Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

Reference on EC 2.3.1.286 - protein acetyllysine N-acetyltransferase

Please use the Reference Search for a specific query.
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Holbourn, K.P.; Lloyd, M.D.; Thompson, A.S.; Threadgill, M.D.; Acharya, K.R.
Cloning, purification, crystallization and preliminary crystallographic analysis of the human histone deacetylase sirtuin 1
Acta Crystallogr. Sect. F
67
461-463
2011
Homo sapiens (Q96EB6), Homo sapiens
Manually annotated by BRENDA team
Maurer, B.; Rumpf, T.; Scharfe, M.; Stolfa, D.A.; Schmitt, M.L.; He, W.; Verdin, E.; Sippl, W.; Jung, M.
Inhibitors of the NAD(+)-dependent protein desuccinylase and demalonylase Sirt5
ACS Med. Chem. Lett.
3
1050-1053
2012
Homo sapiens (Q8IXJ6), Homo sapiens (Q96EB6), Homo sapiens (Q9NTG7)
Manually annotated by BRENDA team
Madabushi, A.; Hwang, B.J.; Jin, J.; Lu, A.L.
Histone deacetylase SIRT1 modulates and deacetylates DNA base excision repair enzyme thymine DNA glycosylase
Biochem. J.
456
89-98
2013
Homo sapiens (Q96EB6), Homo sapiens
Manually annotated by BRENDA team
Wang, J.X.; Yi, Y.; Li, Y.W.; Cai, X.Y.; He, H.W.; Ni, X.C.; Zhou, J.; Cheng, Y.F.; Jin, J.J.; Fan, J.; Qiu, S.J.
Down-regulation of sirtuin 3 is associated with poor prognosis in hepatocellular carcinoma after resection
BMC Cancer
14
297
2014
Homo sapiens (Q9NTG7)
Manually annotated by BRENDA team
Vaziri, H.; Dessain, S.K.; Ng Eaton, E.; Imai, S.I.; Frye, R.A.; Pandita, T.K.; Guarente, L.; Weinberg, R.A.
hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase
Cell
107
149-159
2001
Homo sapiens (Q96EB6)
Manually annotated by BRENDA team
Asher, G.; Gatfield, D.; Stratmann, M.; Reinke, H.; Dibner, C.; Kreppel, F.; Mostoslavsky, R.; Alt, F.W.; Schibler, U.
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
Cell
134
317-328
2008
Homo sapiens (Q96EB6)
Manually annotated by BRENDA team
Di Fruscia, P.; Zacharioudakis, E.; Liu, C.; Moniot, S.; Laohasinnarong, S.; Khongkow, M.; Harrison, I.F.; Koltsida, K.; Reynolds, C.R.; Schmidtkunz, K.; Jung, M.; Chapman, K.L.; Steegborn, C.; Dexter, D.T.; Sternberg, M.J.; Lam, E.W.; Fuchter, M.J.
The discovery of a highly selective 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one SIRT2 inhibitor that is neuroprotective in an in vitro Parkinson's disease model
ChemMedChem
10
69-82
2015
Homo sapiens (Q8IXJ6)
Manually annotated by BRENDA team
Langley, E.; Pearson, M.; Faretta, M.; Bauer, U.M.; Frye, R.A.; Minucci, S.; Pelicci, P.G.; Kouzarides, T.
Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence
EMBO J.
21
2383-2396
2002
Homo sapiens (Q96EB6), Homo sapiens
Manually annotated by BRENDA team
Khanfar, M.A.; Quinti, L.; Wang, H.; Choi, S.H.; Kazantsev, A.G.; Silverman, R.B.
Development and characterization of 3-(benzylsulfonamido)benzamides as potent and selective SIRT2 inhibitors
Eur. J. Med. Chem.
76
414-426
2014
Homo sapiens (Q8IXJ6), Homo sapiens
Manually annotated by BRENDA team
Kokkonen, P.; Mellini, P.; Nyrhil, O.; Rahnasto-Rilla, M.; Suuronen, T.; Kiviranta P.; Huhtiniemi, T.; Poso, A.; Jarho, E.; Lahtela-Kakkonen, M.
Quantitative insights for the design of substrate-based SIRT1 inhibitors
Eur. J. Pharm. Sci.
59
12-19
2014
Homo sapiens (Q96EB6), Homo sapiens
Manually annotated by BRENDA team
Jeong, J.; Juhn, K.; Lee, H.; Kim, S.H.; Min, B.H.; Lee, K.M.; Cho, M.H.; Park, G.H.; Lee, K.H.
SIRT1 promotes DNA repair activity and deacetylation of Ku70
Exp. Mol. Med.
39
8-13
2007
Homo sapiens (Q96EB6), Homo sapiens
Manually annotated by BRENDA team
Vaquero, A.; Scher, M.B.; Lee, D.H.; Sutton, A.; Cheng, H.L.; Alt, F.W.; Serrano, L.; Sternglanz, R.; Reinberg, D.
SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
Genes Dev.
20
1256-1261
2006
Homo sapiens (Q8IXJ6)
Manually annotated by BRENDA team
Ponugoti, B.; Kim, D.H.; Xiao, Z.; Smith, Z.; Miao, J.; Zang, M.; Wu, S.Y.; Chiang, C.M.; Veenstra, T.D.; Kemper, J.K.
SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
J. Biol. Chem.
285
33959-33970
2010
Mus musculus (Q923E4), Mus musculus
Manually annotated by BRENDA team
Yu, W.; Dittenhafer-Reed, K.E.; Denu, J.M.
SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status
J. Biol. Chem.
287
14078-14086
2012
Mus musculus (Q8R104)
Manually annotated by BRENDA team
Feldman, J.L.; Baeza, J.; Denu, J.M.
Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
J. Biol. Chem.
288
31350-31356
2013
Homo sapiens (Q8IXJ6), Homo sapiens (Q96EB6), Homo sapiens (Q9NTG7)
Manually annotated by BRENDA team
Geng, Y.Q.; Li, T.T.; Liu, X.Y.; Li, Z.H.; Fu, Y.C.
SIRT1 and SIRT5 activity expression and behavioral responses to calorie restriction
J. Cell. Biochem.
112
3755-3761
2011
Rattus norvegicus
Manually annotated by BRENDA team
Zhao, X.; Allison, D.; Condon, B.; Zhang, F.; Gheyi, T.; Zhang, A.; Ashok, S.; Russell, M.; MacEwan, I.; Qian, Y.; Jamison, J.A.; Luz, J.G.
The 2.5 A crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition
J. Med. Chem.
56
963-969
2013
Homo sapiens (Q96EB6), Homo sapiens
Manually annotated by BRENDA team
Schlicker, C.; Gertz, M.; Papatheodorou, P.; Kachholz, B.; Becker, C.F.; Steegborn, C.
Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
J. Mol. Biol.
382
790-801
2008
Homo sapiens (Q9NTG7), Homo sapiens
Manually annotated by BRENDA team
Moniot, S.; Schutkowski, M.; Steegborn, C.
Crystal structure analysis of human Sirt2 and its ADP-ribose complex
J. Struct. Biol.
182
136-143
2013
Homo sapiens (Q8IXJ6), Homo sapiens
Manually annotated by BRENDA team
Li, X.; Zhang, S.; Blander, G.; Tse, J.G.; Krieger, M.; Guarente, L.
SIRT1 deacetylates and positively regulates the nuclear receptor LXR
Mol. Cell.
28
91-106
2007
Homo sapiens (Q96EB6)
Manually annotated by BRENDA team
Lutz, M.I.; Milenkovic, I.; Regelsberger, G.; Kovacs, G.G.
Distinct patterns of sirtuin expression during progression of Alzheimer's disease
Neuromolecular Med.
16
405-414
2014
Homo sapiens (Q9NTG7)
Manually annotated by BRENDA team
Guan, X.; Lin, P.; Knoll, E.; Chakrabarti, R.
Mechanism of inhibition of the human sirtuin enzyme SIRT3 by nicotinamide: computational and experimental studies
PLoS One
15
e107729
2014
Homo sapiens (Q96EB6), Homo sapiens (Q9NTG7), Homo sapiens
Manually annotated by BRENDA team
Fischer, F.; Gertz, M.; Suenkel, B.; Lakshminarasimhan, M.; Schutkowski, M.; Steegborn, C.
Sirt5 deacylation activities show differential sensitivities to nicotinamide inhibition
PLoS One
7
e45098
2012
Homo sapiens (Q9NTG7), Homo sapiens
Manually annotated by BRENDA team
Gertz, M.; Nguyen, G.T.; Fischer, F.; Suenkel, B.; Schlicker, C.; Frnzel, B.; Tomaschewski, J.; Aladini, F.; Becker, C.; Wolters, D.; Steegborn, C.
A molecular mechanism for direct sirtuin activation by resveratrol
PLoS One
7
e49761
2012
Homo sapiens (Q9NTG7), Homo sapiens
Manually annotated by BRENDA team
Onyango, P.; Celic, I.; McCaffery, J.M.; Boeke, J.D.; Feinberg, A.P.
SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria
Proc. Natl. Acad. Sci. USA
99
13653-13658
2002
Homo sapiens (Q9NTG7), Homo sapiens
Manually annotated by BRENDA team
Guo, X.; Kesimer, M.; Tolun, G.; Zheng, X.; Xu, Q.; Lu, J.; Sheehan, J.K.; Griffith, J.D.; Li, X.
The NAD(+)-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status
Sci. Rep.
2
640
2012
Mus musculus (Q923E4)
Manually annotated by BRENDA team
Cohen, H.Y.; Miller, C.; Bitterman, K.J.; Wall, N.R.; Hekking, B.; Kessler, B.; Howitz, K.T.; Gorospe, M.; de Cabo, R.; Sinclair, D.A.
Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
Science
305
390-392
2004
Homo sapiens (Q96EB6), Homo sapiens, Rattus norvegicus (Q96EB6)
Manually annotated by BRENDA team
Yamagata, K.; Goto, Y.; Nishimasu, H.; Morimoto, J.; Ishitani, R.; Dohmae, N.; Takeda, N.; Nagai, R.; Komuro, I.; Suga, H.; Nureki, O.
Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change
Structure
22
345-352
2014
Homo sapiens (Q8IXJ6), Homo sapiens
Manually annotated by BRENDA team
Rumpf, T.; Gerhardt, S.; Einsle, O.; Jung, M.
Seeding for sirtuins: microseed matrix seeding to obtain crystals of human Sirt3 and Sirt2 suitable for soaking
Acta Crystallogr. Sect. F
71
1498-1510
2015
Homo sapiens (Q8IXJ6), Homo sapiens (Q9NTG7), Homo sapiens
Manually annotated by BRENDA team
Bhalla, S.; Gordon, L.I.
Functional characterization of NAD dependent de-acetylases SIRT1 and SIRT2 in B-cell chronic lymphocytic leukemia (CLL)
Cancer Biol. Ther.
17
300-309
2016
Homo sapiens
Manually annotated by BRENDA team
Yang, H.; Zhou, L.; Shi, Q.; Zhao, Y.; Lin, H.; Zhang, M.; Zhao, S.; Yang, Y.; Ling, Z.Q.; Guan, K.L.; Xiong, Y.; Ye, D.
SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth
EMBO J.
34
1110-1125
2015
Homo sapiens (Q9NTG7), Homo sapiens
Manually annotated by BRENDA team
Lee, Y.H.; Chen, H.Y.; Su, L.J.; Chueh, P.J.
Sirtuin 1 (SIRT1) deacetylase activity and NAD+/NADH ratio are imperative for capsaicin-mediated programmed cell death
J. Agric. Food Chem.
63
7361-7370
2015
Homo sapiens (Q96EB6), Homo sapiens
Manually annotated by BRENDA team
Lu, Z.; Chen, Y.; Aponte, A.M.; Battaglia, V.; Gucek, M.; Sack, M.N.
Prolonged fasting identifies heat shock protein 10 as a sirtuin 3 substrate: elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function
J. Biol. Chem.
290
2466-2476
2015
Mus musculus (Q8R104)
Manually annotated by BRENDA team
Weiser, B.P.; Eckenhoff, R.G.
Propofol inhibits SIRT2 deacetylase through a conformation-specific, allosteric site
J. Biol. Chem.
290
8559-8568
2015
Homo sapiens (Q8IXJ6), Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Song, H.Y.; Park, S.H.; Kang, H.J.; Vassilopoulos, A.
Deacetylation assays to unravel the interplay between sirtuins (SIRT2) and specific protein-substrates
J. Vis. Exp.
108
53563
2016
Homo sapiens (Q8IXJ6)
Manually annotated by BRENDA team
Fang, M.; Guo, W.R.; Park, Y.; Kang, H.G.; Zarbl, H.
Enhancement of NAD+-dependent SIRT1 deacetylase activity by methylselenocysteine resets the circadian clock in carcinogen-treated mammary epithelial cells
Oncotarget
6
42879-42891
2015
Rattus norvegicus, Homo sapiens (Q96EB6), Homo sapiens
Manually annotated by BRENDA team
Zhang, Y.; Bharathi, S.S.; Rardin, M.J.; Uppala, R.; Verdin, E.; Gibson, B.W.; Goetzman, E.S.
SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase
PLoS ONE
10
e0122297
2015
Mus musculus (Q8R104), Mus musculus
Manually annotated by BRENDA team
Tulino, R.; Benjamin, A.C.; Jolinon, N.; Smith, D.L.; Chini, E.N.; Carnemolla, A.; Bates, G.P.
SIRT1 activity is linked to its brain region-specific phosphorylation and is impaired in Huntington's disease mice
PLoS ONE
11
e0145425
2016
Mus musculus (Q923E4), Mus musculus
Manually annotated by BRENDA team
Teng, Y.B.; Jing, H.; Aramsangtienchai, P.; He, B.; Khan, S.; Hu, J.; Lin, H.; Hao, Q.
Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies
Sci. Rep.
5
8529
2015
Homo sapiens (Q8IXJ6)
Manually annotated by BRENDA team
Aragones, G.; Suarez, M.; Ardid-Ruiz, A.; Vinaixa, M.; Rodriguez, M.A.; Correig, X.; Arola, L.; Blade, C.
Dietary proanthocyanidins boost hepatic NAD+ metabolism and SIRT1 expression and activity in a dose-dependent manner in healthy rats
Sci. Rep.
6
24977
2016
Rattus norvegicus
Manually annotated by BRENDA team
Pasha, J.; Kandagatla, B.; Sen, S.; Seerapu, G.; Bujji, S.; Haldar, D.; Nanduri, S.; Oruganti, S.
Amberlyst-15 catalyzed Povarov reaction of N-arylidene-1H-indazol-6-amines and indoles: a greener approach to the synthesis of exo-1,6,7,7a,12,12a-hexahydroindolo[3,2-c]pyrazolo[3,4-f]quinolines as potential sirtuin inhibitors
Tetrahedron Lett.
56
2289-2292
2015
Homo sapiens (Q8IXJ6)
-
Manually annotated by BRENDA team
Cattelan, A.; Ceolotto, G.; Bova, S.; Albiero, M.; Kuppusamy, M.; De Martin, S.; Semplicini, A.; Fadini, G.P.; de Kreutzenberg, S.V.; Avogaro, A.
NAD+-dependent SIRT1 deactivation has a key role on ischemia-reperfusion-induced apoptosis
Vascul. Pharmacol.
70
35-44
2015
Rattus norvegicus
Manually annotated by BRENDA team
Zhu, A.Y.; Zhou, Y.; Khan, S.; Deitsch, K.W.; Hao, Q.; Lin, H.
Plasmodium falciparum Sir2A preferentially hydrolyzes medium and long chain fatty acyl lysine
ACS Chem. Biol.
7
155-159
2012
Plasmodium falciparum (Q8IE47), Plasmodium falciparum
Manually annotated by BRENDA team
Whitaker, R.; Faulkner, S.; Miyokawa, R.; Burhenn, L.; Henriksen, M.; Wood, J.G.; Helfand, S.L.
Increased expression of Drosophila Sir2 extends life span in a dose-dependent manner
Aging
5
682-691
2013
Drosophila melanogaster
Manually annotated by BRENDA team
Anand, C.; Garg, R.; Ghosh, S.; Nagaraja, V.
A Sir2 family protein Rv1151c deacetylates HU to alter its DNA binding mode in Mycobacterium tuberculosis
Biochem. Biophys. Res. Commun.
493
1204-1209
2017
Mycobacterium tuberculosis
Manually annotated by BRENDA team
Sauve, A.A.; Celic, I.; Avalos, J.; Deng, H.; Boeke, J.D.; Schramm, V.L.
Chemistry of gene silencing the mechanism of NAD+-dependent deacetylation reactions
Biochemistry
40
15456-15463
2001
Thermotoga maritima
Manually annotated by BRENDA team
Sauve, A.A.; Schramm, V.L.
Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry
Biochemistry
42
9249-9256
2003
Archaeoglobus fulgidus, Saccharomyces cerevisiae, Mus musculus
Manually annotated by BRENDA team
Smith, B.C.; Denu, J.M.
Sir2 protein deacetylases evidence for chemical intermediates and functions of a conserved histidine
Biochemistry
45
272-282
2006
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Smith, B.C.; Denu, J.M.
Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide
Biochemistry
46
14478-14486
2007
Saccharomyces cerevisiae, Homo sapiens
Manually annotated by BRENDA team
French, J.B.; Cen, Y.; Sauve, A.A.
Plasmodium falciparum Sir2 is an NAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase
Biochemistry
47
10227-10239
2008
Plasmodium falciparum
Manually annotated by BRENDA team
Min, J.; Landry, J.; Sternglanz, R.; Xu, R.M.
Crystal structure of a SIR2 homolog-NAD complex
Cell
105
269-279
2001
Archaeoglobus fulgidus
Manually annotated by BRENDA team
Sauve, A.A.; Schramm, V.L.
SIR2 the biochemical mechanism of NAD+-dependent protein deacetylation and ADP-ribosyl enzyme intermediates
Curr. Med. Chem.
11
807-826
2004
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Buscaino, A.; Lejeune, E.; Audergon, P.; Hamilton, G.; Pidoux, A.; Allshire, R.C.
Distinct roles for Sir2 and RNAi in centromeric heterochromatin nucleation, spreading and maintenance
EMBO J.
32
1250-1264
2013
Schizosaccharomyces pombe
Manually annotated by BRENDA team
North, B.J.; Verdin, E.
Sirtuins Sir2-related NAD-dependent protein deacetylases
Genome Biol.
5
224
2004
Archaeoglobus fulgidus (O28597), Saccharomyces cerevisiae (P53686), Homo sapiens (Q8IXJ6), Homo sapiens, Archaeoglobus fulgidus ATCC 49558 (O28597)
Manually annotated by BRENDA team
Hu, P.; Wang, S.; Zhang, Y.
Highly dissociative and concerted mechanism for the nicotinamide cleavage reaction in Sir2Tm enzyme suggested by ab initio QM/MM molecular dynamics simulations
J. Am. Chem. Soc.
130
16721-16728
2008
Thermotoga maritima (Q9WYW0), Thermotoga maritima ATCC 43589 (Q9WYW0)
Manually annotated by BRENDA team
Cen, Y.; Sauve, A.A.
Transition state of ADP-ribosylation of acetyllysine catalyzed by Archaeoglobus fulgidus Sir2 determined by kinetic isotope effects and computational approaches
J. Am. Chem. Soc.
132
12286-12298
2010
Archaeoglobus fulgidus
Manually annotated by BRENDA team
Dancy, B.C.; Ming, S.A.; Papazyan, R.; Jelinek, C.A.; Majumdar, A.; Sun, Y.; Dancy, B.M.; Drury, W.J.; Cotter, R.J.; Taverna, S.D.; Cole, P.A.
Azalysine analogues as probes for protein lysine deacetylation and demethylation
J. Am. Chem. Soc.
134
5138-5148
2012
Thermotoga maritima
Manually annotated by BRENDA team
Jackson, M.D.; Schmidt, M.T.; Oppenheimer, N.J.; Denu, J.M.
Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases
J. Biol. Chem.
278
50985-50998
2003
Saccharomyces cerevisiae, Homo sapiens
Manually annotated by BRENDA team
Marsh, V.L.; Peak-Chew, S.Y.; Bell, S.D.
Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba
J. Biol. Chem.
280
21122-21128
2005
Saccharolobus solfataricus, Saccharolobus solfataricus P2
Manually annotated by BRENDA team
Khan, A.N.; Lewis, P.N.
Unstructured conformations are a substrate requirement for the Sir2 family of NAD-dependent protein deacetylases
J. Biol. Chem.
280
36073-36078
2005
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Kang, W.K.; Devare, M.; Kim, J.Y.
HST1 increases replicative lifespan of a sir2DELTA mutant in the absence of PDE2 in Saccharomyces cerevisiae
J. Microbiol.
55
123-129
2017
Saccharomyces cerevisiae, Saccharomyces cerevisiae BY4741
Manually annotated by BRENDA team
Zhao, K.; Chai, X.; Marmorstein, R.
Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli
J. Mol. Biol.
337
731-741
2004
Escherichia coli (P75960), Escherichia coli
Manually annotated by BRENDA team
Avalos, J.L.; Boeke, J.D.; Wolberger, C.
Structural basis for the mechanism and regulation of Sir2 enzymes
Mol. Cell
13
639-648
2004
Archaeoglobus fulgidus
Manually annotated by BRENDA team
Sanders, B.D.; Zhao, K.; Slama, J.T.; Marmorstein, R.
Structural basis for nicotinamide inhibition and base exchange in Sir2 enzymes
Mol. Cell
25
463-472
2007
Saccharomyces cerevisiae (P53686)
Manually annotated by BRENDA team
Parsons, X.H.; Garcia, S.N.; Pillus, L.; Kadonaga, J.T.
Histone deacetylation by Sir2 generates a transcriptionally repressed nucleoprotein complex
Proc. Natl. Acad. Sci. USA
100
1609-1614
2003
Drosophila melanogaster (Q9VK34)
Manually annotated by BRENDA team
Swygert, S.G.; Senapati, S.; Bolukbasi, M.F.; Wolfe, S.A.; Lindsay, S.; Peterson, C.L.
SIR proteins create compact heterochromatin fibers
Proc. Natl. Acad. Sci. USA
115
12447-12452
2018
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Landry, J.; Sutton, A.; Tafrov, S.T.; Heller, R.C.; Stebbins, J.; Pillus, L.; Sternglanz, R.
The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases
Proc. Natl. Acad. Sci. USA
97
5807-5811
2000
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Starai, V.J.; Celic, I.; Cole, R.N.; Boeke, J.D.; Escalante-Semerena, J.C.
Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine
Science
298
2390-2392
2002
Salmonella enterica
Manually annotated by BRENDA team
Christensen, D.G.; Meyer, J.G.; Baumgartner, J.T.; DSouza, A.K.; Nelson, W.C.; Payne, S.H.; Kuhn, M.L.; Schilling, B.; Wolfe, A.J.
Identification of novel protein lysine acetyltransferases in Escherichia coli
mBio
9
e01905-18
2018
Escherichia coli (P09163), Escherichia coli (P16691), Escherichia coli (P37664), Escherichia coli (P76594)
Manually annotated by BRENDA team