Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 2.4.1.1 - glycogen phosphorylase and Organism(s) Arabidopsis thaliana and UniProt Accession Q9SD76

for references in articles please use BRENDA:EC2.4.1.1
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     2 Transferases
         2.4 Glycosyltransferases
             2.4.1 Hexosyltransferases
                2.4.1.1 glycogen phosphorylase
IUBMB Comments
This entry covers several enzymes from different sources that act in vivo on different forms of (1->4)-alpha-D-glucans. Some of these enzymes catalyse the first step in the degradation of large branched glycan polymers - the phosphorolytic cleavage of alpha-1,4-glucosidic bonds from the non-reducing ends of linear poly(1->4)-alpha-D-glucosyl chains within the polymers. The enzyme stops when it reaches the fourth residue away from an alpha-1,6 branching point, leaving a highly branched core known as a limit dextrin. The accepted name of the enzyme should be modified for each specific instance by substituting "glycogen" with the name of the natural substrate, e.g. maltodextrin phosphorylase, starch phosphorylase, etc.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Arabidopsis thaliana
UNIPROT: Q9SD76
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Arabidopsis thaliana
The enzyme appears in selected viruses and cellular organisms
Synonyms
glycogen phosphorylase, phosphorylase a, phosphorylase b, myophosphorylase, muscle phosphorylase, glycogen phosphorylase b, glycogen phosphorylase a, muscle glycogen phosphorylase, starch phosphorylase, maltodextrin phosphorylase, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
alpha-glucan phosphorylase H
-
starch phosphorylase H
-
1,4-alpha-glucan phosphorylase
-
-
-
-
alpha-glucan phosphorylase
-
-
-
-
amylopectin phosphorylase
-
-
-
-
amylophosphorylase
-
-
-
-
glucan phosphorylase
-
-
-
-
glucosan phosphorylase
-
-
-
-
glycogen phosphorylase
-
-
-
-
granulose phosphorylase
-
-
-
-
maltodextrin phosphorylase
-
-
-
-
muscle phosphorylase
-
-
-
-
muscle phosphorylase a and b
-
-
-
-
myophosphorylase
-
-
-
-
phosphorylase a
-
-
-
-
phosphorylase, alpha-glucan
-
-
-
-
polyphosphorylase
-
-
-
-
potato phosphorylase
-
-
-
-
starch phosphorylase
-
-
-
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hexosyl group transfer
-
-
-
-
PATHWAY SOURCE
PATHWAYS
-
-, -, -, -, -
SYSTEMATIC NAME
IUBMB Comments
(1->4)-alpha-D-glucan:phosphate alpha-D-glucosyltransferase
This entry covers several enzymes from different sources that act in vivo on different forms of (1->4)-alpha-D-glucans. Some of these enzymes catalyse the first step in the degradation of large branched glycan polymers - the phosphorolytic cleavage of alpha-1,4-glucosidic bonds from the non-reducing ends of linear poly(1->4)-alpha-D-glucosyl chains within the polymers. The enzyme stops when it reaches the fourth residue away from an alpha-1,6 branching point, leaving a highly branched core known as a limit dextrin. The accepted name of the enzyme should be modified for each specific instance by substituting "glycogen" with the name of the natural substrate, e.g. maltodextrin phosphorylase, starch phosphorylase, etc.
CAS REGISTRY NUMBER
COMMENTARY hide
9035-74-9
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
amylopectin + alpha-D-glucose 1-phosphate
amylopectin + phosphate
show the reaction diagram
-
-
-
?
dextrin + alpha-D-glucose 1-phosphate
dextrin + phosphate
show the reaction diagram
-
-
-
?
glycogen + alpha-D-glucose 1-phosphate
glycogen + phosphate
show the reaction diagram
-
-
-
?
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
-
SwissProt
Manually annotated by BRENDA team
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
PHS2_ARATH
841
0
95159
Swiss-Prot
other Location (Reliability: 3)
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
enzyme knockout mutant, no visible phenotype of plants, but nighttime maltose level increases four times
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Lu, Y.; Steichen, J.M.; Yao, J.; Sharkey, T.D.
The role of cytosolic alpha-glucan phosphorylase in maltose metabolism and the comparison of amylomaltase in Arabidopsis and Escherichia coli
Plant Physiol.
142
878-889
2006
Arabidopsis thaliana (Q9SD76)
Manually annotated by BRENDA team