Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 2.4.1.19 - cyclomaltodextrin glucanotransferase and Organism(s) Niallia circulans and UniProt Accession P43379

for references in articles please use BRENDA:EC2.4.1.19
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     2 Transferases
         2.4 Glycosyltransferases
             2.4.1 Hexosyltransferases
                2.4.1.19 cyclomaltodextrin glucanotransferase
IUBMB Comments
Cyclomaltodextrins (Schardinger dextrins) of various sizes (6,7,8, etc. glucose units) are formed reversibly from starch and similar substrates. Will also disproportionate linear maltodextrins without cyclizing (cf. EC 2.4.1.25, 4-alpha-glucanotransferase).
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Niallia circulans
UNIPROT: P43379
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Niallia circulans
The expected taxonomic range for this enzyme is: Bacteria, Archaea, Eukaryota
Synonyms
cyclodextrin glycosyltransferase, cyclodextrin glucanotransferase, cyclomaltodextrin glucanotransferase, alpha-cgtase, beta-cgtase, toruzyme, cyclodextrin glucosyltransferase, alpha-cyclodextrin glycosyltransferase, cyclodextrin-glycosyltransferase, cyclodextrin glycosyl transferase, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
cyclodextrin glycosyltransferase
-
alpha-1,4-glucan 4-glycosyltransferase, cyclizing
-
-
-
-
alpha-cyclodextrin glucanotransferase
-
-
-
-
alpha-cyclodextrin glycosyltransferase
-
-
-
-
Bacillus macerans amylase
-
-
-
-
beta-cyclodextrin glucanotransferase
-
-
-
-
beta-cyclodextrin glycosyltransferase
BMA
-
-
-
-
CGTase
cyclodextrin glucanotransferase
cyclodextrin glucosyltransferase
-
-
cyclodextrin glycosyltransferase
cyclomaltodextrin glucotransferase
-
-
-
-
cyclomaltodextrin glycanotransferase
-
-
cyclomaltodextrin glycosyltransferase
gamma-cyclodextrin glycosyltransferase
-
-
-
-
konchizaimu
-
-
-
-
neutral-cyclodextrin glycosyltransferase
-
-
-
-
additional information
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
cyclization
-
-
-
-
hydrolysis
-
-
-
-
transglycosylation
-
-
-
-
hexosyl group transfer
PATHWAY SOURCE
PATHWAYS
-
-, -
SYSTEMATIC NAME
IUBMB Comments
(1->4)-alpha-D-glucan:(1->4)-alpha-D-glucan 4-alpha-D-[(1->4)-alpha-D-glucano]-transferase (cyclizing)
Cyclomaltodextrins (Schardinger dextrins) of various sizes (6,7,8, etc. glucose units) are formed reversibly from starch and similar substrates. Will also disproportionate linear maltodextrins without cyclizing (cf. EC 2.4.1.25, 4-alpha-glucanotransferase).
CAS REGISTRY NUMBER
COMMENTARY hide
9030-09-5
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
maltodextrin + glycosyl acceptor
beta-cyclodextrin + alpha-cyclodextrin + gamma-cyclodextrin
show the reaction diagram
-
-
-
?
maltodextrin + glycosyl acceptor
beta-cyclodextrin + alpha-cylodextrin + gamma-cyclodextrin
show the reaction diagram
-
-
-
?
soluble starch + glycosyl acceptor
beta-cyclodextrin + alpha-cyclodextrin + gamma-cyclodextrin
show the reaction diagram
-
-
-
?
soluble starch + glycosyl acceptor
beta-cyclodextrin + alpha-cylodextrin + gamma-cyclodextrin
show the reaction diagram
45.2% conversion yield
-
-
?
4,6-benzylidene-alpha-D-4-nitrophenylmaltoheptaose + D-glucose
4,6-benzylidene-maltopentaose + p-nitrophenyl-(alpha-1,4-glucopyranosyl)2-D-glucose
show the reaction diagram
-
blocked p-nitrophenyl-(alpha-1,4-glucopyranosyl)6-D-glucose , weak cleavage
-
-
?
alpha-cyclodextrin + glycosyl acceptor
beta-cyclodextrin + maltooligosaccharide
show the reaction diagram
-
-
-
-
r
alpha-cyclodextrin + sucrose
?
show the reaction diagram
-
ATCC 21783
-
-
r
amylopectin + glycosyl acceptor
cycloheptaamylose + cyclohexaamylose + exo-branched cyclohexaamylose
show the reaction diagram
amylopectin beta-limit dextrin + glycosyl acceptor
?
show the reaction diagram
-
-
-
-
r
amylose + glycosyl acceptor
?
show the reaction diagram
beta-cyclodextrin + D-glucose
?
show the reaction diagram
-
E 192, rapid degradation of beta-cyclodextrin by increasing the coupling reaction
-
-
r
beta-cyclodextrin + L-ascorbic acid
2-O-alpha-D-glucopyranosyl-L-ascorbic acid
show the reaction diagram
-
37% conversion rate
-
-
?
beta-cyclodextrin + maltose
?
show the reaction diagram
-
-
-
-
?
beta-cyclodextrin + maltose
alpha-cyclodextrin + maltooligosaccharide
show the reaction diagram
beta-cyclodextrin + maltotriose
alpha-cyclodextrin + maltooligosaccharide
show the reaction diagram
beta-cyclodextrin + salicin
?
show the reaction diagram
-
E 192, rapid degradation of beta-cyclodextrin by increasing the coupling reaction
-
-
?
beta-cyclodextrin + sucrose
?
show the reaction diagram
-
ATCC 21783
-
-
r
cassava starch
beta-cyclodextrin
show the reaction diagram
-
-
-
-
?
cycloamylose + D-glucose
?
show the reaction diagram
-
E 192, rapid degradation of beta-cyclodextrin by increasing the coupling reaction
-
-
?
cycloamylose + salicin
?
show the reaction diagram
-
E 192, rapid degradation of beta-cyclodextrin by increasing the coupling reaction
-
-
?
Glucidex 12 + glycosyl acceptor
beta-cyclodextrin
show the reaction diagram
-
E 192
-
r
Glucidex 2B + glycosyl acceptor
beta-cyclodextrin
show the reaction diagram
-
E 192
-
r
glycogen + acceptor
beta-cyclodextrin
show the reaction diagram
maltodextrin
beta-cyclodextrin
show the reaction diagram
-
intramolecular transglycosylation
-
-
?
maltodextrin + glycosyl acceptor
beta-cyclodextrin
show the reaction diagram
-
-
-
-
?
maltodextrin + glycosyl acceptor
beta-cyclodextrin + gamma-cyclodextrin + alpha-cyclodextrin
show the reaction diagram
38% conversion
-
-
?
maltodextrin + glycosyl acceptor
cyclodextrins
show the reaction diagram
-
-
-
-
?
maltoheptaose + glycosyl acceptor
beta-cyclodextrin
show the reaction diagram
maltohexaose + glycosyl acceptor
beta-cyclodextrin
show the reaction diagram
-
E 192
-
r
maltooligosaccharides + glycosyl acceptor
cyclodextrins
show the reaction diagram
maltopentaose + glycosyl acceptor
beta-cyclodextrin
show the reaction diagram
-
ATCC 21783
-
r
maltose + glycosyl acceptor
beta-cyclodextrin
show the reaction diagram
maltotetraose + glycosyl acceptor
beta-cyclodextrin
show the reaction diagram
-
ATCC 21783
-
r
maltotriose + glycosyl acceptor
beta-cyclodextrin
show the reaction diagram
p-nitrophenyl-(alpha-1,4-glucopyranosyl)2-D-glucose + glycosyl acceptor
p-nitrophenyl-D-glucose + p-nitrophenyl-alpha-1,4-glucopyranosyl-D-glucose + ?
show the reaction diagram
-
E 192
main product p-nitrophenyl-glucose when chain length of substrate is 4 glucose or less, p-nitrophenyl-alpha-1,4-glucopyranosyl-D-glucose when substrate chain length is 5 or more glucose residues
?
p-nitrophenyl-(alpha-1,4-glucopyranosyl)3-D-glucose + glycosyl acceptor
p-nitrophenyl alpha-D-glucoside + p-nitrophenyl-alpha-1,4-glucopyranosyl-D-glucose + p-nitrophenyl-(alpha-1,4-glucopyranosyl)2-D-glucose + ?
show the reaction diagram
-
E 192
product proportions 48:31:21
?
p-nitrophenyl-(alpha-1,4-glucopyranosyl)6-D-glucose + glycosyl acceptor
p-nitrophenyl-glucose + p-nitrophenyl-alpha-1,4-glucopyranosyl-D-glucose + p-nitrophenyl-(glucose)3 + p-nitrophenyl-(alpha-1,4-glucopyranosyl)3-D-glucose + p-nitrophenyl-(alpha-1,4-glucopyranosyl)4-D-glucose + ?
show the reaction diagram
-
E 192
product proportions 33:27:16:6:17
?
p-nitrophenyl-(alpha-1,4-glucopyranosyl)7-D-glucose + glycosyl acceptor
p-nitrophenyl-glucose + p-nitrophenyl-alpha-1,4-glucopyranosyl-D-glucose + p-nitrophenyl-(alpha-1,4-glucopyranosyl)2-D-glucose + p-nitrophenyl-(alpha-1,4-glucopyranosyl)3-D-glucose + p-nitrophenyl-(alpha-1,4-glucopyranosyl)4-D-glucose + p-nitrophenyl-(alpha-1,4-glucopyranosyl)5-D-glucose + ?
show the reaction diagram
-
E 192
product proportions 16:51:12:13:4:4
?
p-nitrophenyl-(glucose)5 + glycosyl acceptor
p-nitrophenyl alpha-D-glucoside + p-nitrophenyl 4-O-alpha-D-glucopyranosyl-alpha-D-glucopyranoside + p-nitrophenyl-(alpha-1,4-D-glucopyranosyl)2-D-glucose + p-nitrophenyl-(alpha-1,4-D-glucopyranosyl)3-D-glucose
show the reaction diagram
-
E 192
product proportions 32:50:12 6
?
p-nitrophenyl-(glucose)6 + glycosyl acceptor
p-nitrophenyl alpha-D-glucoside + p-nitrophenyl 4-O-alpha-D-glucopyranosyl-alpha-D-glucopyranoside + p-nitrophenyl-(alpha-1,4-glucopyranosyl)2-D-glucose + p-nitrophenyl-(alpha-1,4-glucopyranosyl)3-D-glucose + ?
show the reaction diagram
-
E 192
product proportions 18:53:21:8
?
soluble potato starch
alpha-cyclodextrin + beta-cyclodextrin + gamma-cyclodextrin
show the reaction diagram
-
-
ratio for alpha- to beta- to gamma-cyclodextrin 1:1.3:0.5
-
?
soluble starch + D-fructose
?
show the reaction diagram
-
-
-
-
r
soluble starch + D-galactose
?
show the reaction diagram
soluble starch + D-maltose
cyclodextrins
show the reaction diagram
-
-
-
-
r
soluble starch + D-sorbose
?
show the reaction diagram
-
-
-
-
r
soluble starch + D-xylose
?
show the reaction diagram
-
less efficient acceptor
-
-
r
soluble starch + glycosyl acceptor
alpha-cyclodextrin + beta cyclodextrin + gamma-cyclodextrin
show the reaction diagram
soluble starch + glycosyl acceptor
alpha-cyclodextrin + beta-cyclodextrin
show the reaction diagram
soluble starch + glycosyl acceptor
beta-cyclodextrin
show the reaction diagram
soluble starch + glycosyl acceptor
beta-cyclodextrin + gamma-cyclodextrin
show the reaction diagram
-
-
-
-
r
soluble starch + glycosyl acceptor
cyclodextrins
show the reaction diagram
soluble starch + glycosyl acceptor
Schardinger beta-dextrin
show the reaction diagram
soluble starch + H2O
cyclodextrins
show the reaction diagram
soluble starch + maltotriose
cyclodextrins
show the reaction diagram
-
-
-
-
r
soluble starch + sucrose
?
show the reaction diagram
-
-
-
-
r
starch
alpha-cyclodextrin
show the reaction diagram
-
-
-
-
?
starch
beta-cyclodextrin
show the reaction diagram
-
intramolecular transglycosylation
-
-
?
starch
beta-cyclodextrin + gamma-cyclodextrin
show the reaction diagram
-
-
-
?
starch + glycosyl acceptor
beta-cyclodextrin
show the reaction diagram
-
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
soluble starch + glycosyl acceptor
cyclodextrins
show the reaction diagram
-
-
beta-cyclodextrin is the main product
-
?
starch + glycosyl acceptor
beta-cyclodextrin
show the reaction diagram
-
-
-
-
?
additional information
?
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
CaCl2
activates at 1 mM
CoCl2
activates at 4 mM
Mg2+
-
protects enzyme from activity loss
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(+)-1-deoxynojirimycin
-
-
1-deoxynojirimycin
-
noncompetitive inhibitor , E 192
3-O-Methylglucose
-
E 192, 25% inhibition
acarbose
alpha-cyclodextrin
amygdalin
-
E 192, 75% inhibition
beta-cyclodextrin
cellobiose
-
E 192, 85% inhibition
D-glucose
D-mannose
-
E 192, 20% inhibition
D-xylose
-
E 192, 3% inhibition
dodecyl-beta-D-maltoside
-
E 192, 55% inhibition
ethanol
-
the enzyme keeps very good levels of alpha-cyclodextrin activity using starch or maltodextrin as substrates even at 20% ethanol (around 55-60%). The degradation of the alpha-cyclodextrin is strongly inhibited by ethanol, even at very low concentrations
gamma-cyclodextrin
helicin
-
E 192, 88% inhibition
heptyl-thio-glucoside
-
E 192, 81% inhibition
maltitol
-
E 192, 82% inhibition
maltose
methyl-alpha-D-glucoside
-
E 192, 80% inhibition
methyl-beta-glucoside
-
E 192, 76% inhibition
octyl-beta-D-glucoside
-
E 192, 46% inhibition
p-nitrophenyl-alpha-D-glucoside
-
E 192, 55% inhibition
p-nitrophenyl-beta-D-glucoside
-
E 192, 55% inhibition
palatinose
-
E 192, 68% inhibition
Salicin
starch
-
soluble potato starch or cassava starch
sucrose
-
E 192, 12% inhibition
Tetranitromethane
-
E 192
additional information
-
the enzyme shows substrate and product inhibition
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
bromobenzene
-
increases the yield of beta-cyclodextrin
cyclohexadec-8-ene-1-one
-
increases the yield of gamma-cyclodextrin
Cyclohexane
cyclotridecanone
-
increases the yield of gamma-cyclodextrin
Decanol
-
increases the yield of alpha-cyclodextrin
ethanol
Isopropanol
-
increases the yield of beta-cyclodextrin
n-butanol
-
increases the yield of alpha-cyclodextrin
Octanol
-
increases the yield of alpha-cyclodextrin
pentadecane
-
increases the yield of beta-cyclodextrin
tert-butanol
-
strain 251, increases the yield of cyclodextrin
Toluene
Trichloroethylene
-
increases the yield of beta-cyclodextrin
undecane
-
increases the yield of beta-cyclodextrin
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
5.9 - 10
alpha-cyclodextrin
0.4 - 1.31
beta-cyclodextrin
1.69
cassava starch
-
pH 6.4, 55°C, formation of beta-cyclodextrin
-
18.3
L-ascorbic acid
-
at pH 5.0 and 35°C
1.1
soluble potato starch
-
pH 6.4, 55°C, formation of beta-cyclodextrin
-
0.043
soluble starch
-
-
-
additional information
additional information
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
371 - 583
maltodextrin
1612
cassava starch
-
pH 6.4, 55°C, formation of beta-cyclodextrin
-
280 - 768
maltodextrin
1.66
p-nitrophenyl-(alpha-1,4-glucopyranosyl)2-D-glucose
-
E 192
0.833
p-nitrophenyl-(alpha-1,4-glucopyranosyl)3-D-glucose
-
E 192
0.833
p-nitrophenyl-(alpha-1,4-glucopyranosyl)4-D-glucose
-
E 192
0.833
p-nitrophenyl-(alpha-1,4-glucopyranosyl)5-D-glucose
-
E 192
0.833
p-nitrophenyl-(alpha-1,4-glucopyranosyl)6-D-glucose
-
E 192
0.25
p-nitrophenyl-(alpha-1,4-glucopyranosyl)7-D-glucose
-
E 192
127.5 - 803
soluble potato starch
-
9 - 329
starch
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
950
cassava starch
-
pH 6.4, 55°C, formation of beta-cyclodextrin
-
730
soluble potato starch
-
pH 6.4, 55°C, formation of beta-cyclodextrin
-
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1.7
(+)-1-deoxynojirimycin
-
-
0.001
acarbose
-
-
0.01255
alpha-cyclodextrin
-
at pH 6.5 and 50°C
0.00034 - 0.5
beta-cyclodextrin
65.4
D-glucose
-
-
0.00055
gamma-cyclodextrin
-
at pH 6.5 and 50°C
13.7
maltose
-
-
3.4
Salicin
-
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0011 - 7.37
acarbose
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
1650
-
ATCC 21783
183.8
-
E 192, cyclodextrin synthesis
265
-
beta-cyclization by strain BC251 enzyme
281
-
ATCC 21783
52
-
beta-cyclization by strain BC8 enzyme
88
-
E 192, dextrinizing-like activity
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
10.3
-
var. alkalophilus, ATCC 21783
4.5 - 4.7
4.5 - 5
-
ATCC 21783, crude enzyme, second pH optimum at 8.0-9.0
4.6
-
ATCC 21783 contains 3 isozymes, neutral, alkalic and acidic, possessing markedly different pH optima, 4.6, 7.0 and 9.5
5.5 - 5.8
5.5 - 7
-
strain B-4018
6.4
-
assay at
6.8
-
strain BC8 enzyme
7.5 - 8.5
-
var. alkalophilus ATCC 21783, second pH optimum at 4.5-4.7
8 - 9
8.6
two maxima at pH 6.0 and pH 8.6
9
-
ATCC 21783, immobilized enzyme, acid enzyme activity disappeared
9.5
-
ATCC 21783 contains 3 isozymes, neutral, alkalic and acidic, possessing markedly different pH optima, 4.6, 7.0 and 9.5
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
3.5 - 9.5
-
C31
4 - 10
-
ATCC 21783
4 - 9
-
enzyme immobilized on glyoxyl-agarose and free enzyme present similar pH/activities profiles, with two peaks at pH values of 5.5 and 7 and a minimum at pH 6.0-6.5 in both amylolytic and CGTase activities. Activities decrease after these two maximum values. The glyoxyl CGTase retains 30% of amylase activity at pH 4 and 50% at pH 9. The soluble enzyme retains 10% and 30%, respectively. In synthetic activities differences are not significant
5 - 10
-
ATCC 21783
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
30
-
strain BC8 enzyme
30 - 37
-
strain BIO-3m
37
-
var. alkalophilus, ATCC 21783
40
amylolytic and alpha-cyclizing activity assay at
50 - 55
-
strain B-4018
60 - 65
-
strain B-4018
TEMPERATURE RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
30 - 70
35 - 70
-
ATCC 21783
45 - 70
-
45°C: soluble enzyme shows about 50% of maximal activity, enzyme immobilized on glyoxyl-agarose shows about 60% of maximal activity, 70°C: soluble enzyme shows about 60% of maximal activity, enzyme immobilized on gyoxyl-agarose shows about 75% of maximal activity
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
additional information
-
conditions used to produce cyclodextrins with cyclodextrin glycosyltransferase from Bacillus circulans DF 9R are optimized using experimental designs. The optimum conditions for cyclodextrin production are: 5% (w/v) cassava starch, 15 U of enzyme per gram of substrate, reaction temperature of 56°C and pH 6.4. After 4 h, the proportion of starch converted to cyclodextrin reaches 66% (w/w) and the weight ratio of alpha-cyclodextrin:beta-cyclodextrin:gamma-cyclodextrin is 1.00:0.70:0.16
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
CDGT2_NIACI
713
0
77309
Swiss-Prot
-
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
103000
-
C31, gel filtration
33500
-
E 192, gel filtration superose 12 column
48500
-
E 192, Fractogel TSK HW 55 S
58000
-
strain ATCC 21783, gel filtration
70500
-
ATCC 21783, SDS-PAGE
78000
-
E 192, 2 isozymes, gel filtration, SDS-PAGE
80000
82000
-
strain BIO-3m, gel filtration
85000 - 88000
88000
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
monomer
additional information
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
D577A
the mutation increases the beta-cyclization activity of the enzyme (23% higher catalytic efficiency compared to the wild type)
D577G
the mutation increases the beta-cyclization activity of the enzyme (43.9% higher catalytic efficiency compared to the wild type)
D577I
the mutation decreases the beta-cyclization activity of the enzyme (14.5% lower catalytic efficiency compared to the wild type)
D577L
the mutation decreases the beta-cyclization activity of the enzyme (8.8% lower catalytic efficiency compared to the wild type)
D577R
the mutant exhibits beta-cyclization activity that is greater than that of the wild type by 3.3%
D577V
the mutation decreases the beta-cyclization activity of the enzyme (18.8% lower catalytic efficiency compared to the wild type)
Y89D
the mutant exhibits total and beta-cyclization activities that are greater than that of the wild type by 14.3% and 17.6%, respectively
Y89D/D577R
the mutant exhibits total and beta-cyclization activities that are greater than that of the wild type by 14% and 35.1%, respectively
Y89G
the mutant exhibits total and beta-cyclization activities that are greater than that of the wild type by 10.6% and 14.6%, respectively
Y89G/D577R
the mutant exhibits total and beta-cyclization activities that are greater than that of the wild type by 25% and 29.3%, respectively
Y89N
the mutant exhibits total and beta-cyclization activities that are greater than that of the wild type by 8.9% and 13%, respectively
Y89N/D577R
the mutant exhibits total and beta-cyclization activities that are greater than that of the wild type by 19.4% and 25.2%, respectively
A230V
the mutation confers increased resistance to inhibition by acarbose, the mutant shows highly increased IC50 compared to the wild-type enzyme
A315D
-
the mutation significantly changes the contribution of Ca2+ to the enzyme's thermostability
D577A
-
the mutation increases the beta-cyclization activity of the enzyme with 23% higher catalytic efficiency compared to the wild type. The mutation also increases the affinity for maltodextrin
D577E
-
the mutant displays an 11.2% increase in the beta-cyclization activity compared to the wild type enzyme
D577G
-
the mutation increases the beta-cyclization activity of the enzyme with 43.9% higher catalytic efficiency compared to the wild type. The mutation also increases the affinity for maltodextrin
D577H
-
the mutant displays a slight decrease in the beta-cyclization activity compared to the wild type enzyme
D577I
-
the mutation decreases the beta-cyclization activity of the enzyme
D577K
D577L
-
the mutation decreases the beta-cyclization activity of the enzyme
D577R
-
the mutant displays a 30.7% increase in the beta-cyclization activity compared to the wild type enzyme
D577V
-
the mutation decreases the beta-cyclization activity of the enzyme
F283L
the mutation confers increased resistance to inhibition by acarbose, the mutant shows highly increased IC50 compared to the wild-type enzyme
H140Q
the mutation confers increased resistance to inhibition by acarbose, the mutant shows highly increased IC50 compared to the wild-type enzyme
K192R
-
increase in half-life at 60°C from 9.7 min for the wild-type enzyme to 11.6 min for the mutant enzyme
K232E
the mutation confers increased resistance to inhibition by acarbose, the mutant shows highly increased IC50 compared to the wild-type enzyme
K427S/V615L
reduction of cyclodextrin-forming activity
L600E
the mutant shows wild type cyclization activities. The mutation decreases the product inhibition exhibited by beta-cyclodextrin as compared to the wild type enzyme
L600I
the mutant shows decreased cyclization activities compared to the wild type enzyme. The mutation decreases the product inhibition exhibited by beta-cyclodextrin as compared to the wild type enzyme
L600R
the mutant shows increased cyclization activities compared to the wild type enzyme. The mutation decreases the product inhibition exhibited by beta-cyclodextrin as compared to the wild type enzyme
L600Y
the mutant shows wild type cyclization activities. The mutation decreases the product inhibition exhibited by beta-cyclodextrin as compared to the wild type enzyme
N188D
-
increase in half-life at 60°C from 9.7 min for the wild-type enzyme to 35 min for the mutant enzyme
N188D/K192R
-
increase in half-life at 60°C from 9.7 min for the wild-type enzyme to 56 min for the mutant enzyme
Q179G
-
mutation to residue G which is conserved in all the corresponding enzymes except in that from Bacillus circulans Df 9R. Activity and kinetic parameters remain unchanged
Q179L
-
mutation results in a different ratio of cyclodextrin products with a ratio for alpha- to beta- to gamma-cyclodextrin 1:1.7:0.7, a lower catalytic efficiency, and a decreased ability to convert starch into cyclodextrins
T185S
-
increase in half-life at 60°C from 9.7 min for the wild-type enzyme to 14.8 min for the mutant enzyme
T186Y
-
decrease in half-life at 60°C from 9.7 min for the wild-type enzyme to 8 min for the mutant enzyme
additional information
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
10 - 11
-
ATCC 21783, stability decreases by immobilization
488831
5 - 10
-
ATCC 21783
488826
5 - 11
75% of maximal activity within this range
684450
5.5 - 9
6 - 10
6 - 8
6 - 9
6 - 9.5
7 - 8
-
strain E 192, maximum stability, only 14% decrease in activity at pH 7.0
488842
8
-
ATCC 21783, stable for about 2 weeks at 60°C
488831
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
25
-
if submitted to strong stirring, promoting the apparition of gas bubbles and shear forces, the enzyme becomes inactivated at 25°C. This inactivation does not occur if the enzyme is immobilized on any porous support
40 - 60
-
strain E 192, heat labile, rapid inactivation at temperatures above 45, remaining activity is 75% after 20 min at 40°C, 10% at 50°C and only 5% after 1 min at 60°C, protected by substrate and Ca2+ enzyme is stable for at least 24 h at pH 6.0, very stable at pH 7.0, 48 h without any loss of activity
55
-
half-life of soluble enzyme at pH 7 is 1.5 h. The immobilization of the enzyme on CNBr-agarose does not promote an increment in the stability of the enzyme at 55°C, although it prevents the effect of the stirred system
58 - 60
70
purified enzyme, 30 min, 64% remaining activity
75
-
strain B-4018
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
ATCC 2178, exceptionally stable
-
thermostability at 60°C and pH 7 reveals that the enzyme adsorbed on ionic supports is slightly less stable than the CNBr-agarose immobilized enzyme. The enzyme immobilized on Eupergit presents a very similar stability to this preparation while the glyoxyl-agarose is much more stable than any other preparation (by around a 15-fold factor) the glyoxyl-agarose immobilized enzyme is much more stable than any other preparation in presence of ethanol
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
DF9, 2 different types, smooth and rough variation
-
native enzyme 13.7fold from strain ATCC 21783 by ultrafiltration and consecutive starch adsorption
purification and concentration of CGTase by starch adsorption
-
rapid affinity purification
-
recombinant enzyme from Escherichia coli strain DH5alpha
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expressed in Escherichia coli JM109 cells
ATCC21783 expressed in Bacillus subtilis
-
expressed in Bacillus subtilis strain WB600
-
expressed in in Bacillus subtilis strain WB600
-
expression in Escherichia coli
expression of the enzyme in Escherichia coli strain DH5alpha
expression of wild-type and mutant enzymes in Bacillus subtilis strain DB104A
no. 38-2 cloned and sequenced
-
no. 8 cloned, sequenced and expressed in Escherichia coli
-
phylogenetic analysis, expression of the enzyme from strain BC8 in Escherichia coli strain JM103, and of the enzyme from strain BC251 in Bacillus subtilis strain DB104A
-
the cyclodextrin glucanotransferase gene is cloned into plasmid pYD1, which allows regulated expression, secretion, and detection. The expression of CGTase with a-agglutinin at the N-terminal end on the extracellular surface of Saccharomyces cerevisiae is confirmed by immunofluorescence microscopy. This surface-anchored CGTase gives the yeast the ability to directly utilize starch as a sole carbon source and the ability to produce the anticipated products, cyclodextrins, as well as glucose and maltose. The resulting glucose and maltose, which are efficient acceptors in the CGTase coupling reaction, could be consumed by yeast fermentation and thus facilitated cyclodextrin production. On the other hand, ethanol produced by the yeast may form a complex with cyclodextrin and shift the equilibrium in favor of cyclodextrin production. The yeast with immobilized CGTase produces 24.07 mg/ml cyclodextrins when it is incubated in yeast medium supplemented with 4% starch
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
synthesis
the enzyme can be applied in biotechnology for the production of cyclodextrins and oligosaccharides with novel properties
industry
-
cyclodextrin glucanotransferases are industrially important enzymes that produce a mixture of cyclic alpha-(1,4)-linked oligosaccharides, cyclodextrins, from starch, overview. Use of complexing agents during cyclodextrin synthesis and the variation in solubility of the different cyclodextrins to allow selective precipitation. Usage of the enzyme as immobilized biocatalyst
nutrition
synthesis
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Nakamura, N.; Horikoshi, K.
Purification and properties of neutral-cyclodextrin glycosyl-transferase of an alkalophilic Bacillus sp.
Agric. Biol. Chem.
40
1785-1791
1976
Geobacillus stearothermophilus, Niallia circulans, Priestia megaterium, Paenibacillus macerans, Bacillus sp. (in: Bacteria)
-
Manually annotated by BRENDA team
Kato, T.; Horikoshi, K.
Immobilzed cyclomaltodextrin glucanotransferase of an alkalophilic Bacillus sp. No. 38-2
Biotechnol. Bioeng.
26
595-598
1984
Geobacillus stearothermophilus, Niallia circulans, Priestia megaterium, Paenibacillus macerans, Bacillus sp. (in: Bacteria), Klebsiella pneumoniae
Manually annotated by BRENDA team
Maekelae, M.; Mattsson, P.; Schinina, M.E.; Korpela, T.
Purification and properties of cyclomaltodextrin glucanotransferase from an alkalophilic Bacillus
Biotechnol. Appl. Biochem.
10
414-427
1988
Niallia circulans, Paenibacillus macerans, Bacillus sp. (in: Bacteria), Klebsiella pneumoniae, Bacillus sp. (in: Bacteria) 1011, Paenibacillus macerans IAM1243
-
Manually annotated by BRENDA team
Pongsawasdi, P.; Yagisawa, M.
Purification and properties of cyclomaltodextrin glucanotransferase from Bacillus circulans
Agric. Biol. Chem.
52
1099-1103
1988
Niallia circulans, Priestia megaterium, Paenibacillus macerans, Bacillus sp. (in: Bacteria), Bacillus sp. (in: Bacteria) Ha3-3-2 / ATCC 39612, Niallia circulans C31
-
Manually annotated by BRENDA team
Fujita, Y.; Tsubouchi, H.; Inagi, Y.; Tomita, K.; Ozaki, A.; Nakanishi, K.
Purification and properties of cyclodextrin glycosyltransferase from Bacillus sp. AL-6
J. Ferment. Bioeng.
70
150-154
1990
Niallia circulans, Priestia megaterium, Bacillus subtilis, Paenibacillus macerans, Bacillus sp. (in: Bacteria), Bacillus sp. (in: Bacteria) AL-6, Bacillus subtilis 313
-
Manually annotated by BRENDA team
Akimaru, K.; Yagi, T.; Yamamoto, S.
Purification and properties of Bacillus coagulans cyclomaltodextrin glucanotransferase
J. Ferment. Bioeng.
71
322-328
1991
Geobacillus stearothermophilus, Niallia circulans, Weizmannia coagulans, Priestia megaterium, Bacillus subtilis, Paenibacillus macerans, Bacillus ohbensis, Bacillus sp. (in: Bacteria), Klebsiella oxytoca, Klebsiella pneumoniae, Geobacillus stearothermophilus TC-60, Bacillus subtilis 313
-
Manually annotated by BRENDA team
Bovetto, L.J.; Backer, D.P.; Villette, J.R.; Sicard, P.J.; Bouquelet, S.J.L.
Cyclomaltodextrin glucanotransferase from Bacillus circulans E 192. I. Purification and characterization of the enzyme
Biotechnol. Appl. Biochem.
15
48-58
1992
Geobacillus stearothermophilus, Alkalihalobacillus alcalophilus, Niallia circulans, Priestia megaterium, Paenibacillus macerans, Bacillus ohbensis, Klebsiella pneumoniae, Micrococcus sp., Niallia circulans E 192, Niallia circulans 8
Manually annotated by BRENDA team
Bovetto, L.J.; Villette, J.R.; Fontaine, I.F.; Sicard, P.J.; Bouquelet, S.J.L.
Cyclomaltodextrin glucanotransferase from Bacillus circulans E 192. II. Action Patterns
Biotechnol. Appl. Biochem.
15
59-68
1992
Niallia circulans, Klebsiella pneumoniae, Niallia circulans E 192, Niallia circulans 8
-
Manually annotated by BRENDA team
Fujiwara, S.; Kakihara, H.; Sakaguchi, K.; Imanaka, T.
Analysis of mutations in cyclodextrin glucanotransferase from Bacillus stearothermophilus which affect cyclization characteristics and thermostability
J. Bacteriol.
174
7478-7481
1992
Geobacillus stearothermophilus, Niallia circulans, Paenibacillus macerans, Klebsiella oxytoca, Geobacillus stearothermophilus NO2, Geobacillus stearothermophilus TC-91, Niallia circulans 8
Manually annotated by BRENDA team
Fujiwara, S.; Kakihara, H.; Woo, K.B.; Lejeune, A.; Kanemoto, M.; Sakaguchi, K.; Imanaka, T.
Cyclization characteristics of cyclodextrin glucanotransferase are conferred by the NH2-terminal region of the enzyme
Appl. Environ. Microbiol.
58
4016-4025
1992
Bacillus licheniformis, Bacillus sp. (in: Bacteria), Bacillus subtilis, Bacillus subtilis NA-1, Geobacillus stearothermophilus, Geobacillus stearothermophilus (P31797), Geobacillus stearothermophilus NO2, Klebsiella oxytoca, Klebsiella pneumoniae, Niallia circulans, Niallia circulans 8, Paenibacillus macerans, Paenibacillus macerans (P04830), Paenibacillus macerans IAM1243, Priestia megaterium
Manually annotated by BRENDA team
Shibuya, T.; Miwa, Y.; Nakano, M.; Yamauchi, T.; Chaen, H.; Sakai, S.; Kurimoto, M.
Enzymatic synthesis of a novel trisaccharide, glucosyl lactoside
Biosci. Biotechnol. Biochem.
57
56-60
1993
Geobacillus stearothermophilus, Niallia circulans, Paenibacillus macerans, Geobacillus stearothermophilus TC-91
Manually annotated by BRENDA team
Tomita, K.; Kaneda, M.; Kawamura, K.; Nakanishi, K.
Purification and properties of a cyclodextrin glucanotransferase from Bacillus autolyticus 11149 and selective formation of beta-cyclodextrin
J. Ferment. Bioeng.
75
89-92
1993
Geobacillus stearothermophilus, Bacillus autolyticus, Niallia circulans, Paenibacillus macerans, Bacillus sp. (in: Bacteria), Klebsiella oxytoca, Bacillus sp. (in: Bacteria) AL-6, Bacillus autolyticus 11149
-
Manually annotated by BRENDA team
Villette, J.R.; Helbecque, N.; Albani, J.R.; Sicard, P.J.; Bouquelet, J.L.
Cyclomaltodextrin glucanotransferase from Bacillus circulans E 192: nitration with tetranitromethane
Biotechnol. Appl. Biochem.
17
205-216
1993
Niallia circulans, Niallia circulans E 192
-
Manually annotated by BRENDA team
Nakamura, A.; Haga, K.; Yamane, K.
Four aromatic residues in the active center of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011: effects of replacements on substrate binding and cyclization characteristics
Biochemistry
33
9929-9936
1994
Geobacillus stearothermophilus, Niallia circulans, Bacillus licheniformis, Paenibacillus macerans, Bacillus ohbensis, Bacillus sp. (in: Bacteria), Klebsiella pneumoniae, Bacillus sp. (in: Bacteria) 1011, Bacillus sp. (in: Bacteria) 17-1, Bacillus sp. (in: Bacteria) B1018
Manually annotated by BRENDA team
Ferrarotti, S.A.; Rosso, A.M.; Marechal, M.A.; Krymkiewicz, N.; Marechal, L.R.
Isolation of two strains (S-R type) of Bacillus circulans and purification of a cyclomaltodextrin-glucanotransferase
Cell. Mol. Biol.
42
653-657
1996
Geobacillus stearothermophilus, Alkalihalobacillus alcalophilus, Niallia circulans, Weizmannia coagulans, Priestia megaterium, Bacillus subtilis, Lederbergia lentus, Paenibacillus macerans, Bacillus sp. (in: Bacteria), Klebsiella oxytoca, Niallia circulans DF9
Manually annotated by BRENDA team
Tonkova, A.
Bacterial cyclodextrin glucanotransferase
Enzyme Microb. Technol.
22
678-686
1998
Bacillus cereus, Bacillus cereus NCIMB 13123, Bacillus licheniformis, Bacillus ohbensis, Bacillus sp. (in: Bacteria), Bacillus sp. (in: Bacteria) 1011, Bacillus sp. (in: Bacteria) AL-6, Bacillus sp. (in: Bacteria) INMIA 1919, Bacillus sp. (in: Bacteria) INMIA A7/1, Bacillus sp. (in: Bacteria) INMIA T4, Bacillus sp. (in: Bacteria) INMIA t6, Geobacillus stearothermophilus, Geobacillus stearothermophilus N2, Klebsiella oxytoca, Klebsiella pneumoniae, Lederbergia lentus, Lysinibacillus sphaericus, Lysinibacillus sphaericus ATCC 7055, Micrococcus luteus, Niallia circulans, Niallia circulans 8, Paenibacillus macerans, Paenibacillus macerans IAM1243, Priestia megaterium, Priestia megaterium No5, Salimicrobium halophilum, Salimicrobium halophilum INMIA-3849, Thermoanaerobacterium thermosulfurigenes, Thermoanaerobacterium thermosulfurigenes EM1, Weizmannia coagulans
-
Manually annotated by BRENDA team
Yamamoto, T.; Shiraki, K.; Fujiwara, S.; Takagi, M.; Fukui, K.; Imanaka, T.
In vitro heat effect on functional and conformational changes of cyclodextrin glucanotransferase from hyperthermophilic archaea
Biochem. Biophys. Res. Commun.
265
57-61
1999
Geobacillus stearothermophilus, Niallia circulans, Niallia circulans 251, Niallia circulans 8, Thermoanaerobacterium thermosulfurigenes, Thermoanaerobacterium thermosulfurigenes EM1, Thermococcus sp., Thermococcus sp. (Q9UWN2), Thermococcus sp. B1001
Manually annotated by BRENDA team
Abelyan, V.A.; Balayan, A.M.; Manukyan, L.S.; Afyan, K.B.; Meliksetyan, V.S.; Andreasyan, N.A.; Markosyan, A.A.
Characteristics of cyclodextrin production using cyclodextrin glucanotransferases from various groups of microorganisms
Appl. Biochem. Microbiol.
38
616-624
2002
Geobacillus stearothermophilus, Alkalihalobacillus alcalophilus, Niallia circulans, Weizmannia coagulans, Salimicrobium halophilum, Bacillus licheniformis, Paenibacillus macerans, Thermoactinomyces vulgaris, Bacillus licheniformis B-4025, Paenibacillus macerans BIO-2m, Thermoactinomyces vulgaris Tac-3554, Geobacillus stearothermophilus B-4006, Salimicrobium halophilum BIO-12H BIO-13H, Niallia circulans BIO-3m, Bacillus licheniformis BIO-9m, Alkalihalobacillus alcalophilus BA-4229, Weizmannia coagulans BIO-13m, Alkalihalobacillus alcalophilus B-3103
Manually annotated by BRENDA team
Lee, S.H.; Kim, Y.W.; Lee, S.; Auh, J.H.; Yoo, S.S.; Kim, T.J.; Kim, J.W.; Kim, S.T.; Rho, H.J.; Choi, J.H.; Kim, Y.B.; Park, K.H.
Modulation of cyclizing activity and thermostability of cyclodextrin glucanotransferase and its application as an antistaling enzyme
J. Agric. Food Chem.
50
1411-1415
2002
Geobacillus stearothermophilus, Bacillus licheniformis, Paenibacillus macerans, Klebsiella pneumoniae, Niallia circulans (P43379), Geobacillus stearothermophilus NO2, Niallia circulans 251 (P43379), Geobacillus stearothermophilus ET1
Manually annotated by BRENDA team
Rashid, N.; Cornista, J.; Ezaki, S.; Fukui, T.; Atomi, H.; Imanaka, T.
Characterization of an archaeal cyclodextrin glucanotransferase with a novel C-terminal domain
J. Bacteriol.
184
777-784
2002
Bacillus sp. (in: Bacteria), Bacillus sp. (in: Bacteria) 1011, Geobacillus stearothermophilus, Geobacillus stearothermophilus (P31797), Klebsiella oxytoca (P08704), Niallia circulans, Niallia circulans (P43379), Niallia circulans 251, Niallia circulans 251 (P43379), Paenibacillus macerans (P31835), Thermoanaerobacterium thermosulfurigenes, Thermoanaerobacterium thermosulfurigenes EM1, Thermococcus kodakarensis (Q8X268), Thermococcus sp., Thermococcus sp. (Q9UWN2), Thermococcus sp. B1001, Thermococcus sp. B1001 (Q9UWN2)
Manually annotated by BRENDA team
Doukyu, N.; Kuwahara, H.; Aono, R.
Isolation of Paenibacillus illinoisensis that produces cyclodextrin glucanotransferase resistant to organic solvents
Biosci. Biotechnol. Biochem.
67
334-340
2003
Niallia circulans, Priestia megaterium, Salimicrobium halophilum, Paenibacillus macerans, Bacillus ohbensis, Bacillus sp. (in: Bacteria), Brevibacterium sp., Thermoanaerobacterium thermosulfurigenes, Paenibacillus illinoisensis, Paenibacillus illinoisensis ST-12K, Brevibacterium sp. 9605, Bacillus sp. (in: Bacteria) BE101, Niallia circulans 251
Manually annotated by BRENDA team
Rosso, A.; Ferrarotti, S.; Miranda, M.V.; Krymkiewicz, N.; Nudel, B.C.; Cascone, O.
Rapid affinity purification processes for cyclodextrin glycosyltransferase from Bacillus circulans
Biotechnol. Lett.
27
1171-1175
2005
Niallia circulans
Manually annotated by BRENDA team
Rimphanitchayakit, V.; Tonozuka, T.; Sakano, Y.
Construction of chimeric cyclodextrin glucanotransferases from Bacillus circulans A11 and Paenibacillus macerans IAM1243 and analysis of their product specificity
Carbohydr. Res.
340
2279-2289
2005
Paenibacillus macerans (O52766), Niallia circulans (Q9F5W3), Paenibacillus macerans IAM1243 (O52766), Paenibacillus macerans IAM1243, Niallia circulans A11 (Q9F5W3)
Manually annotated by BRENDA team
Tsuchiyama, Y.; Yamamoto, K.; Asou, T.; Okabe, M.; Yagi, Y.; Okamoto, R.
A novel process of cyclodextrin production by use of specific adsorbents. Part I. Screening of specific adsorbents
J. Ferment. Bioeng.
71
407-412
1991
Niallia circulans
-
Manually annotated by BRENDA team
Leemhuis, H.; Rozeboom, H.J.; Dijkstra, B.W.; Dijkhuizen, L.
Improved thermostability of Bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge
Proteins
54
128-134
2004
Niallia circulans
Manually annotated by BRENDA team
Wang, Z.; Qi, Q.; Wang, P.G.
Engineering of cyclodextrin glucanotransferase on the cell surface of Saccharomyces cerevisiae for improved cyclodextrin production
Appl. Environ. Microbiol.
72
1873-1877
2006
Niallia circulans, Niallia circulans 251
Manually annotated by BRENDA team
Qi, Q.; Zimmermann, W.
Cyclodextrin glucanotransferase: from gene to applications
Appl. Microbiol. Biotechnol.
66
475-485
2005
Bacillus licheniformis (P14014), Bacillus ohbensis (P27036), Bacillus sp. (in: Bacteria) (O82984), Bacillus sp. (in: Bacteria) (P05618), Bacillus sp. (in: Bacteria) (P17692), Bacillus sp. (in: Bacteria) (P30921), Bacillus sp. (in: Bacteria) (P31747), Bacillus sp. (in: Bacteria) (Q59239), Bacillus sp. (in: Bacteria) 1011 (P05618), Bacillus sp. (in: Bacteria) 1018 (P17692), Bacillus sp. (in: Bacteria) 17.1 (P30921), Bacillus sp. (in: Bacteria) 38-2 (P30921), Bacillus sp. (in: Bacteria) 6.6.3 (P31747), Bacillus sp. (in: Bacteria) A2-5a (O82984), Bacillus sp. (in: Bacteria) KC201 (Q59239), Brevibacillus brevis (O30565), Brevibacillus brevis CD162 (O30565), Cytobacillus firmus, Cytobacillus firmus 290-3, Evansella clarkii (Q8L3E0), Evansella clarkii 7384 (Q8L3E0), Geobacillus stearothermophilus (P31797), Klebsiella oxytoca (P08704), Klebsiella oxytoca M5a1 (P08704), Niallia circulans (P30920), Niallia circulans (P43379), Niallia circulans (Q9F5W3), Niallia circulans 251 (P43379), Niallia circulans 8 (P30920), Niallia circulans A11 (Q9F5W3), Nostoc sp. (Q8RMG0), Nostoc sp. 9229 (Q8RMG0), Paenibacillus macerans (P31835), Salipaludibacillus agaradhaerens, Salipaludibacillus agaradhaerens (Q7X3T0), Salipaludibacillus agaradhaerens DSM 8721 (Q7X3T0), Salipaludibacillus agaradhaerens DSM 9948, Salipaludibacillus agaradhaerens LS-3C, Streptococcus pyogenes, Thermoanaerobacter sp., Thermoanaerobacterium thermosulfurigenes (P26827), Thermococcus kodakarensis (Q8X268), Thermococcus sp. (Q9UWN2), Thermococcus sp. B1001 (Q9UWN2), Xanthomonas axonopodis, Xanthomonas campestris
Manually annotated by BRENDA team
Szerman, N.; Schroh, I.; Rossi, A.L.; Rosso, A.M.; Krymkiewicz, N.; Ferrarotti, S.A.
Cyclodextrin production by cyclodextrin glycosyltransferase from Bacillus circulans DF 9R
Biores. Technol.
98
2886-2891
2007
Niallia circulans, Niallia circulans DF 9R
Manually annotated by BRENDA team
Ferrarotti, S.A.; Bolivar, J.M.; Mateo, C.; Wilson, L.; Guisan, J.M.; Fernandez-Lafuente, R.
Immobilization and stabilization of a cyclodextrin glycosyltransferase by covalent attachment on highly activated glyoxyl-agarose supports
Biotechnol. Prog.
22
1140-1145
2006
Niallia circulans, Niallia circulans DF 9R
Manually annotated by BRENDA team
Vassileva, A.; Atanasova, N.; Ivanova, V.; Dhulster, P.; Tonkova, A.
Characterisation of cyclodextrin glucanotransferase from Bacillus circulans ATCC 21783 in terms of cyclodextrin production
Ann. Microbiol.
57
609-615
2007
Niallia circulans (P30920)
-
Manually annotated by BRENDA team
Kelly, R.M.; Leemhuis, H.; Gaetjen, L.; Dijkhuizen, L.
Evolution toward small molecule inhibitor resistance affects native enzyme function and stability, generating acarbose-insensitive cyclodextrin glucanotransferase variants
J. Biol. Chem.
283
10727-10734
2008
Niallia circulans (P30920), Niallia circulans 251 (P30920)
Manually annotated by BRENDA team
Kelly, R.M.; Dijkhuizen, L.; Leemhuis, H.
The evolution of cyclodextrin glucanotransferase product specificity
Appl. Microbiol. Biotechnol.
84
119-133
2009
Anaerobranca gottschalkii, Bacillus sp. (in: Bacteria) (P05618), Geobacillus stearothermophilus (P31797), Geobacillus stearothermophilus NO2 (P31797), Klebsiella pneumoniae, Klebsiella pneumoniae M5a1, Niallia circulans, Thermoanaerobacter sp., Thermoanaerobacterium thermosulfurigenes, Thermoanaerobacterium thermosulfurigenes EM1, Thermococcus sp., Thermococcus sp. B1001
Manually annotated by BRENDA team
Leemhuis, H.; Kelly, R.M.; Dijkhuizen, L.
Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications
Appl. Microbiol. Biotechnol.
85
823-835
2010
Alkalihalobacillus clausii, Alkalihalobacillus clausii E16, Anaerobranca gottschalkii, Bacillus licheniformis, Bacillus ohbensis, Bacillus sp. (in: Bacteria), Bacillus sp. (in: Bacteria) B1018, Bacillus sp. (in: Bacteria) BL-31, Bacillus sp. (in: Bacteria) G1, Bacillus sp. (in: Bacteria) KC201, Bacillus sp. (in: Bacteria) TS1-1, Brevibacillus brevis, Brevibacillus brevis CD162, Cytobacillus firmus, Evansella clarkii, Evansella clarkii 7384, Geobacillus stearothermophilus, Geobacillus stearothermophilus ET1, Klebsiella pneumoniae, Klebsiella pneumoniae M5a1, Niallia circulans, Paenibacillus campinasensis, Paenibacillus campinasensis H69-3, Paenibacillus graminis, Paenibacillus graminis NC22.13, Paenibacillus illinoisensis, Paenibacillus illinoisensis ST-12 K, Paenibacillus macerans, Paenibacillus pabuli, Paenibacillus pabuli US132, Paenibacillus sp., Priestia megaterium, Salipaludibacillus agaradhaerens, Salipaludibacillus agaradhaerens LS-3C, Thermoanaerobacter sp., Thermoanaerobacterium thermosulfurigenes, Thermoanaerobacterium thermosulfurigenes EM1
Manually annotated by BRENDA team
Costa, H.; del Canto, S.; Ferrarotti, S.; de Jimenez Bonino, M.B.
Structure-function relationship in cyclodextrin glycosyltransferase from Bacillus circulans DF 9R
Carbohydr. Res.
344
74-79
2009
Niallia circulans (C4MH58), Niallia circulans DF 9R (C4MH58)
Manually annotated by BRENDA team
Gaston, J.; Szerman, N.; Costa, H.; Krymkiewicz, N.; Ferrarotti, S.
Cyclodextrin glycosyltransferase from Bacillus circulans DF 9R: activity and kinetic studies
Enzyme Microb. Technol.
45
36-41
2009
Niallia circulans, Niallia circulans DF 9R
-
Manually annotated by BRENDA team
Costa, H.; Distefano, A.J.; Marino-Buslje, C.; Hidalgo, A.; Berenguer, J.; Biscoglio de Jimenez Bonino, M.; Ferrarotti, S.A.
The residue 179 is involved in product specificity of the Bacillus circulans DF 9R cyclodextrin glycosyltransferase
Appl. Microbiol. Biotechnol.
94
123-130
2012
Niallia circulans, Niallia circulans DF 9R
Manually annotated by BRENDA team
Li, Z.; Huang, M.; Gu, Z.; Holler, T.P.; Cheng, L.; Hong, Y.; Li, C.
Asp577 mutations enhance the catalytic efficiency of cyclodextrin glycosyltransferase from Bacillus circulans
Int. J. Biol. Macromol.
83
111-116
2016
Niallia circulans, Niallia circulans STB01
Manually annotated by BRENDA team
Li, C.; Ban, X.; Gu, Z.; Li, Z.
Calcium ion contribution to thermostability of cyclodextrin glycosyltransferase is closely related to calcium-binding site CaIII
J. Agric. Food Chem.
61
8836-8841
2013
Niallia circulans, Paenibacillus macerans
Manually annotated by BRENDA team
Huang, M.; Li, C.; Gu, Z.; Cheng, L.; Hong, Y.; Li, Z.
Mutations in cyclodextrin glycosyltransferase from Bacillus circulans enhance beta-cyclization activity and beta-cyclodextrin production
J. Agric. Food Chem.
62
11209-11214
2014
Niallia circulans, Niallia circulans STB01
Manually annotated by BRENDA team
Tao, X.; Su, L.; Wu, J.
Current studies on the enzymatic preparation 2-O-alpha-D-glucopyranosyl-L-ascorbic acid with cyclodextrin glycosyltransferase
Crit. Rev. Biotechnol.
39
249-257
2019
Geobacillus stearothermophilus, Alkalihalobacillus alcalophilus, Niallia circulans, Paenibacillus macerans, Thermoanaerobacter sp., Paenibacillus sp., Anaerobranca gottschalkii, Paenibacillus sp. JK-12, Paenibacillus sp. JB-13, Bacillus sp. SK 13.002, Alkalihalobacillus alcalophilus 7-12, Niallia circulans 251
Manually annotated by BRENDA team
Chen, S.; Li, Z.; Gu, Z.; Hong, Y.; Cheng, L.; Holler, T.P.; Li, C.
Leu600 mutations decrease product inhibition of the beta-cyclodextrin glycosyltransferase from Bacillus circulans STB01
Int. J. Biol. Macromol.
115
1194-1201
2018
Niallia circulans (A0A097CPM3), Niallia circulans STB01 (A0A097CPM3)
Manually annotated by BRENDA team
Li, Z.; Huang, M.; Gu, Z.; Holler, T.; Cheng, L.; Hong, Y.; Li, C.
Asp577 mutations enhance the catalytic efficiency of cyclodextrin glycosyltransferase from Bacillus circulans
Int. J. Biol. Macromol.
83
111-116
2016
Niallia circulans (P43379), Niallia circulans, Niallia circulans STB01 (P43379)
Manually annotated by BRENDA team
Li, C.; Xu, Q.; Gu, Z.; Chen, S.; Wu, J.; Hong, Y.; Cheng, L.; Li, Z.
Cyclodextrin glycosyltransferase variants experience different modes of product inhibition
J. Mol. Catal. B
133
203-210
2016
Niallia circulans, Paenibacillus macerans, Paenibacillus macerans JFB05-01, Niallia circulans STB01
-
Manually annotated by BRENDA team
Huang, M.; Ren, J.; Li, C.; Gu, Z.; Hong, Y.; Cheng, L.; Li, Z.
Double mutations enhance beta-cyclization activity of cyclodextrin glycosyltransferase from Bacillus circulans
J. Mol. Catal. B
133
S100-S105
2016
Niallia circulans (P43379), Niallia circulans STB01 (P43379)
-
Manually annotated by BRENDA team