Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
malfunction
-
point mutations in a MurG helical causes severe sporulation defects, but does not affect localization nor cause detectable defects during exponential growth. In strains in which the cardiolipin-synthesizing genes are deleted, MurG levels are diminished at the forespore, but MurG localization during sporulation is rescued by external addition of purified cardiolipin. During sporulation, lack of MurG localization heavily affects engulfment dynamics and sporulation efficiency, indicating a defect in MurG enzymatic activity linked to its diffuse localization
metabolism

-
glycosyltransferase MurG catalyses the transfer of N-acetyl-D-glucosamine to lipid intermediate I on the bacterial peptidoglycan biosynthesis pathway
metabolism
-
MurG is an essential N-acetylglucosaminyl transferase involved in catalyzing the final step of peptidoglycan subunit biosynthesis
physiological function

-
MurG represents a temporary storage mechanism for excess protein that can later be remobilized into the active pool. Polar MurG can promote polar accumulation of anionic phospholipids
physiological function
MurG is an essential bacterial glycosyltransferase enzyme in Pseudomonas aeruginosa performing one of the key membrane steps of peptidoglycan synthesis catalyzing the transfer of N-acetyl glucosamine (GlcNAc) from its donor substrate, UDP-GlcNAc, to the acceptor substrate Lipid I
physiological function
-
the glycosyltransferase MurG is necessary for cell wall synthesis at the spore during sporulation in the bacterium Bacillus subtilis. The enzyme localization is a critical factor in the regulation of proper enzyme function and catalysis
physiological function
-
the biochemical production of lipid II requires four components, the lipid carrier undecaprenyl phosphate, UDP-MurNAc-pentapeptide, UDP-GlcNAc and the enzymes catalysing the formation of lipid II from these substrates, MraY and MurG
physiological function
-
the biochemical production of lipid II requires four components, the lipid carrier undecaprenyl phosphate, UDP-MurNAc-pentapeptide, UDP-GlcNAc and the enzymes catalysing the formation of lipid II from these substrates, MraY and MurG
additional information

-
docking of transition state analogues into MurG active site, overview
additional information
-
MurG becomes polarly localized when expressed at high cellular concentrations, only at levels that saturate MurGs cellular requirement for growth, the polar MurG is not active and polar MurG is dynamic. It can be remobilized when MurG levels drop
additional information
-
the active site residue Gln298 plays a critical role in ligand-target interactions, other active site residues like Arg168, Ser198, Arg202, Ser269, and His297 also play roles in binding interactions, docking study, and molecular modeling and structure validation, overview
additional information
large-scale conformational change in the relative orientations of the N- and C-terminal domains, which has the effect of widening the cofactor binding site and displacing the UDP-GlcNAc donor
additional information
-
the active site residue Gln298 plays a critical role in ligand-target interactions, other active site residues like Arg168, Ser198, Arg202, Ser269, and His297 also play roles in binding interactions, docking study, and molecular modeling and structure validation, overview
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
dUDP-N-acetyl-alpha-D-glucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
?
-
-
-
?
UDP-N-acetylglucosamine + biotin-labelled lipid I analogue
?
-
-
-
-
?
UDP-N-acetylglucosamine + citronellyl-lipid I
UDP + N-acetylglucosamine-citronellyl-lipid I
UDP-N-acetylglucosamine + lipid I
UDP + lipid II
-
i.e. Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
i.e. N-acetylglucosamine-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-(6E,10E,14Z)-2,6,10,14-tetramethyl-hexadeca-2,6,10,14-tetraene
UDP + GlcNAcbeta(1-4)Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-(6E,10E,14Z)-2,6,10,14-tetramethyl-hexadeca-2,6,10,14-tetraene
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-(7S)-2,7-dimethyloct-2-ene
UDP + GlcNAcbeta(1-4)Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-(7S)-2,7-dimethyloct-2-ene
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-p-nitrophenol
UDP + GlcNAcbeta(1-4)Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-p-nitrophenol
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphobutane
UDP + GlcNAcbeta(1-4)Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphobutane
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphododecane
UDP + GlcNAcbeta(1-4)Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphododecane
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoicosane
UDP + GlcNAcbeta(1-4)Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoicosane
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphotetradecane
UDP + GlcNAcbeta(1-4)Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphotetradecane
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + GlcNAc-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + GlcNAc-(1->4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + N-acetylglucosamine-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP-N-acetylglucosamine + MurNAc(Nepsilon-dansylpentapeptide)-pyrophosphoryl (R,S)-alpha-dihydrodecaprenol
UDP + N-acetylglucosamine-MurNAc(Nepsilon-dansylpentapeptide)-pyrophosphoryl (R,S)-alpha-dihydrodecaprenol
-
very poor substrate
-
?
UDP-N-acetylglucosamine + MurNAc(Nepsilon-dansylpentapeptide)-pyrophosphoryl (R,S)-alpha-dihydroheptaprenol
UDP + N-acetylglucosamine-MurNAc(Nepsilon-dansylpentapeptide)-pyrophosphoryl (R,S)-alpha-dihydroheptaprenol
-
-
-
r
UDP-N-acetylglucosamine + MurNAc(Neta-dansylpentapeptide)-diphosphoryl (R,S-alpha-dihydroheptaprenol)
?
-
-
-
-
-
UDP-N-acetylglucosamine + synthetic substrate analogue 2
?
-
synthetic substrate analogue 2: a 10 carbon citronellyl derivative
-
-
?
UDP-N-acetylglucosamine + synthetic substrate analogue 7
?
-
synthetic substrate analogue 7: a derivative containing a 20 carbon chain with a cis-allylic double bond
-
-
?
additional information
?
-
UDP-N-acetylglucosamine + citronellyl-lipid I

UDP + N-acetylglucosamine-citronellyl-lipid I
-
undecaprenol replaced with a citronellol group
-
?
UDP-N-acetylglucosamine + citronellyl-lipid I
UDP + N-acetylglucosamine-citronellyl-lipid I
-
synthetic substrate, 55-carbon undecaprenol chain replaced by the 10-carbon chain of citronellol, biotin labeled substrate
-
?
UDP-N-acetylglucosamine + citronellyl-lipid I
UDP + N-acetylglucosamine-citronellyl-lipid I
-
synthetic substrate, 55-carbon undecaprenol chain replaced by the 10-carbon chain of citronellol, biotin labeled substrate
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol

UDP + GlcNAc-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + GlcNAc-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol

UDP + GlcNAc-(1->4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + GlcNAc-(1->4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
-
lipid I
lipid II
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + GlcNAc-(1->4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
-
lipid I
lipid II
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol

UDP + N-acetylglucosamine-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + N-acetylglucosamine-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + N-acetylglucosamine-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
-
-
-
-
?
UDP-N-acetylglucosamine + Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
UDP + N-acetylglucosamine-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
-
-
-
?
additional information

?
-
-
sMurG uses UDP-N-acetylglucosamine as substrate
-
-
-
additional information
?
-
-
sMurG uses UDP-N-acetylglucosamine as substrate
-
-
-
additional information
?
-
-
-
-
-
-
additional information
?
-
-
MurG binds significantly better to UDP than to CDP, ADP or GDP, E269 is an important residue in binding the nucleotide-sugar donor
-
-
-
additional information
?
-
-
MurG requires substrates containing an intact amide between the muramyl lactyl ether side-chain and the pentapeptide
-
-
-
additional information
?
-
no substrates: TDP-GlcNAc, C4 hydroxyl of UDP-GalNAc cannot form hydrogen bonds to A264 or N292
-
-
-
additional information
?
-
-
MurG prefers substrates that contain lipid chains that are considerably shorter than that of the natural substrate, compounds that contain a cis-allylic double bond react faster than compounds that do not
-
-
-
additional information
?
-
-
no substrates: P1-citronellyl-P2-alpha-D-glucosyl pyrophosphate, P1-citronellyl-P2-alpha-D-N-acetylglucoseaminyl pyrophosphate, P1-citronellyl-P2-alpha-D-N-acetylmuramyl pyrophosphate
-
-
-
additional information
?
-
-
role of enzyme in peptidoglycan biosynthesis pathway
-
-
-
additional information
?
-
-
UDP-N-acetylgalactosamine shows very little donor activity
-
-
-
additional information
?
-
-
UDP-GlcNAc is incorporated into lipid II using GlcNAc. MurG is also able to exchange the GlcNAc of the lipid II head group with GlcNAc of UDPGlcNAc, a simple exchange reaction
-
-
-
additional information
?
-
-
UDP-GlcNAc is incorporated into lipid II using GlcNAc. MurG is also able to exchange the GlcNAc of the lipid II head group with GlcNAc of UDPGlcNAc, a simple exchange reaction
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(1R,3R,3aS,6aR)-1-{[2-({[(2R,3R,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl] methyl}amino)-2-oxoethyl]carbamoyl}-3-(2-methoxyphenyl)-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrol-2-ium
-
-
(1R,3S,3aR,6aS)-3-((S)-1,2-dihydroxyethyl)-N-(2-((((2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)amino)-2-oxoethyl)-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrole-1-carboxamide
-
-
(1R,3S,3aR,6aS)-3-(2,3-dimethoxyphenyl)-N-[2-({[(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}amino)-2-oxoethyl]-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrole-1-carboxamide
-
-
(1R,3S,3aR,6aS)-N-[2-({[(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}amino)-2-oxoethyl]-1-methyl-4,6-dioxo-3,5-diphenyloctahydropyrrolo[3,4-c]pyrrole-1-carboxamide
-
-
(1R,3S,3aR,6aS)-N-[2-({[(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}amino)-2-oxoethyl]-3-(2-methoxyphenyl)-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrole-1-carboxamide
-
-
(1R,3S,3aR,6aS)-N-[2-({[(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}amino)-2-oxoethyl]-3-(2-methoxyphenyl)-2-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrole-1-carboxamide
-
-
(2S)-N-{[(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}-1-{[(1R,3S,3aR,6aS)-3-(2-methoxyphenyl)-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrol-1-yl]carbonyl}pyrrolidine-2-carboxamide
-
-
(2S)-N-{[(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}-1-{[(1R,3S,3aR,6aS)-5-ethyl-3-(2-methoxyphenyl)-1-methyl-4,6-dioxooctahydropyrrolo[3,4-c]pyrrol-1-yl]carbonyl}pyrrolidine-2-carboxamide
-
-
(4R,4aR,5aS,6R,12aS)-4-(dimethylamino)-1,5,10,12,12a-pentahydroxy-6-methyl-3,11-dioxo-3,4,4a,5,5a,6,11,12a- octahydrotetracene-2-carboxamide
-
-
({2-[3-(4-methoxybenzyl)-6-(methoxycarbonyl)-3,4,6,7-tetrahydro-5H-imidazo[4,5-c]pyridin-5-yl]-2-oxoethyl}sulfanyl)acetic acid
-
-
2-(carboxyethynyl)-3,4-dihydroxybenzoic acid
-
-
2-(phosphonooxy)butanoic acid
-
-
4-{[(1S,11aS)-5,11-dioxo-7-phenyl-2,3,5,10,11,11a-hexahydro-1H-pyrrolo[2,1-c][1,4]benzodiazepin-1-yl]amino}-4-oxobutanoic acid
-
-
5'-({[(2R,3R,3aR,6aR)-3-carboxy-2-(2,3-dihydroxypropyl)-6a-methyl-4,6-dioxohexahydropyrrolo[3,4-b]pyrrol-5(1H)-yl]acetyl}amino)-5'-deoxyuridine
-
-
5'-({[(2S,3R,3aR,6aR)-3-carboxy-2-(2-methoxyphenyl)-6a-methyl-4,6-dioxohexahydropyrrolo[3,4-b]pyrrol-5(1H)-yl]acetyl}amino)-5'-deoxyuridine
-
-
5'-({[(2S,3R,3aS,6aR)-3-carboxy-2-(2,3-dimethoxyphenyl)-6a-methyl-4,6-dioxohexahydropyrrolo[3,4-b]pyrrol-5(1H)-yl]acetyl}amino)-5'-deoxyuridine
-
-
5'-({[(2S,3R,3aS,6aR)-3-carboxy-2-(2-methoxyphenyl)-6a-methyl-4,6-dioxohexahydropyrrolo[3,4-b]pyrrol-5(1H)-yl]acetyl}amino)-5'-deoxyuridine
-
-
5'-({[(2S,3R,3aS,6aR)-3-carboxy-2-(3,4-dimethoxyphenyl)-6a-methyl-4,6-dioxohexahydropyrrolo[3,4-b]pyrrol-5(1H)-yl]acetyl}amino)-5'-deoxyuridine
-
-
5'-({[(2S,3R,3aS,6aR)-3-carboxy-6a-methyl-4,6-dioxo-2-phenylhexahydropyrrolo[3,4-b]pyrrol-5(1H)-yl]acetyl}amino)-5'-deoxyuridine
-
-
5'-deoxy-5'-[(N-{[(2R,3R,4R,5R)-3-(methoxycarbonyl)-5-(2-methoxyphenyl)-2,4-dimethylpyrrolidinium-2-yl]carbonyl}glycyl) amino]uridine
-
-
5'-O-(3-{[(1R,3S,3aR,6aS)-3-(2-methoxyphenyl)-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrol-1-yl]methoxy}-3-oxopropanoyl)uridine
-
-
5'-O-(4-{[(1R,3S,3aR,6aS)-3-(2-methoxyphenyl)-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrol-1-yl]methoxy}-4-oxobutanoyl)uridine
-
-
5'-[(1-{[(2R,3R,4R,5S)-3,4-bis(methoxycarbonyl)-5-(2-methoxyphenyl)-2-methylpyrrolidin-2-yl]carbonyl}-L-prolyl)amino]-5'-deoxyuridine
-
-
5'-[(1-{[(2R,3S,4R,5S)-3,4-bis(methoxycarbonyl)-5-(2-methoxyphenyl)-2-methylpyrrolidin-2-yl]carbonyl}-L-prolyl)amino]-5'-deoxyuridine
-
-
5'-{[(3S,4R,5S)-3,4-bis(methoxycarbonyl)-5-(2-methoxyphenyl)-2-methyl-D-prolylglycyl]amino}-5'-deoxyuridine
-
-
5'-{[(3S5'-{[(3S,4R,5S)-3,4-bis(methoxycarbonyl)-2-methyl-5-phenyl-D-prolylglycyl]amino}-5'-deoxyuridine,4R,5S)-3,4-bis(methoxycarbonyl)-2-methyl-5-phenyl-D-prolylglycyl]amino}-5'-deoxyuridine
-
-
cephalosporin C
-
50% inhibition at 0.014 mg/ml
Moenomycin
-
50% inhibition at 0.0106 mM
murgocil
-
a highly bioactive staphylococcal-specific inhibitor of intracellular membrane-associated enzyme MurG
N-({6-[(4-cyano-2-fluorobenzyl)oxy]naphthalen-2-yl}sulfonyl)-D-glutamic acid
-
-
N-p-chlorobiphenyl-vancomycin
-
50% inhibition at 0.00125 mM
NG-p-chlorobiphenyl-vancomycin
-
50% inhibition at 0.0214 mM
nisin
-
50% inhibition at 0.016 mg/ml
[1-hydroxy-2-(pyridin-3-yl)ethane-1,1-diyl]bis(phosphonic acid)
-
-
ramoplanin

-
-
ramoplanin
-
90% inhibition at 0.02 mM
tunicamycin

-
-
tunicamycin
-
50% inhibition at 0.0003 mg/ml
UDP

-
competitive inhibitor of UDP-GlcNAc donor, noncompetitive inhibitor of lipid I acceptor analogue
Vancomycin

-
50% inhibition at 0.009 mg/ml
Vancomycin
-
50% inhibition at 0.0157 mM
additional information

-
inhibitor binding mode, molecular modeling, overview
-
additional information
-
not inhibited by UMP, nor any other nucleotide diphosphate, UDP-N-acetylgalactosamine fails to show inhibitory activity even at millimolar concentrations
-
additional information
-
a transition state mimic is designed for MurG, containing a functionalised proline, linked through the alpha-carboxylic acid, via a spacer, to a uridine nucleoside. A set of 15 functionalised prolines are synthesised, using a convergent dipolar cycloaddition reaction, which are coupled via either a glycine, proline, sarcosine, or diester linkage to the 5'-position of uridine. The library of 18 final compounds are tested as inhibitors of Escherichia coli glycosyltransferase MurG, overview
-
additional information
-
beta-lactam potentiation screening to identify small molecules that augment the activity of beta-lactams against methicillin-resistant Staphylococcus aureus (MRSA), mechanistic characterization of a compound termed murgocil. Chemical synergy and cidality is achieved between murgocil and the beta-lactam imipenem mediated through MurG-dependent localization of penicillin-binding protein PBP2 to the division septum
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
1.5
2'-dUDP-N-acetyl-alpha-D-glucosamine
-
-
0.0028 - 0.037
biotin-labelled lipid I analogue
-
0.036 - 0.044
biotinylated citronellyl-lipid I
0.053
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-(6E,10E,14Z)-2,6,10,14-tetramethyl-hexadeca-2,6,10,14-tetraene
-
pH 7.9, 37°C
0.047
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-(7S)-2,7-dimethyloct-2-ene
-
pH 7.9, 37°C
0.024
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphospho-p-nitrophenol
-
pH 7.9, 37°C
0.022
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphobutane
-
pH 7.9, 37°C
0.029
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphododecane
-
pH 7.9, 37°C
0.052
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoicosane
-
pH 7.9, 37°C
0.039
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphotetradecane
-
pH 7.9, 37°C
0.02
Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
-
pH 7.9, 37°C
0.0028
MurNAc(Nepsilon-dansylpentapeptide)-pyrophosphoryl (R,S)-alpha-dihydroheptaprenol
-
-
-
0.0028 - 0.011
MurNAc(Neta-dansylpentapeptide)-diphosphoryl (R,S-alpha-dihydroheptaprenol)
0.553
synthetic substrate analogue 2
-
10 carbon citronellyl derivative
-
0.053
synthetic substrate analogue 7
-
0.045 - 0.15
UDP-N-acetylglucosamine
additional information
additional information
-
continous fluorescence coupled enzyme assay method
-
0.0028
biotin-labelled lipid I analogue

-
in the presence of high concentration (35%) of dimethylsulfoxide
-
0.037
biotin-labelled lipid I analogue
-
in the presence of MgCl2
-
0.036
biotinylated citronellyl-lipid I

-
in the presence of Mn2+
0.037
biotinylated citronellyl-lipid I
-
in the presence of Mg2+
0.044
biotinylated citronellyl-lipid I
-
in the absence of additional metal ions
0.0028
MurNAc(Neta-dansylpentapeptide)-diphosphoryl (R,S-alpha-dihydroheptaprenol)

-
wild-type enzyme
0.0029
MurNAc(Neta-dansylpentapeptide)-diphosphoryl (R,S-alpha-dihydroheptaprenol)
-
mutant R260A
0.0042
MurNAc(Neta-dansylpentapeptide)-diphosphoryl (R,S-alpha-dihydroheptaprenol)
-
mutant N198A
0.0055
MurNAc(Neta-dansylpentapeptide)-diphosphoryl (R,S-alpha-dihydroheptaprenol)
-
mutant T15A
0.0059
MurNAc(Neta-dansylpentapeptide)-diphosphoryl (R,S-alpha-dihydroheptaprenol)
-
mutant Y105A
0.0071
MurNAc(Neta-dansylpentapeptide)-diphosphoryl (R,S-alpha-dihydroheptaprenol)
-
mutant S191A
0.0085
MurNAc(Neta-dansylpentapeptide)-diphosphoryl (R,S-alpha-dihydroheptaprenol)
-
mutant N291A
0.009
MurNAc(Neta-dansylpentapeptide)-diphosphoryl (R,S-alpha-dihydroheptaprenol)
-
mutant H124A
0.011
MurNAc(Neta-dansylpentapeptide)-diphosphoryl (R,S-alpha-dihydroheptaprenol)
-
mutant E125A
0.053
synthetic substrate analogue 7

-
derivative containing a 20 carbon chain with a cis-allylic double bond
-
0.053
synthetic substrate analogue 7
-
-
-
0.0098
UDP-GlcNAc

-
mutant N291A
0.012
UDP-GlcNAc
-
mutant E125A
0.027
UDP-GlcNAc
-
wild-type enzyme
0.033
UDP-GlcNAc
-
mutant R260A
0.038
UDP-GlcNAc
-
mutant T15A
0.047
UDP-GlcNAc
-
mutant H124A
0.05
UDP-GlcNAc
-
mutant Y105A
0.056
UDP-GlcNAc
-
mutant N198A
1.03
UDP-GlcNAc
-
mutant S191A
0.045
UDP-N-acetylglucosamine

-
in the absence of additional metal ions
0.046
UDP-N-acetylglucosamine
-
in the presence of Mn2+
0.058
UDP-N-acetylglucosamine
-
in the presence of Mg2+
0.058
UDP-N-acetylglucosamine
-
in the presence of MgCl2
0.15
UDP-N-acetylglucosamine
-
-
0.15
UDP-N-acetylglucosamine
-
in the presence of high concentration (35%) of dimethylsulfoxide
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
F77E
-
site-directed mutagenesis, the mutant shows unaltered localization and cell growth comared to wild-type. Lipid II synthesis might be totally abrogated in mutant F77E explaining why the mutant is blocked in septation, cell wall synthesis is necessary for engulfment
S67E
-
site-directed mutagenesis, the mutant shows unaltered localization and cell growth comared to wild-type
V74E
-
site-directed mutagenesis, the mutant shows unaltered localization and cell growth comared to wild-type. Lipid II synthesis might be totally abrogated in mutant V74E explaining why the mutant is blocked in septation, cell wall synthesis is necessary for engulfment
V81E
-
site-directed mutagenesis, the mutant shows unaltered localization and cell growth comared to wild-type
E125A
-
amino acid substitution for evaluation of its role in the active site of MurG
H124A
-
amino acid substitution for evaluation of its role in the active site of MurG
H18A
-
amino acid substitution for evaluation of its role in the active site of MurG
L79E/F82E
-
site-directed mutagenesis, the mutant does not bind anionic phospholipids but can localize to the cell poles
N127A
-
amino acid substitution for evaluation of its role in the active site of MurG
N134A
-
amino acid substitution for evaluation of its role in the active site of MurG
N198A
-
amino acid substitution for evaluation of its role in the active site of MurG
N291A
-
amino acid substitution for evaluation of its role in the active site of MurG
Q288A
-
amino acid substitution for evaluation of its role in the active site of MurG
R260A
-
amino acid substitution for evaluation of its role in the active site of MurG
S191A
-
amino acid substitution for evaluation of its role in the active site of MurG
T15A
-
amino acid substitution for evaluation of its role in the active site of MurG
Y105A
-
amino acid substitution for evaluation of its role in the active site of MurG
additional information
-
none of the point mutations shows lethality and cells expressing MurG-GFP point mutants grow normally in absence of the wild-type murG allele
E268A

-
amino acid substitution for evaluation of its role in the active site of MurG
E268A
-
site-directed mutagenesis, in contrast to wild-type MurG, the MurG lipid interaction mutant often localizes to a single pole
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Mengin-Lecreulx, D.; Textier, L.; Rousseau, M.; van Heijenoort, J.
The murG gene of Escherichia coli codes for the UDP-N-acetylglucosamine:N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase involved in the membrane steps of peptidoglycan synthesis
J. Bacteriol.
173
4625-4636
1991
Escherichia coli
brenda
Ha, S.; Chang, E.; Lo, M.C.; Men, H.; Park, P.; Ge, M.; Walker, S.
The kinetik characterization of Escherichia coli MurG using synthetic substrate analogues
J. Am. Chem. Soc.
121
84158426
1999
Escherichia coli
-
brenda
Branstrom, A.A.; Midha, S.; Longley, C.B.; Han, K.; Baizman, E.R.; Axelrod, H.R.
Assay for identification of inhibitors for bacterial MraY translocase or MurG transferase
Anal. Biochem.
280
315-319
2000
Escherichia coli, Escherichia coli OV58-pUG18
brenda
Cudic, P.; Behenna, D.C.; Yu, M.K.; Kruger, R.G.; Szewczuk, L.M.; McCafferty, D.G.
Synthesis of P1-citronellyl-P2-alpha-D-pyranosyl pyrophosphates as potential substrates for the E. coli undecaprenyl-pyrophosphoryl-N-acetylglucoseaminyl transferase MurG
Bioorg. Med. chem. Lett.
11
3107-3110
2001
Escherichia coli
brenda
Men, H.; Park, P.; Walker, S.
Substrate synthesis and activity assay for MurG
J. Am. Chem. Soc.
120
2484-2485
1998
Escherichia coli
-
brenda
Ha, S.; Gross.B.; Walker, S.
E. coli MurG: A paradigm for a superfamily of glycosyltransferases
Curr. Drug Targets Infect. Disord.
1
201-213
2001
Escherichia coli
brenda
Chen, L.; Men, H.; Ha, S.; Ye, X.Y.; Brunner, L.; Hu, Y.; Walker, S.
Intrinsic lipid preferences and kinetic mechanism of Escherichia coli MuG
Biochemistry
41
6824-6833
2002
Escherichia coli
brenda
Hu, Y.; Chen, L.; Ha, S.; Gross, B.; Falcone, B.; Walker, D.; Mokhtarzadeh, M.; Walker, S.
Crystal structure of the MurG: UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases
Proc. Natl. Acad. Sci. USA
100
845-849
2003
Escherichia coli (P17443)
brenda
Auger, G.; van Heijenoort, J.; Mengin-Lecreulx, D.; Blanot, D.
A MurG assay which utilises a synthetic analogue of lipid I
FEMS Microbiol. Lett.
219
115-119
2003
Escherichia coli
brenda
Ravishankar, S.; Kumar, V.P.; Chandrakala, B.; Jha, R.K.; Solapure, S.M.; De Sousa, S.M.
Scintillation proximity assay for inhibitors of Escherichia coli MurG and, optionally, MraY
Antimicrob. Agents Chemother.
49
1410-1418
2005
Escherichia coli
brenda
Liu, H.; Ritter, T.K.; Sadamoto, R.; Sears, P.S.; Wu, M.; Wong, C.H.
Acceptor specificity and inhibition of the bacterial cell-wall glycosyltransferase MurG
Chembiochem
4
603-609
2003
Escherichia coli
brenda
van den Brink-van der Laan, E.; Boots, J.W.P.; Spelbrink, R.E.J.; Kool, G.M.; Breukink, E.; Killian, J.A.; de Kruijff, B.
Membrane interaction of the glycosyltransferase MurG: A special role for cardiolipin
J. Bacteriol.
185
3773-3779
2003
Escherichia coli
brenda
Love, K.R.; Swoboda, J.G.; Noren, C.J.; Walker, S.
Enabling glycosyltransferase evolution: a facile substrate-attachment strategy for phage-display enzyme evolution
Chembiochem
7
753-756
2006
Escherichia coli
brenda
Mohammadi, T.; Karczmarek, A.; Crouvoisier, M.; Bouhss, A.; Mengin-Lecreulx, D.; den Blaauwen, T.
The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli
Mol. Microbiol.
65
1106-1121
2007
Escherichia coli
brenda
Crouvoisier, M.; Auger, G.; Blanot, D.; Mengin-Lecreulx, D.
Role of the amino acid invariants in the active site of MurG as evaluated by site-directed mutagenesis
Biochimie
89
1498-1508
2007
Escherichia coli (P17443)
brenda
Bouhss, A.; Trunkfield, A.; Bugg, T.; Mengin-Lecreulx, D.
The biosynthesis of peptidoglycan lipid-linked intermediates
FEMS Microbiol. Rev.
32
208-233
2008
Escherichia coli
brenda
Trunkfield, A.E.; Gurcha, S.S.; Besra, G.S.; Bugg, T.D.
Inhibition of Escherichia coli glycosyltransferase MurG and Mycobacterium tuberculosis Gal transferase by uridine-linked transition state mimics
Bioorg. Med. Chem.
18
2651-2663
2010
Escherichia coli
brenda
Michaelis, A.M.; Gitai, Z.
Dynamic polar sequestration of excess MurG may regulate enzymatic function
J. Bacteriol.
192
4597-4605
2010
Escherichia coli
brenda
Ezhilarasan, V.; Sharma, O.; Pan, A.
In silico identification of potential drug targets in Clostridium difficile R20291: modeling and virtual screening analysis of a candidate enzyme MurG
Med. Chem. Res.
22
2692-2705
2012
Clostridioides difficile, Clostridioides difficile R20291
-
brenda
Brown, K.; Vial, S.C.; Dedi, N.; Westcott, J.; Scally, S.; Bugg, T.D.; Charlton, P.A.; Cheetham, G.M.
Crystal structure of the Pseudomonas aeruginosa MurG:UDP-GlcNAc substrate complex
Protein Pept. Lett.
20
1002-1008
2013
Pseudomonas aeruginosa (Q9HW01)
brenda
Mann, P.A.; Mueller, A.; Xiao, L.; Pereira, P.M.; Yang, C.; Ho Lee, S.; Wang, H.; Trzeciak, J.; Schneeweis, J.; Dos Santos, M.M.; Murgolo, N.; She, X.; Gill, C.; Balibar, C.J.; Labroli, M.; Su, J.; Flattery, A.; Sherborne, B.; Maier, R.; Tan, C.M.; Black, T.; Onder, K.; Kargman, S.; Monsma, F.J.; Pinho, M.G.; Schneider, T.; Roemer, T.
Murgocil is a highly bioactive staphylococcal-specific inhibitor of the peptidoglycan glycosyltransferase enzyme MurG
ACS Chem. Biol.
8
2442-2451
2013
Staphylococcus aureus
brenda
Gifford, S.M.; Meyer, P.
Enzyme function is regulated by its localization
Comput. Biol. Chem.
59 Pt B
113-122
2015
Bacillus subtilis
brenda
Egan, A.J.; Biboy, J.; vant Veer, I.; Breukink, E.; Vollmer, W.
Activities and regulation of peptidoglycan synthases
Philos. Trans. R. Soc. Lond. B Biol. Sci.
370
0000
2015
Escherichia coli, Micrococcus flavus
brenda