor (TNF) family and environmental stresses such as osmotic shock, ionizing radiation and ischaemic injury.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Danio rerio
UNIPROT: Q9DGD9
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Danio rerio
The enzyme appears in selected viruses and cellular organisms
Reaction Schemes
+
a [protein]-(L-serine/L-threonine)
=
+
a [protein]-(L-serine/L-threonine) phosphate
Synonyms
mapk, p38, erk1/2, p38 mapk, mitogen-activated protein kinase, map kinase, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, p38mapk, p38 map kinase, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
mitogen-activated protein kinase 8
-
p38 MAP kinase
-
cp38a
-
-
-
-
cp38b
-
-
-
-
CSAID binding protein
-
-
-
-
CSBP
-
-
-
-
Cytokine suppressive anti-inflammatory drug binding protein
-
-
-
-
ERK5
-
-
-
-
MAP kinase MXI2
-
-
-
-
MAP kinase p38 beta
-
-
-
-
MAP kinase p38 delta
-
-
-
-
MAP kinase p38 gamma
-
-
-
-
MAP kinase p38a
-
-
-
-
MAP kinase p38alpha
-
-
-
-
MAP kinase p38b
-
-
-
-
MAPK
-
-
-
-
mitogen-activated protein kinase
-
-
-
-
mitogen-activated protein kinase 14B
-
Mitogen-activated protein kinase p38 beta
-
-
-
-
Mitogen-activated protein kinase p38 delta
-
-
-
-
Mitogen-activated protein kinase p38 gamma
-
-
-
-
Mitogen-activated protein kinase p38a
-
-
-
-
Mitogen-activated protein kinase p38alpha
-
-
-
-
Mitogen-activated protein kinase p38b
-
-
-
-
p38b
-
-
-
-
SAPK2A
-
-
-
-
stress-activated protein kinase 2a
-
-
-
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
phospho group transfer
-
-
-
-
SYSTEMATIC NAME
IUBMB Comments
ATP:protein phosphotransferase (MAPKK-activated)
Phosphorylation of specific tyrosine and threonine residues in the activation loop of this enzyme by EC 2.7.12.2, mitogen-activated protein kinase kinase (MAPKK) is necessary for enzyme activation. Once activated, the enzyme phosphorylates target substrates on serine or threonine residues followed by a proline [6]. A distinguishing feature of all MAPKs is the conserved sequence Thr-Xaa-Tyr (TXY). Mitogen-activated protein kinase (MAPK) signal transduction pathways are among the most widespread mechanisms of cellular regulation. Mammalian MAPK pathways can be recruited by a wide variety of stimuli including hormones (e.g. insulin and growth hormone), mitogens (e.g. epidermal growth factor and platelet-derived growth factor), vasoactive peptides (e.g. angiotensin-II and endothelin), inflammatory cytokines of the tumour necrosis factor (TNF) family and environmental stresses such as osmotic shock, ionizing radiation and ischaemic injury.
CAS REGISTRY NUMBER
COMMENTARY hide
142243-02-5
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
additional information
?
-
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
additional information
-
molecular mechanism of negative regulation of Ras/ERK signaling, Sef negatively regulates ERK phosphorylation by blocking dissocation of MEK and ERK
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
additional information
-
phosphorylation activates ERK
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
-
SwissProt
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
ERK localization is controlled by the cytoplasmic ERK anchoring proteins that have a nuclear export signal, ERK forms complexes with MEK, EC 2.7.11.25, in the cytoplasm, in response to activation ERK dissociates from MEK and is translocated to the nucleus
Manually annotated by BRENDA team
-
ERK colocalizes with MEK and Sef
Manually annotated by BRENDA team
-
ERK localization is controlled by the cytoplasmic ERK anchoring proteins that have a nuclear export signal, ERK forms complexes with MEK, EC 2.7.11.25, in the cytoplasm, in response to activation ERK dissociates from MEK and is translocated to the nucleus, mechanism
Manually annotated by BRENDA team
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
MK08_DANRE
384
0
44140
Swiss-Prot
other Location (Reliability: 2)
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
phosphoprotein
-
phosphorylation activates ERK
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Fujii, R.; Yamashita, S.; Hibi, M.; Hirano, T.
Asymmetric p38 activation in zebrafish: its possible role in symmetric and synchronous cleavage
J. Cell. Biol.
150
1335-1348
2000
Danio rerio (Q9DGD9), Danio rerio (Q9DGE1), Danio rerio (Q9DGE2), Danio rerio
Manually annotated by BRENDA team
Torii, S.; Nakayama, K.; Yamamoto, T.; Nishida, E.
Regulatory mechanisms and function of ERK MAP kinases
J. Biochem.
136
557-561
2004
Danio rerio, vertebrata
Manually annotated by BRENDA team