Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
2'(3')-O-(N-formylmethionyl)-adenosine-5'-phosphate + CACCA-Phe
?
-
-
-
-
?
AcPhe-tRNA + pCpCp-puromycin
tRNA + AcPhe-pCpCp-puromycin
-
-
-
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
CACCA-AcLeu + puromycin
CACCA + AcLeu-puromycin
cytidylyl-(3',5'-phosphoryl)-3'-amino-3'-deoxy-3'-L-beta,beta-difluorophenylalanyl-N6,N6-dimethyladenosine + ?
?
-
-
-
-
?
cytidylyl-(3',5'-phosphoryl)-3'-amino-3'-deoxy-3'-L-phenylalanyl-N6,N6-dimethyladenosine + ?
?
-
-
-
-
-
formyl-Met-tRNA + puromycin
tRNA + formyl-Met-puromycin
-
-
-
-
ir
formylmethionyl-tRNA + alpha-hydroxy-puromycin
tRNA + formylmethionyl-alpha-hydroxy-puromycin
-
ester linkage
-
?
formylmethionyl-tRNA + puromycin
tRNA + formylmethionyl-puromycin
GlcNAc-MurNGlyc-L-Ala1-D-iGln2-meso-DapNH23-D-Ala4 + D-methionine
GlcNAc-MurNGlyc-L-Ala1-D-iGln2-meso-DapNH23-D-Met4 + D-alanine
-
-
-
-
?
L-Phe-tRNA + puromycin
tRNA + L-Phe-puromycin
-
-
-
-
?
Met-tRNA + cytidine-cytidine-hydroxypuromycin
tRNA + Met-cytidine-cytidine-hydroxypuromycin
-
-
-
-
?
Met-tRNA + cytidine-cytidineadenosine-phenylalanine-caproic acid
?
-
-
-
-
?
Met-tRNA + cytidine-hydroxypuromycin
tRNA + Met-cytidine-hydroxypuromycin
-
-
-
-
?
Met-tRNA + cytidine-puromycin
tRNA + Met-cytidine-puromycin
-
-
-
-
?
Met-tRNA + puromycin
tRNA + Met-puromycin
-
-
-
-
?
N-AcMet-tRNA + puromycin
tRNA + N-AcMet-puromycin
-
-
-
?
N-AcPhe-tRNA + puromycin
tRNA + N-AcPhe-puromycin
peptidyl-tRNA1 + alpha-aminoacyl-tRNA2
tRNA1 + peptidyl-amino-tRNA2
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl(aminoacyl-tRNA2)
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl-aminoacyl-tRNA2
phenylalanyl-tRNA + puromycin
tRNA + phenylalanyl-puromycin
polylysyl-tRNA + puromycin
tRNA + polylysyl-puromycin
polyphenylalanyl-tRNA + puromycin
tRNA + polyphenylalanyl-puromycin
-
-
-
?
additional information
?
-
AcPhe-tRNA + puromycin

tRNA + AcPhe-puromycin
-
-
-
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
-
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
-
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
-
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
-
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
-
-
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
reaction only in the presence of 70S ribosomes and the appropriate mRNA
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
AcPhe-tRNA-polyU-70S ribosome complex
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
AcPhe-tRNA-polyU-70S ribosome complex
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
AcPhe-tRNA-polyU-70S ribosome complex
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
AcPhe-tRNA-polyU-ribosome complex
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
AcPhe-tRNA-polyU-ribosome complex
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
-
-
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
AcPhe-tRNA-polyU-70S ribosome complex
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
-
-
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
-
-
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
AcPhe-tRNA-polyU-80S ribosome complex
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
AcPhe-tRNA-polyU-80S ribosome complex
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
AcPhe-tRNA-polyU-80S ribosome complex
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
-
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
-
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
-
-
?
AcPhe-tRNA + puromycin
tRNA + AcPhe-puromycin
-
-
-
-
?
CACCA-AcLeu + puromycin

CACCA + AcLeu-puromycin
-
-
-
?
CACCA-AcLeu + puromycin
CACCA + AcLeu-puromycin
-
fragment reaction
-
?
CACCA-AcLeu + puromycin
CACCA + AcLeu-puromycin
-
fragment reaction
-
?
CACCA-AcLeu + puromycin
CACCA + AcLeu-puromycin
-
fragment reaction
-
?
CACCA-AcLeu + puromycin
CACCA + AcLeu-puromycin
-
-
-
?
formylmethionyl-tRNA + puromycin

tRNA + formylmethionyl-puromycin
-
-
-
?
formylmethionyl-tRNA + puromycin
tRNA + formylmethionyl-puromycin
-
formylmethionyl-tRNA-AUG-70S ribosome complex
-
?
N-AcPhe-tRNA + puromycin

tRNA + N-AcPhe-puromycin
-
-
-
?
N-AcPhe-tRNA + puromycin
tRNA + N-AcPhe-puromycin
-
-
-
-
?
peptidyl-tRNA1 + alpha-aminoacyl-tRNA2

tRNA1 + peptidyl-amino-tRNA2
-
-
-
-
?
peptidyl-tRNA1 + alpha-aminoacyl-tRNA2
tRNA1 + peptidyl-amino-tRNA2
-
-
-
?
peptidyl-tRNA1 + alpha-aminoacyl-tRNA2
tRNA1 + peptidyl-amino-tRNA2
-
-
-
?
peptidyl-tRNA1 + alpha-aminoacyl-tRNA2
tRNA1 + peptidyl-amino-tRNA2
-
-
-
?
peptidyl-tRNA1 + alpha-aminoacyl-tRNA2
tRNA1 + peptidyl-amino-tRNA2
-
-
-
?
peptidyl-tRNA1 + alpha-aminoacyl-tRNA2
tRNA1 + peptidyl-amino-tRNA2
-
-
-
?
peptidyl-tRNA1 + alpha-aminoacyl-tRNA2
tRNA1 + peptidyl-amino-tRNA2
-
-
-
?
peptidyl-tRNA1 + alpha-aminoacyl-tRNA2
tRNA1 + peptidyl-amino-tRNA2
-
-
-
?
peptidyl-tRNA1 + alpha-aminoacyl-tRNA2
tRNA1 + peptidyl-amino-tRNA2
-
-
-
-
?
peptidyl-tRNA1 + alpha-aminoacyl-tRNA2
tRNA1 + peptidyl-amino-tRNA2
-
-
-
?
peptidyl-tRNA1 + alpha-aminoacyl-tRNA2
tRNA1 + peptidyl-amino-tRNA2
-
-
-
-
?
peptidyl-tRNA1 + alpha-aminoacyl-tRNA2
tRNA1 + peptidyl-amino-tRNA2
-
-
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2

tRNA1 + peptidyl(aminoacyl-tRNA2)
-
the enzyme forms L-Lys3->D-iAsn-L-Lys3 cross-links following cleavage of the L-Lys3-D-Ala4 peptide bond of the donor stem tetrapeptide
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl(aminoacyl-tRNA2)
-
the enzyme is highly specific for acyl donors containing a stem tetrapeptide ending in L-Lys3-D-Ala4 and for acyl acceptors containing a D-iAsn substituted L-Lys3 at the third position of the stem peptide
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl(aminoacyl-tRNA2)
-
-
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl(aminoacyl-tRNA2)
-
the enzyme synthesizes diaminopimelic acid (DAP)-DAP cross-links by the removal of the fourth D-alanine residue of an acyl donor tetrapeptide stem and the attachment of the remaining meso-DAP residue to the meso-DAP residue of a second acyl acceptor peptide
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl(aminoacyl-tRNA2)
-
-
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl(aminoacyl-tRNA2)
-
-
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl(aminoacyl-tRNA2)
-
-
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl(aminoacyl-tRNA2)
-
-
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl(aminoacyl-tRNA2)
-
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl(aminoacyl-tRNA2)
-
-
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl(aminoacyl-tRNA2)
-
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl(aminoacyl-tRNA2)
-
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl(aminoacyl-tRNA2)
-
-
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl(aminoacyl-tRNA2)
-
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl(aminoacyl-tRNA2)
-
-
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2

tRNA1 + peptidyl-aminoacyl-tRNA2
-
-
-
-
?
peptidyl-tRNA1 + aminoacyl-tRNA2
tRNA1 + peptidyl-aminoacyl-tRNA2
-
-
-
-
?
phenylalanyl-tRNA + puromycin

tRNA + phenylalanyl-puromycin
-
poly-U-directed translation system
-
?
phenylalanyl-tRNA + puromycin
tRNA + phenylalanyl-puromycin
-
poly-U-directed translation system
-
?
polylysyl-tRNA + puromycin

tRNA + polylysyl-puromycin
-
-
-
?
polylysyl-tRNA + puromycin
tRNA + polylysyl-puromycin
-
reaction only in the presence of 70S ribosomes and the appropriate mRNA
-
?
additional information

?
-
-
in the presence of elongation factor EF-G with GTP the poly-U-directed translation is much more resistant to inhibitors of the peptidyl-transferase
-
-
-
additional information
?
-
-
in the presence of elongation factor EF-G with GTP the poly-U-directed translation is much more resistant to inhibitors of the peptidyl-transferase
-
-
-
additional information
?
-
-
no activity with GlcNAc-MurNGlyc-L-Ala1-DiGln2-meso-DapNH23-D-Ala4-D-Ala5
-
-
-
additional information
?
-
-
the enzyme shows hydrolytic activity with nitrocefin (Km of 0.097 mM, kcat of 0.013 s-1, and kcat/Km of 145 1/sec*mM, at pH 10.0)
-
-
-
additional information
?
-
the enzyme shows hydrolytic activity with nitrocefin (Km of 0.097 mM, kcat of 0.013 s-1, and kcat/Km of 145 1/sec*mM, at pH 10.0)
-
-
-
additional information
?
-
-
the five isoforms are active in assays of peptidoglycan cross-linking (Mt5), beta-lactam acylation (Mt3), or both (Mt1, Mt2, and Mt4). Mt3 is the only isoform that is inactive in the crosslinking assay
-
-
-
additional information
?
-
the enzyme shows hydrolytic activity with nitrocefin (Km of 0.097 mM, kcat of 0.013 s-1, and kcat/Km of 145 1/sec*mM, at pH 10.0)
-
-
-
additional information
?
-
-
the peptidyltransferase center is the catalytic heart of the ribosome and its inner core is composed of five universally conserved 23S rRNA residues
-
-
-
additional information
?
-
-
deletion of ribosomal protein L27 is predicted to give only a minor reaction rate reduction. The N-terminus of L27 interacts with the A76 phosphate group of the A-site tRNA, explaining the observed impairment of A-site substrate binding for ribosomes lacking L27. The calculated energetics show that substrate puromycin can cause a downward pKa shift of L27 and that the reaction proceeds faster with the L27 N-terminus deprotonated, in contrast to the situation with aminoacyl-tRNA substrates. These results could explain the observed differences in pH dependence between the puromycin and C-puromycin reactions, where the former reaction has been seen to depend on an additional ionizing group besides the attacking amine, and this ionizing group is predicted to be the N-terminal amine of L27
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Kalpaxis, D.L.; Drainas D.
Inhibitory effect of spermine on ribosomal peptidyltransferase
Arch. Biochem. Biophys.
300
629-634
1993
Escherichia coli
brenda
Traut, R.R.; Monro, R.E.
The puromycin reaction and its relation to protein synthesis
J. Mol. Biol.
10
63-72
1964
Escherichia coli
brenda
Rychlik, I.
Release of lysine peptides by puromycin from polylysyl-transfer ribonucleic acid in the presence of ribosomes
Biochim. Biophys. Acta
114
425-427
1966
Escherichia coli
brenda
Cerna, J.; Rychlik, I.; Lichtenthaler, F.W.
The effect of the aminoacyl-4-aminohexosyl-cytosine group of antibiotics on ribosomal peptidyl transferase
FEBS Lett.
30
147-150
1973
Escherichia coli
brenda
Thompson, H.A.; Moldave, K.
Characterization of the peptidyltransferase reaction catalyzed by rat liver 60S ribosomal subunits
Biochemistry
13
1348-1353
1974
Rattus norvegicus
brenda
Fahnestock, S.; Neumann, H.; Rich, A.
Assay of ester and polyester formation by the ribosomal peptidyltransferase
Methods Enzymol.
30 F
489-497
1974
Escherichia coli
-
brenda
Lichtenthaler, F.W.; Cerna, J.; Rychlik, I.
The effect of oxamicetin and some amicetin analogs on ribosomal peptidyl transferase
FEBS Lett.
53
184-187
1975
Escherichia coli
brenda
Spirin, A.S.; Asatryan, L.S.
The effect of ribosomal peptidyl-transferase inhibitors is antagonized by elongation factor G with GTP
FEBS Lett.
70
101-104
1976
Escherichia coli, Escherichia coli MRE 600
brenda
Bhuta, P.; Zemlicka, J.
Inhibition of ribosomal peptidyltransferase with cytidyl-3 leads to 5-[2(3)-O-L-phenylalanyl]-L-adenosine
Biochem. Biophys. Res. Commun.
83
414-420
1978
Escherichia coli
brenda
Streltsov, S.; Kosenjuk, A.; Kukhanova, M.; Krayevsky, A.; Gottikh, B.
Kinetic constants for model substrates of peptidyltransferase donor site of Escherichia coli ribosomes
FEBS Lett.
104
279-283
1979
Escherichia coli, Escherichia coli MRE 600
brenda
Cerna, J.; Rychlik, I.
Phenylboric acids - A new group of peptidyl transferase inhibitors
FEBS Lett.
119
342-348
1980
Escherichia coli
-
brenda
Chladek, S.; Bhuta, P.
Inhibition of the peptidyltransferase acceptor site by 2(3)-O-cycloleucyl- and alpha-aminoisobutyryl derivatives of cytidylyl-(3-5)adenosine
Biochim. Biophys. Acta
696
212-217
1982
Escherichia coli, Escherichia coli MRE 600
brenda
Kalpaxis, D.L.; Theocharis, D.A.; Coutsogeorgopoulos, C.
Kinetic studies on ribosomal peptidyltransferase. The behaviour of the inhibitor blasticidin S
Eur. J. Biochem.
154
267-271
1986
Escherichia coli
brenda
Drainas D.; Kalpaxis, D.L.; Coutsogeorgopoulos, C.
Inhibition of ribosomal peptidyltransferase by chloramphenicol. Kinetic studies
Eur. J. Biochem.
164
53-58
1987
Escherichia coli
brenda
Synetos, D.; Coutsogeorgopoulos, C.
Studies on the catalytic rate constant of ribosomal peptidyltransferase
Biochim. Biophys. Acta
923
275-285
1987
Escherichia coli
brenda
Michelinaki, M.; Mamos, P.; Coutsogeorgopoulos, C.; Kalpaxis, D.L.
Aminoacyl and peptidyl analogs of chloramphenicol as slow-binding inhibitors of ribosomal peptidyltransferase: a new approach for evaluating their potency
Mol. Pharmacol.
51
139-146
1997
Escherichia coli
brenda
Ioannou, M.; Coutsogeorgopoulos, C.; Drainas, D.
Determination of eukaryotic peptidyltransferase activity by pseudo-first-order kinetic analysis
Anal. Biochem.
247
115-122
1997
Oryctolagus cuniculus
brenda
Michelinaki, M.; Spanos, A.; Coutsogeorgopoulos, C.; Kalpaxis, D.L.
New aspects on the kinetics of activation of ribosomal peptidyltransferase-catalyzed peptide bond formation by monovalent ions and spermine
Biochim. Biophys. Acta
1342
182-190
1997
Escherichia coli
brenda
Ioannou, M.; Coutsogeorgopoulos, C.
Kinetic studies on the activation of eukaryotic peptidyltransferase by potassium
Arch. Biochem. Biophys.
345
325-331
1997
Oryctolagus cuniculus
brenda
Ioannou, M.; Coutsogeorgopoulos, C.; Synetos, D.
Kinetics of inhibition of rabbit reticulocyte peptidyltransferase by anisomycin and sparsomycin
Mol. Pharmacol.
53
1089-1096
1998
Oryctolagus cuniculus
brenda
Karahalios, P.; Mamos, P.; Karigiannis, G.; Kalpaxis, D.L.
Structure/function correlation of spermine-analog-induced modulation of peptidyltransferase activity
Eur. J. Biochem.
258
437-444
1998
Escherichia coli
brenda
Thompson, J.; Kim, D.F.; O'Connor, M.; Lieberman, K.R.; Bayfield, M.A.; Gregory, S.T.; Green, R.; Noller, H.F.; Dahlberg, A.E.
Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit
Proc. Natl. Acad. Sci. USA
98
9002-9007
2001
Geobacillus stearothermophilus
brenda
Dresios, J.; Panopoulos, P.; Frantziou, C.P.; Synetos, D.
Yeast Ribosomal Protein Deletion Mutants Possess Altered Peptidyltransferase Activity and Different Sensitivity to Cycloheximide
Biochemistry
40
8101-8108
2001
Saccharomyces cerevisiae
brenda
Dresios, J.; Panopoulos, P.; Suzuki, K.; Synetos, D.
A dispensable yeast ribosomal protein optimizes peptidyltransferase activity and affects translocation
J. Biol. Chem.
278
3314-3322
2003
Saccharomyces cerevisiae
brenda
Seila, A.C.; Okuda, K.; Nunez, S.; Seila, A.F.; Strobel, S.A.
Kinetic isotope effect analysis of the ribosomal peptidyl transferase reaction
Biochemistry
44
4018-4027
2005
Escherichia coli
brenda
Bayfield, M.A.; Thompson, J.; Dahlberg, A.E.
The A2453-C2499 wobble base pair in Escherichia coli 23S ribosomal RNA is responsible for pH sensitivity of the peptidyltransferase active site conformation
Nucleic Acids Res.
32
5512-5518
2004
Escherichia coli
brenda
Moore, P.B.; Steitz, T.A.
After the ribosome structures: How does peptidyl transferase work?
RNA
9
155-159
2003
Haloarcula marismortui
brenda
Curtis, N.A.; Brown, C.; Boxall, M.; Boulton, M.G.
Modified peptidoglycan transpeptidase activity in a carbenicillin-resistant mutant of Pseudomonas aeruginosa 18s
Antimicrob. Agents Chemother.
14
246-251
1978
Pseudomonas aeruginosa
brenda
Long, K.S.; Hansen, L.H.; Jakobsen, L.; Vester, B.
Interaction of pleuromutilin derivatives with the ribosomal peptidyl transferase center
Antimicrob. Agents Chemother.
50
1458-1462
2006
Escherichia coli
brenda
Okuda, K.; Seila, A.C.; Strobel, S.A.
Uncovering the enzymatic pKa of the ribosomal peptidyl transferase reaction utilizing a fluorinated puromycin derivative
Biochemistry
44
6675-6684
2005
Escherichia coli
brenda
Polacek, N.; Mankin, A.S.
The ribosomal peptidyl transferase center: structure, function, evolution, inhibition
Crit. Rev. Biochem. Mol. Biol.
40
285-311
2005
Deinococcus radiodurans, Escherichia coli, Haloarcula marismortui, Mycobacterium smegmatis
brenda
Wohlgemuth, I.; Beringer, M.; Rodnina, M.V.
Rapid peptide bond formation on isolated 50S ribosomal subunits
EMBO Rep.
7
699-703
2006
Escherichia coli
brenda
Erlacher, M.D.; Lang, K.; Wotzel, B.; Rieder, R.; Micura, R.; Polacek, N.
Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2-OH at A2451 of 23S rRNA
J. Am. Chem. Soc.
128
4453-4459
2006
Escherichia coli
brenda
Feinberg, J.S.; Joseph, S.
A conserved base-pair between tRNA and 23 S rRNA in the peptidyl transferase center is important for peptide release
J. Mol. Biol.
364
1010-1020
2006
Escherichia coli
brenda
Schmeing, T.M.; Huang, K.S.; Strobel, S.A.; Steitz, T.A.
An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA
Nature
438
520-524
2005
Haloarcula marismortui
brenda
Erlacher, M.D.; Lang, K.; Shankaran, N.; Wotzel, B.; Huettenhofer, A.; Micura, R.; Mankin, A.S.; Polacek, N.
Chemical engineering of the peptidyl transferase center reveals an important role of the 2-hydroxyl group of A2451
Nucleic Acids Res.
33
1618-1627
2005
Thermus aquaticus
brenda
Rakauskaite, R.; Dinman, J.D.
rRNA mutants in the yeast peptidyltransferase center reveal allosteric information networks and mechanisms of drug resistance
Nucleic Acids Res.
36
1497-1507
2008
Saccharomyces cerevisiae
brenda
Rodriguez-Correa, D.; Dahlberg, A.E.
Kinetic and thermodynamic studies of peptidyltransferase in ribosomes from the extreme thermophile Thermus thermophilus
RNA
14
2314-2318
2008
Thermus thermophilus
brenda
Miller, K.; Dunsmore, C.J.; Fishwick, C.W.; Chopra, I.
Linezolid and tiamulin cross-resistance in Staphylococcus aureus mediated by point mutations in the peptidyl transferase center
Antimicrob. Agents Chemother.
52
1737-1742
2008
Thermus thermophilus
brenda
Yang, R.; Cruz-Vera, L.R.; Yanofsky, C.
23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction
J. Bacteriol.
191
3445-3450
2009
Escherichia coli
brenda
Toh, S.M.; Mankin, A.S.
An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors
J. Mol. Biol.
380
593-597
2008
Escherichia coli
brenda
Ge, X.; Roux, B.
Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials
J. Mol. Recognit.
23
128-141
2010
Haloarcula marismortui
brenda
Long, K.S.; Poehlsgaard, J.; Hansen, L.H.; Hobbie, S.N.; Boettger, E.C.; Vester, B.
Single 23S rRNA mutations at the ribosomal peptidyl transferase centre confer resistance to valnemulin and other antibiotics in Mycobacterium smegmatis by perturbation of the drug binding pocket
Mol. Microbiol.
71
1218-1227
2009
Mycobacterium smegmatis
brenda
Voorhees, R.M.; Weixlbaumer, A.; Loakes, D.; Kelley, A.C.; Ramakrishnan, V.
Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome
Nat. Struct. Mol. Biol.
16
528-533
2009
Haloarcula marismortui
brenda
Hsiao, C.; Williams, L.D.
A recurrent magnesium-binding motif provides a framework for the ribosomal peptidyl transferase center
Nucleic Acids Res.
37
3134-3142
2009
Haloarcula marismortui
brenda
Wilson, D.N.; Schluenzen, F.; Harms, J.M.; Starosta, A.L.; Connell, S.R.; Fucini, P.
The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning
Proc. Natl. Acad. Sci. USA
105
13339-13344
2008
Deinococcus radiodurans
brenda
Simonovic, M.; Steitz, T.A.
Cross-crystal averaging reveals that the structure of the peptidyl-transferase center is the same in the 70S ribosome and the 50S subunit
Proc. Natl. Acad. Sci. USA
105
500-505
2008
Thermus thermophilus
brenda
McCusker, K.P.; Fujimori, D.G.
The chemistry of peptidyltransferase center-targeted antibiotics: enzymatic resistance and approaches to countering resistance
ACS Chem. Biol.
7
64-72
2012
Escherichia coli
brenda
Long, K.S.; Munck, C.; Andersen, T.M.; Schaub, M.A.; Hobbie, S.N.; Boettger, E.C.; Vester, B.
Mutations in 23S rRNA at the peptidyl transferase center and their relationship to linezolid binding and cross-resistance
Antimicrob. Agents Chemother.
54
4705-4713
2010
Mycobacterium smegmatis, Mycobacterium smegmatis SZ558
brenda
Burakovsky, D.E.; Sergiev, P.V.; Steblyanko, M.A.; Konevega, A.L.; Bogdanov, A.A.; Dontsova, O.A.
The structure of helix 89 of 23S rRNA is important for peptidyl transferase function of Escherichia coli ribosome
FEBS Lett.
585
3073-3078
2011
Escherichia coli
brenda
Wang, Y.; Shen, J.; Schroeder, S.
Nucleotide dynamics at the A-site cleft in the peptidyltransferase center of H. marismortui 50S ribosomal subunits
J. Phys. Chem. Lett.
3
1007-1010
2012
Haloarcula marismortui
brenda
Ramu, H.; Vazquez-Laslop, N.; Klepacki, D.; Dai, Q.; Piccirilli, J.; Micura, R.; Mankin, A.S.
Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center
Mol. Cell
41
321-330
2011
Neurospora crassa
brenda
Chirkova, A.; Erlacher, M.D.; Clementi, N.; Zywicki, M.; Aigner, M.; Polacek, N.
The role of the universally conserved A2450-C2063 base pair in the ribosomal peptidyl transferase center
Nucleic Acids Res.
38
4844-4855
2010
Thermus aquaticus
brenda
Kostopoulou, O.; Kourelis, T.; Mamos, P.; Magoulas, G.; Kalpaxis, D.
Insights into the chloramphenicol inhibition effect on peptidyl transferase activity, using two new analogs of the drug
Open Enz. Inhib. J.
4
1-10
2011
Escherichia coli
-
brenda
Dunkle, J.A.; Xiong, L.; Mankin, A.S.; Cate, J.H.
Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action
Proc. Natl. Acad. Sci. USA
107
17152-17157
2010
Escherichia coli
brenda
Rakauskaite, R.; Dinman, J.D.
Mutations of highly conserved bases in the peptidyltransferase center induce compensatory rearrangements in yeast ribosomes
RNA
17
855-864
2011
Saccharomyces cerevisiae
brenda
Lecoq, L.; Dubee, V.; Triboulet, S.; Bougault, C.; Hugonnet, J.E.; Arthur, M.; Simorre, J.P.
Structure of Enterococcus faecium L,D-transpeptidase acylated by ertapenem provides insight into the inactivation mechanism
ACS Chem. Biol.
8
1140-1146
2013
Enterococcus faecium
brenda
Boeth, D.; Steiner, E.M.; Stadler, D.; Lindqvist, Y.; Schnell, R.; Schneider, G.
Structure of LdtMt2, an L,D-transpeptidase from Mycobacterium tuberculosis
Acta Crystallogr. Sect. D
69
432-441
2013
Mycobacterium tuberculosis, Mycobacterium tuberculosis (O53223), Mycobacterium tuberculosis CDC 1551 (O53223)
brenda
Cordillot, M.; Dubee, V.; Triboulet, S.; Dubost, L.; Marie, A.; Hugonnet, J.E.; Arthur, M.; Mainardi, J.L.
In vitro cross-linking of Mycobacterium tuberculosis peptidoglycan by L,D-transpeptidases and inactivation of these enzymes by carbapenems
Antimicrob. Agents Chemother.
57
5940-5945
2013
Mycobacterium tuberculosis
brenda
Silva, J.R.; Govender, T.; Maguire, G.E.; Kruger, H.G.; Lameira, J.; Roitberg, A.E.; Alves, C.N.
Simulating the inhibition reaction of Mycobacterium tuberculosis L,D-transpeptidase 2 by carbapenems
Chem. Commun. (Camb.)
51
12560-12562
2015
Mycobacterium tuberculosis
brenda
Yanshina, D.D.; Bulygin, K.N.; Malygin, A.A.; Karpova, G.G.
Hydroxylated histidine of human ribosomal protein uL2 is involved in maintaining the local structure of 28S rRNA in the ribosomal peptidyl transferase center
FEBS J.
282
1554-1566
2015
Escherichia coli
brenda
Farias, S.T.; Rego, T.G.; Jose, M.V.
Origin and evolution of the Peptidyl Transferase Center from proto-tRNAs
FEBS open bio
4
175-178
2014
Thermus thermophilus
brenda
Bernal-Cabas, M.; Ayala, J.A.; Raivio, T.L.
The Cpx envelope stress response modifies peptidoglycan cross-linking via the L,D-transpeptidase LdtD and the novel protein YgaU
J. Bacteriol.
197
603-614
2015
Escherichia coli
brenda
Brammer Basta, L.A.; Ghosh, A.; Pan, Y.; Jakoncic, J.; Lloyd, E.P.; Townsend, C.A.; Lamichhane, G.; Bianchet, M.A.
Loss of a functionally and structurally distinct LD-transpeptidase, LdtMt5, compromises cell wall integrity in Mycobacterium tuberculosis
J. Biol. Chem.
290
25670-25685
2015
Mycobacterium tuberculosis, Mycobacterium tuberculosis (P9WKV2), Mycobacterium tuberculosis CDC 1551 (P9WKV2)
brenda
Silva, J.R.; Roitberg, A.E.; Alves, C.N.
Catalytic mechanism of L,D-transpeptidase 2 from Mycobacterium tuberculosis described by a computational approach: insights for the design of new antibiotics drugs
J. Chem. Inf. Model.
54
2402-2410
2014
Mycobacterium tuberculosis, Mycobacterium tuberculosis (O53223), Mycobacterium tuberculosis CDC 1551 (O53223)
brenda
Sanders, A.N.; Wright, L.F.; Pavelka, M.S.
Genetic characterization of mycobacterial L,D-transpeptidases
Microbiology
160
1795-1806
2014
Mycobacterium smegmatis, Mycobacterium smegmatis mc(2)155 / ATCC 700084, Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv
brenda
Triboulet, S.; Bougault, C.M.; Laguri, C.; Hugonnet, J.E.; Arthur, M.; Simorre, J.P.
Acyl acceptor recognition by Enterococcus faecium L,D-transpeptidase Ldtfm
Mol. Microbiol.
98
90-100
2015
Enterococcus faecium
brenda
Maracci, C.; Wohlgemuth, I.; Rodnina, M.V.
Activities of the peptidyl transferase center of ribosomes lacking protein L27
RNA
21
2047-2052
2015
Escherichia coli, Escherichia coli IW312
brenda