The enzyme, characterized from the bacterium Corynebacterium glutamicum, is bifunctional. It catalyses the elongation of the C40 carotenoid all-trans-lycopene by attaching an isoprene unit at C-2, as well as the hydroxylation of the new isoprene unit. The enzyme acts at both ends of the substrate, forming the C50 carotenoid flavuxanthin via the C45 intermediate nonaflavuxanthin. cf. EC 2.5.1.150, lycopene elongase/hydratase (dihydrobisanhydrobacterioruberin-forming).
The enzyme, characterized from the bacterium Corynebacterium glutamicum, is bifunctional. It catalyses the elongation of the C40 carotenoid all-trans-lycopene by attaching an isoprene unit at C-2, as well as the hydroxylation of the new isoprene unit. The enzyme acts at both ends of the substrate, forming the C50 carotenoid flavuxanthin via the C45 intermediate nonaflavuxanthin. cf. EC 2.5.1.150, lycopene elongase/hydratase (dihydrobisanhydrobacterioruberin-forming).
the enzyme is bifunctional. It catalyses the elongation of the C40 carotenoid all-trans-lycopene by attaching an isoprene unit at C-2, as well as the hydroxylation of the new isoprene unit. The enzyme acts at both ends of the substrate, forming the C50 carotenoid flavuxanthin via the C45 intermediate nonaflavuxanthin
the enzyme is bifunctional. It catalyses the elongation of the C40 carotenoid all-trans-lycopene by attaching an isoprene unit at C-2, as well as the hydroxylation of the new isoprene unit. The enzyme acts at both ends of the substrate, forming the C50 carotenoid flavuxanthin via the C45 intermediate nonaflavuxanthin