Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 1.6.2.2 - cytochrome-b5 reductase and Organism(s) Homo sapiens and UniProt Accession Q7L1T6

for references in articles please use BRENDA:EC1.6.2.2
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     1 Oxidoreductases
         1.6 Acting on NADH or NADPH
             1.6.2 With a heme protein as acceptor
                1.6.2.2 cytochrome-b5 reductase
IUBMB Comments
A flavoprotein (FAD).
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Homo sapiens
UNIPROT: Q7L1T6
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Homo sapiens
The expected taxonomic range for this enzyme is: Eukaryota, Bacteria, Archaea
Synonyms
nadh-cytochrome b5 reductase, cytochrome b5 reductase, methemoglobin reductase, cyb5r3, ncb5or, nadh cytochrome b5 reductase, nadh:cytochrome b5 reductase, cyb5r2, cytochrome-b5 reductase, cyb5r, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
b5 plusb5R
-
B5R
cytochrome b5 reductase domain of Ncb5or
cytochrome b5 reductase
-
NADH cytochrome b5 oxidoreductase
-
CyB5R
cytochrome b5 reductase
cytochrome b5 reductase 2
-
-
cytochrome b5 reductase 3
-
diaphorase I
-
-
dihydronicotinamide adenine dinucleotide-cytochrome b5 reductase
-
-
-
-
methemoglobin reductase
-
NADH-cytochrome b5 reductase
NADH-cytochrome b5 reductase 3
-
NADH-cytochrome-b5 reductase
-
-
-
-
NADH-cytochrome-b5 reductase 3
-
-
NADH-ferricytochrome b5 oxidoreductase
-
-
-
-
NADH: ferricytochrome b5 oxidoreductase
-
P34/P32
-
-
-
-
P35
-
-
-
-
reduced nicotinamide adeninedinucleotide-cytochrome b5 reductase
-
-
-
-
reductase, cytochrome b5
-
-
-
-
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
NADH + 2 ferricytochrome b5 = NAD+ + H+ + 2 ferrocytochrome b5
show the reaction diagram
reaction mechanism, overview
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
redox reaction
-
-
-
-
oxidation
-
-
-
-
reduction
-
-
-
-
PATHWAY SOURCE
PATHWAYS
SYSTEMATIC NAME
IUBMB Comments
NADH:ferricytochrome-b5 oxidoreductase
A flavoprotein (FAD).
CAS REGISTRY NUMBER
COMMENTARY hide
9032-25-1
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
2 ferricytochrome b5 + NADH
2 ferrocytochrome b5 + NAD+ + H+
show the reaction diagram
-
-
-
?
NADH + ferricytochrome b5
NAD+ + H+ + ferrocytochrome b5
show the reaction diagram
-
-
-
?
1,2-naphthoquinone + O2 + NADH + H+
?
show the reaction diagram
-
-
-
-
?
1,4-naphthoquinone + O2 + NADH + H+
?
show the reaction diagram
-
-
-
-
?
2 ferricyanide + NADH
2 ferrocyanide + NAD+ + H+
show the reaction diagram
2 ferricytochrome b5 + NADH
2 ferrocytochrome b5 + NAD+ + H+
show the reaction diagram
2 ferricytochrome b5 + NADPH + H+
2 ferrocytochrome b5 + NADP+ + H+
show the reaction diagram
-
-
-
-
?
2 ferricytochrome c + NADH + H+
2 ferrocytochrome c + NAD+
show the reaction diagram
-
-
-
-
?
2-hydroxyestradiol + O2 + NADH + H+
?
show the reaction diagram
-
-
-
-
?
2-methyl-1,4-naphthoquinone + O2 + NADH + H+
?
show the reaction diagram
-
-
-
-
?
2-[4-iodophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H tetrazolium monosodium salt + NADH
?
show the reaction diagram
-
-
-
?
9,10-phenanthrenequinone + O2 + NADH + H+
?
show the reaction diagram
-
-
-
-
?
benzamidoxime + NADH
?
show the reaction diagram
-
in the presence of cytochrome b5
-
-
?
dapsone hydroxylamine + NADH
?
show the reaction diagram
-
in the presence of cytochrome b5
-
-
?
ferricytochrome b5 + 4-(5-(4-[amino(hydroxyamino)methyl]phenyl)-2-furyl)-N'-hydroxybenzenecarboximidamide
ferrocytochrome b5 + ?
show the reaction diagram
-
metabolite of DB289, an antimicrobial prodrug of furamidine
-
-
?
ferricytochrome b5 + 4-(5-(4-[amino(hydroxyamino)methyl]phenyl)-2-furyl)-N'-methoxybenzenecarboximidamide
ferrocytochrome b5 + ?
show the reaction diagram
-
metabolite of DB289, an antimicrobial prodrug of furamidine
-
-
?
ferricytochrome b5 + N-hydroxy-2-amino-1-methyl-6-phenylimidazol[4,5-b]pyridine
ferrocytochrome b5 + ?
show the reaction diagram
-
arylhydroxylamine carcinogen found in grilled meat
-
-
?
ferricytochrome b5 + N-hydroxy-4-aminobiphenyl
ferrocytochrome b5 + ?
show the reaction diagram
-
arylhydroxylamine carcinogen found in cigarette smoke
-
-
?
lucigenin + NADH
?
show the reaction diagram
-
-
-
?
methemoglobin + NADH
hemoglobin + NAD+
show the reaction diagram
-
provides functional hemoglobin
-
-
?
NADH + ferricyanide
NAD+ + H+ + ferrocyanide
show the reaction diagram
NADH + ferricytochrome b5
NAD+ + H+ + 2 ferrocytochrome b5
show the reaction diagram
-
-
-
-
r
NADH + ferricytochrome b5
NAD+ + H+ + ferrocytochrome b5
show the reaction diagram
NADH + H+ + 2 O2
?
show the reaction diagram
-
-
-
-
?
NADH + oxidized 2,6-dichlorophenolindophenol
NAD+ + H+ + reduced 2,6-dichlorophenolindophenol
show the reaction diagram
-
-
-
-
?
NADPH + ferricytochrome b5
NADP+ + H+ + ferrocytochrome b5
show the reaction diagram
-
-
-
-
r
nitrofurantoin + O2 + NADH + H+
?
show the reaction diagram
-
-
-
-
?
sulfamethoxazole hydroxylamine + NADH
?
show the reaction diagram
-
in the presence of cytochrome b5
-
-
?
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
NADH + ferricytochrome b5
NAD+ + H+ + ferrocytochrome b5
show the reaction diagram
-
-
-
?
2 ferricytochrome b5 + NADH
2 ferrocytochrome b5 + NAD+ + H+
show the reaction diagram
benzamidoxime + NADH
?
show the reaction diagram
-
in the presence of cytochrome b5
-
-
?
dapsone hydroxylamine + NADH
?
show the reaction diagram
-
in the presence of cytochrome b5
-
-
?
methemoglobin + NADH
hemoglobin + NAD+
show the reaction diagram
-
provides functional hemoglobin
-
-
?
NADH + ferricytochrome b5
NAD+ + H+ + ferrocytochrome b5
show the reaction diagram
sulfamethoxazole hydroxylamine + NADH
?
show the reaction diagram
-
in the presence of cytochrome b5
-
-
?
COFACTOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
NAD+
NAD+ and NADP+ bind with the nicotinamide ring in the active site
NADP+
NAD+ and NADP+ bind with the nicotinamide ring in the active site
NADPH
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(5Z)-5-[(9H-fluoren-3-yl)methylidene]-1-(4-methylphenyl)-2-sulfanylidenedihydropyrimidine-4,6(1H,5H)-dione
about 80% inhibition at 0.5 mM
(5Z)-5-{[4-bromo-5-(morpholin-4-yl)furan-2-yl]methylidene}-1-(4-methylphenyl)-2-sulfanylidenedihydropyrimidine-4,6(1H,5H)-dione
about 5% inhibition at 0.5 mM
1-(2-fluorophenyl)-5-[(1-methyl-2,3-dihydro-1H-indol-3-yl)methyl]-2-sulfanylidenedihydropyrimidine-4,6(1H,5H)-dione
about 75% inhibition at 0.5 mM
2-methyl-6-[(phenylsulfanyl)methyl]-2,5-dihydropyrimidin-4(3H)-one
about 5% inhibition at 0.5 mM
4-({[(2S)-2,3-dihydro-1,3-benzoxazol-2-yl]sulfanyl}methyl)tetrahydropyrimidine-2,5-dione
about 45% inhibition at 0.5 mM
5-(prop-2-en-1-yl)-6-propyl-2-sulfanylidene-2,3-dihydropyrimidin-4(1H)-one
about 75% inhibition at 0.5 mM
6-(pentyloxy)-2-sulfanylidene-2,3-dihydropyrimidin-4(1H)-one
about 25% inhibition at 0.05 mM
6-([[(2R)-2,3-dihydro-1,3-benzoxazol-2-yl]sulfanyl]methyl)-2-sulfanylidene-2,3-dihydropyrimidin-4(1H)-one
complete inhibition at 0.05 mM
6-benzyl-2-sulfanylidene-2,3-dihydropyrimidin-4(1H)-one
about 3% inhibition at 0.5 mM
6-pentyl-2-sulfanylidene-2,3-dihydropyrimidin-4(1H)-one
about 25% inhibition at 0.5 mM
6-[(phenylsulfanyl)methyl]-2-sulfanylidene-2,3-dihydropyrimidin-4(1H)-one
complete inhibition at 0.05 mM
6-[(phenylsulfanyl)methyl]pyrimidine-2,4(1H,3H)-dione
about 50% inhibition at 0.5 mM
6-{[(2,6-dichlorophenyl)sulfanyl]methyl}-2-sulfanylidene-2,3-dihydropyrimidin-4(1H)-one
complete inhibition at 0.05 mM
6-{[(4-bromophenyl)sulfanyl]methyl}-2-sulfanylidene-2,3-dihydropyrimidin-4(1H)-one
about 10% inhibition at 0.05 mM
6-{[(4-methylphenyl)sulfanyl]methyl}-2-sulfanylidene-2,3-dihydropyrimidin-4(1H)-one
about 85% inhibition at 0.05 mM
6-{[(propan-2-yl)sulfanyl]methyl}-2-sulfanylidene-2,3-dihydropyrimidin-4(1H)-one
about 18% inhibition at 0.05 mM
Acrynol
adenine nucleotides
-
-
Atebrin
benzyl alcohol
-
100 mM, 52% inhibition, reversible, may be due to changes in membrane fluidity
dicoumarol
-
0.3 mM, 57% inhibition
hemin
-
-
Inositol hexaphosphate
-
-
K+ high ionic strength
-
reduction of cytochrome b5 or dichlorphenolindophenol
-
N-ethylmaleimide
p-chloromercuribenzoate
para-chloromercuribenzenesulfonate
-
Phytohemagglutinin
-
-
-
Proflavin
-
0.1 mM, 98% inhibition
propylthiouracil
complete inhibition at 0.5 mM
taurodeoxycholate
-
20 mM, 84% inhibition
Tris
-
reduction of cytochrome b5
Wheat germ agglutinin
-
-
-
additional information
-
high levels of H2O2 inhibit enzyme expression
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
9-Amino-1,2,3,4-tetrahydroacridine
-
activation
Detergents
-
e.g. Triton X-100, activation
spermine
-
activation
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0098
1,4-Naphthoquinone
-
pH 7.8, 37°C
0.0026
2-hydroxyestradiol
-
pH 7.8, 37°C
0.077
2-methyl-1,4-naphthoquinone
-
pH 7.8, 37°C
0.0057
9,10-phenanthrenequinone
-
pH 7.8, 37°C
0.63
benzamidoxime
-
pH 7.4
0.00114 - 0.042
cytochrome b5
-
0.36
dapsone hydroxylamine
-
pH 7.4
0.006 - 0.0384
ferricyanide
0.004 - 0.045
ferricytochrome b5
0.00029 - 0.00042
ferricytochrome c
0.25
N-hydroxy-2-amino-1-methyl-6-phenylimidazol[4,5-b]pyridine
-
pH 7.4
0.22
N-Hydroxy-4-aminobiphenyl
-
pH 7.4
0.00016 - 2.623
NADH
0.27
Nitrofurantoin
-
pH 7.8, 37°C
0.36
sulfamethoxazole hydroxylamine
-
pH 7.4
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.163
1,4-Naphthoquinone
-
pH 7.8, 37°C
0.003
2-hydroxyestradiol
-
pH 7.8, 37°C
0.058
2-methyl-1,4-naphthoquinone
-
pH 7.8, 37°C
0.097
9,10-phenanthrenequinone
-
pH 7.8, 37°C
98.3 - 827
ferricyanide
21.3 - 877
ferricytochrome b5
0.733 - 754
NADH
3 - 190
NADPH
0.017
Nitrofurantoin
-
pH 7.8, 37°C
1.17 - 1.37
O2
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1.67
1,4-Naphthoquinone
-
pH 7.8, 37°C
1.08
2-hydroxyestradiol
-
pH 7.8, 37°C
0.77
2-methyl-1,4-naphthoquinone
-
pH 7.8, 37°C
16.67
9,10-phenanthrenequinone
-
pH 7.8, 37°C
0.062
Nitrofurantoin
-
pH 7.8, 37°C
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.08
ADP
-
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.00914
6-([[(2R)-2,3-dihydro-1,3-benzoxazol-2-yl]sulfanyl]methyl)-2-sulfanylidene-2,3-dihydropyrimidin-4(1H)-one
Homo sapiens
at pH 7.5 and 37°C
0.0108
6-[(phenylsulfanyl)methyl]-2-sulfanylidene-2,3-dihydropyrimidin-4(1H)-one
Homo sapiens
at pH 7.5 and 37°C
0.2794
propylthiouracil
Homo sapiens
at pH 7.5 and 37°C
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
0.036 - 0.109
-
activity in lysates of different cancer cell lines
1510
-
liver microsomal enzyme, ferricyanide as electron acceptor
96.3
-
recombinant enzyme
additional information
-
0.00017 mmol ferricyanide reduced/min/10000000 cells, activity in neutrophils
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5.2
-
NADH-methemoglobin-ferrocyanide
5.7 - 8
-
rapid decrease above
6.5 - 8.5
-
NADH-ferricyanide
6.8
-
reduction of cytochrome c
7.2 - 8.4
-
assay at, dependent on assay method
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5 - 8
-
depending on acceptor
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
-
UniProt
Manually annotated by BRENDA team
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
highest activity in confluently grown cells
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
soluble isozyme
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
evolution
-
CyB5R is a member of the NAD(P)H-ferredoxin reductase (FNR) enzyme superfamily, phylogenetic analysis
malfunction
metabolism
physiological function
additional information
-
the soluble CyB5R diffraction map reveals two distinct domains: the N-terminal FAD binding domain (from I34 to R143), which contains a binding site for the FAD prosthetic group, and the NADH domain (residues K173 to F301). These domains are separated by a large interdomain cleft (G144-V172) known as a hinge region. The three anti-parallel beta-sheets in the hinge region keep the two lobes in close proximity with the correct conformational orientation. This orientation appears to be critical for electron transfer from NADH to FAD. The FAD domain consists of six anti-parallel beta-sheets and one alpha-helix with the order 5beta/1alpha/1beta. The NADH domain forms a alpha/beta/aalpha structure consisting of five beta-strands and four alpha-helices
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
NB5R4_HUMAN
521
0
59474
Swiss-Prot
Mitochondrion (Reliability: 4)
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
32000
33000
-
recombinant enzyme, gel filtration
36000
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
?
x * 59000, SDS-PAGE
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
lipoprotein
-
myristic acid at NH2-terminus, amide bond, no ester bond
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
sitting drop vapor diffusion method, using 2 M (NH4)2SO4, 100 mM sodium/potassium phosphate, pH 6.2, 200 mM Li2SO4, at 4°C
structure of a construct comprising the naturally fused CHORD-Sgt1 and b5R domains with bound FAD and NAD+ or NADP+. The linker between the CHORD-Sgt1 and b5R cores is more ordered than predicted, with much of it extending the beta-sandwich motif of the CHORD-Sgt1 domain. This limits the flexibility between the two domains
sitting-drop vapor diffusion method
-
vapor equilibrium method, 3.6% protein solution, 30% polyethyleneglycol 4000, preliminary X-ray data
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
A178T
-
natural mutation found in patient with type I recessive congenital methaemoglobinaemia, 16.6% of wild-type enzyme activity
A179T
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
A179V
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
C204R
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
C204Y
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
D239G
-
natural mutation found in patient with type I recessive congenital methaemoglobinaemia, mutation of NADH-binding lobe. Mutant shows decreased specificity for NADH and increased specificity for NADPH, 28.5% of wild-type enzyme activity
D239T
-
the mutation changes the enzme preference for NADH to one for NADPH. Diseases related to CyB5R dysfunctions due to mutations in the gene encoding the enzyme, detailed overview
D240G
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
E213K
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
E255-
-
natural mutation found in patient with type I recessive congenital methaemoglobinaemia, mutation of NADH-binding lobe. Mutant retains stoichiometric levels FAD comparable to wild-type
F157C
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
G143D
mutation in the NADH-cytochrome b5 reductase gene in an Indian patient with type I recessive hereditary methemoglobinemia
G144D
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
G291D
-
natural mutation found in patient with type I recessive congenital methaemoglobinaemia, mutation of NADH-binding lobe. Mutant retains stoichiometric levels FAD comparable to wild-type and 35.2% of wild-type enzyme activity
G292D
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
G72A
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
G75S
-
natural mutation isolated in patient with recessive congenital methemoglobinaemia. Mutant retains stoichiometric levels of FAD, but shows decreased catalytic efficiency and reduced protein stability
G75S/V252M
-
natural mutation isolated in patient with recessive congenital methemoglobinaemia. Mutant retains stoichiometric levels of FAD, but shows decreased catalytic efficiency and reduced protein stability
G76S
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
I216T
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
K110A
-
200fold elevated Km value for NADH, 85% of kcat
K110M
-
1120fold elevated Km value for NADH
K110R
-
similar kinetic properties as wild-type
K125A
-
5.3fold elevated Km value for cytochrome b5
K163A
-
5.7fold elevated Km value for cytochrome b5
K41A
-
6.3fold elevated Km value for cytochrome b5
L149P
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
L217P
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
L218P
-
the mutation is associated with type I recessive congenital methemoglobinemia
L239R
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
L73P
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
M127V
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
P145L
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
P145S
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
P275L
natural mutant from a patient with recessive congenital methemoglobinemia. Significant decrease in the affinity toward the physiological reducing substrate, NADH, without affecting the activity
P276L
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
P65L
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
P96H
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
R159-/D239G
-
natural mutation found in patient with type I recessive congenital methaemoglobinaemia, 40.8% of wild-type enzyme activity
R241G
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
R259W
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
R46W
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
R50Q
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
R58Q
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
S128P
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
S54R
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
V106M
-
naturally occuring mutation causing the RCM phenotype depending on homozygosity/heterozygosity or other additional mutations
V172L
-
the mutation leads to recessive congenital methaemoglobinaemia type I
V252M
-
natural mutation isolated in patient with recessive congenital methemoglobinaemia. Mutant retains stoichiometric levels of FAD, but shows decreased catalytic efficiency and reduced protein stability
V253M
additional information
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
7.5 - 8.1
-
-
394225
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
enzyme from erythrocyte loses its activity in the absence of EDTA after 5 d at 4°C
-
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
-20°C, pH 7.5-8.1, 0.5 mM EDTA, protein concentration above 0.02 mg/ml
-
4°C, phosphate buffered saline, pH 7.4, protein concentration 2-3 mg/ml, stable for 3 weeks
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
Ni2+-NTA bead chromatography, HiTrap Q column chromatography, HiTrap phenyl column chromatography, and Superdex 200 gel filtration
DEAE-cellulose column chromatography, DEAE-Sepharose column chromatography, DEAE-Trisacryl column chromatography, agarose-hexane-NAD column chromatography, ADP-agarose column chromatography, 5'-AMP-Sepharose column chromatography, blue-Ultrogel column chromatography, octylamino-Sepharose column chromatography, blue 2-Sepharose column chromatography, Sephadex G-100 gel filtration, 5'-ADP-hexane-agarose column chromatography, hydroxyapatite column chromatography, CM-Sephadex gel filtration, or NAD agarose column chromatography
-
native membrane-bound isozyme by solubiization from membranes, anion exchange chromatography, and affinity chromatography
-
Ni-NTA column chromatography
recombinant enzyme
-
recombinant protein
-
recombinant wild-type, K110A, K110M and K110R mutant enzyme
-
recombinant wild-type, K41A, K125A and K163A mutant enzyme
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expressed in Escherichia coli BL21(DE3) cells
expression in Escherichia coli
cloning of cDNA
-
enzyme coexpressed together with cytochrome b5 and CYP2E1or with CYP2E1 but without cytochrome b5 in Salmonella typhimurium strain 7108
-
expressed in COS-7 cells
expressed in Escherichia coli as alpha-thrombin-cleavable fusion protein
-
expressed in Escherichia coli as His-tag fusion protein
-
expressed in Escherichia coli SoluBL21 cells
expression in Escherichia coli
expression of wild-type, K110A, K110M and K110R mutant enzymes in Escherichia coli
-
expression of wild-type, K41A and K125A mutant enzyme in Escherichia coli
-
heterologous expression in Escherichia coli or in yeast cells via different expression vectors, in Aspergillus oryzae using pNGA142, Salmonella typhimurium using pIN, in Spodoptera frugiperda Sf9 insect cells using pFASTBAC baculovirus vectors, in cell-free systems, in plant cells using pRT, in lymphoid cells using Epstein-Barr virus, and in CHO cells using SV40 transfection method
-
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
enzyme transcript levels are decreased in nasopharyngeal carcinoma cell lines and tumor biopsies
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
analysis
diagnostics
-
potential use of the enzyme in diagnostic areas
industry
-
potential use of the enzyme in the food industry
medicine
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Kitajima, S.; Yasukochi, Y.; Minakami, S.
Purification and properties of human erythrocyte membrane NADH-cytochrome b5 reductase
Arch. Biochem. Biophys.
210
330-339
1981
Homo sapiens
Manually annotated by BRENDA team
Rigby, J.S.; Bull, P.C.; Ashworth, A.; Shephard, E.A.; Santisteban, I.; Phillips, I.R.
Isolation and characterization of genes coding for cytochrome b5 and cytochrome-b5 reductase
Biochem. Soc. Trans.
17
194-195
1989
Homo sapiens
-
Manually annotated by BRENDA team
Palmieri, D.A.; Rangachari, A.; Butterfield, D.A.
Effects of domain-specific erythrocyte membrane modulators on acetylcholinesterase and NADH:cytochrome b5 reductase activities
Arch. Biochem. Biophys.
280
224-228
1990
Homo sapiens
Manually annotated by BRENDA team
Shirabe, K.; Yubisui, T.; Takeshita, M.
Expression of human erythrocyte NADH-cytochrome b5 reductase as an alpha-thrombin-cleavable fused protein in Escherichia coli
Biochim. Biophys. Acta
1008
189-192
1989
Homo sapiens
Manually annotated by BRENDA team
Murakami, K.; Yubisui, T.; Takeshita, M.; Miyata, T.
The NH2-terminal structures of human and rat liver microsomal NADH-cytochrome b5 reductases
J. Biochem.
105
312-317
1989
Homo sapiens
Manually annotated by BRENDA team
Takano, T.; Ogawa, K.; Sato, M.; Bando, S.; Yubisui, T.
Preliminary X-ray data of NADH-cytochrome b5 reductase from human erythrocytes
J. Mol. Biol.
195
749-750
1987
Oryctolagus cuniculus, Homo sapiens
Manually annotated by BRENDA team
Tauber, A.I.; Wright, J.; Higson, F.K.; Edelman, S.A.; Waxman, D.J.
Purification and characterization of the human neutrophil NADH-cytochrome b5 reductase
Blood
66
673-678
1985
Homo sapiens
Manually annotated by BRENDA team
Kitajima, S.; Minakami, S.
Human NADH-cytochrome b5 reductases: comparison among those of erythrocyte membrane, erythrocyte cytosol, and liver microsomes
J. Biochem.
93
615-620
1983
Homo sapiens
Manually annotated by BRENDA team
Badwey, J.A.; Tauber, A.I.; Karnovsky, M.L.
Properties of NADH-cytochrome-b5 reductase from human neutrophils
Blood
62
152-157
1983
Homo sapiens
Manually annotated by BRENDA team
Yubisui, T.; Takeshita, M.
Characterization of the purified NADH-cytochrome b5 reductase of human erythrocytes as a FAD-containing enzyme
J. Biol. Chem.
255
2454-2456
1980
Homo sapiens
Manually annotated by BRENDA team
Hultquist, D.E.
Methemoglobin reduction system of erythrocytes
Methods Enzymol.
52
463-473
1978
Homo sapiens
Manually annotated by BRENDA team
Ortiz de Montellano, P.R.
Cytochrome P450-Structure, Mechanism and Biochemistry
Cytochrome P450. Structure, Mechanism Biochem. (Ortiz de Montellano, P. R. ed. ) Plenum Press, New York
1986
Homo sapiens
-
Manually annotated by BRENDA team
Hultquist, D.E.; Passon, P.G.
Catalysis of methaemoglobin reduction by erythrocyte cytochrome b5 and cytochrome b5 reductase
Nat. New Biol.
229
252-254
1971
Homo sapiens
Manually annotated by BRENDA team
Yubisui, T.; Naitoh, Y.; Zenno, S.; Tamura, M.; Takeshita, M.; Sakaki, Y.
Molecular cloning of cDNAs of human liver and placenta NADH-cytochrome b5 reductase
Proc. Natl. Acad. Sci. USA
84
3609-3613
1987
Homo sapiens
Manually annotated by BRENDA team
Fujimoto, Y.; Shirabe, K.; Nagai, T.; Yubisui, T.; Takeshita, M.
Role of Lys-110 of human NADH-cytochrome b5 reductase in NADH binding as probed by site-directed mutagenesis
FEBS Lett.
322
30-32
1993
Homo sapiens
Manually annotated by BRENDA team
Mota Vieira, L.; Kaplan, J.C.; Kahn, A.; Leroux, A.
Heterogeneity of the rat NADH-cytochrome-b5-reductase transcripts resulting from multiple alternative first exons
Eur. J. Biochem.
220
729-737
1994
Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Barham, H.M.; Inglis, R.; Chinje, E.C.; Stratford, I.J.
Development and validation of a spectrophotometric assay for measuring the activity of NADH: cytochrome b5 reductase in human tumour cells
Br. J. Cancer
74
1188-1193
1996
Homo sapiens
Manually annotated by BRENDA team
Kawano, M.; Shirabe, K.; Nagai, T.; Takeshita, M.
Role of carboxyl residues surrounding heme of human cytochrome b5 in the electrostatic interaction with NADH-cytochrome b5 reductase
Biochem. Biophys. Res. Commun.
245
666-669
1998
Homo sapiens
Manually annotated by BRENDA team
Bando, S.; Takano, T.; Yubisui, T.; Shirabe, K.; Takeshita, M.; Nakagawa, A.
Structure of human erythrocyte NADH-cytochrome b5 reductase
Acta Crystallogr. Sect. D
60
1929-1934
2004
Homo sapiens
Manually annotated by BRENDA team
Mokashi, V.; Li, L.; Porter, T.D.
Cytochrome b5 reductase and cytochrome b5 support the CYP2E1-mediated activation of nitrosamines in a recombinant Ames test
Arch. Biochem. Biophys.
412
147-152
2003
Homo sapiens
Manually annotated by BRENDA team
Baker, M.A.; Krutskikh, A.; Curry, B.J.; Hetherington, L.; Aitken, R.J.
Identification of cytochrome-b5 reductase as the enzyme responsible for NADH-dependent lucigenin chemiluminescence in human spermatozoa
Biol. Reprod.
73
334-42
2005
Homo sapiens (Q6BCY4), Homo sapiens
Manually annotated by BRENDA team
Bello, R.I.; Alcain, F.J.; Gomez-Diaz, C.; Lopez-Lluch, G.; Navas, P.; Villalba, J.M.
Hydrogen peroxide- and cell-density-regulated expression of NADH-cytochrome b5 reductase in HeLa cells
J. Bioenerg. Biomembr.
35
169-179
2003
Homo sapiens
Manually annotated by BRENDA team
Kurian, J.R.; Bajad, S.U.; Miller, J.L.; Chin, N.A.; Trepanier, L.A.
NADH cytochrome b5 reductase and cytochrome b5 catalyze the microsomal reduction of xenobiotic hydroxylamines and amidoximes in humans
J. Pharmacol. Exp. Ther.
311
1171-1178
2004
Homo sapiens
Manually annotated by BRENDA team
Percy, M.J.; Crowley, L.J.; Boudreaux, J.; Barber, M.J.
Expression of a novel P275L variant of NADH:cytochrome b5 reductase gives functional insight into the conserved motif important for pyridine nucleotide binding
Arch. Biochem. Biophys.
447
59-67
2006
Homo sapiens (P00387), Homo sapiens
Manually annotated by BRENDA team
Percy, M.J.; Crowley, L.J.; Roper, D.; Vulliamy, T.J.; Layton, D.M.; Barber, M.J.
Identification and characterization of the novel FAD-binding lobe G75S mutation in cytochrome b(5) reductase: an aid to determine recessive congenital methemoglobinemia status in an infant
Blood Cells Mol. Dis.
36
81-90
2006
Homo sapiens
Manually annotated by BRENDA team
Percy, M.J.; Crowley, L.J.; Davis, C.A.; McMullin, M.F.; Savage, G.; Hughes, J.; McMahon, C.; Quinn, R.J.; Smith, O.; Barber, M.J.; Lappin, T.R.
Recessive congenital methaemoglobinaemia: functional characterization of the novel D239G mutation in the NADH-binding lobe of cytochrome b5 reductase
Br. J. Haematol.
129
847-853
2005
Homo sapiens
Manually annotated by BRENDA team
Kurian, J.R.; Chin, N.A.; Longlais, B.J.; Hayes, K.L.; Trepanier, L.A.
Reductive detoxification of arylhydroxylamine carcinogens by human NADH cytochrome b5 reductase and cytochrome b5
Chem. Res. Toxicol.
19
1366-1373
2006
Homo sapiens
Manually annotated by BRENDA team
Saulter, J.Y.; Kurian, J.R.; Trepanier, L.A.; Tidwell, R.R.; Bridges, A.S.; Boykin, D.W.; Stephens, C.E.; Anbazhagan, M.; Hall, J.E.
Unusual dehydroxylation of antimicrobial amidoxime prodrugs by cytochrome b5 and NADH cytochrome b5 reductase
Drug Metab. Dispos.
33
1886-1893
2005
Homo sapiens
Manually annotated by BRENDA team
Kedar, P.S.; Warang, P.; Nadkarni, A.H.; Colah, R.B.; Ghosh, K.
A novel G143D mutation in the NADH-cytochrome b5 reductase gene in an Indian patient with type I recessive hereditary methemoglobinemia
Blood Cells Mol. Dis.
40
323-327
2008
Homo sapiens (P00387)
Manually annotated by BRENDA team
Fermo, E.; Bianchi, P.; Vercellati, C.; Marcello, A.P.; Garatti, M.; Marangoni, O.; Barcellini, W.; Zanella, A.
Recessive hereditary methemoglobinemia: two novel mutations in the NADH-cytochrome b5 reductase gene
Blood Cells Mol. Dis.
41
50-55
2008
Homo sapiens (P00387), Homo sapiens
Manually annotated by BRENDA team
Percy, M.J.; Lappin, T.R.
Recessive congenital methaemoglobinaemia: cytochrome b(5) reductase deficiency
Br. J. Haematol.
141
298-308
2008
Homo sapiens (P00387), Homo sapiens, Rattus norvegicus (P20070)
Manually annotated by BRENDA team
Percy, M.J.; Aslan, D.
NADH-cytochrome b5 reductase in a Turkish family with recessive congenital methaemoglobinaemia type I
J. Clin. Pathol.
61
1122-1123
2008
Homo sapiens
Manually annotated by BRENDA team
Deng, B.; Parthasarathy, S.; Wang, W.; Gibney, B.R.; Battaile, K.P.; Lovell, S.; Benson, D.R.; Zhu, H.
Study of the individual cytochrome b5 and cytochrome b5 reductase domains of Ncb5or reveals a unique heme pocket and a possible role of the CS domain
J. Biol. Chem.
285
30181-30191
2010
Homo sapiens (Q7L1T6), Homo sapiens
Manually annotated by BRENDA team
Arikoglu, T.; Yarali, N.; Kara, A.; Bay, A.; Bozkaya, I.O.; Tunc, B.; Percy, M.J.
A novel L218P mutation in NADH-cytochrome b5 reductase associated with type I recessive congenital methemoglobinemia
Pediatr. Hematol. Oncol.
26
381-385
2009
Homo sapiens
Manually annotated by BRENDA team
Elahian, F.; Sepehrizadeh, Z.; Moghimi, B.; Mirzaei, S.A.
Human cytochrome b5 reductase: structure, function, and potential applications
Crit. Rev. Biotechnol.
2012
1-11
2012
Homo sapiens
Manually annotated by BRENDA team
Rawa, K.; Chelmecka-Hanusiewicz, L.; Plochocka, D.; Pawinska-Wasikowska, K.; Balwierz, W.; Burzynska, B.
Characterization of a novel mutation in the NADH-cytochrome b5 reductase gene responsible for rare hereditary methaemoglobinaemia type I
Acta Haematol.
130
122-125
2013
Homo sapiens
Manually annotated by BRENDA team
Hyun, D.; Lee, G.
Cytochrome b5 reductase, a plasma membrane redox enzyme, protects neuronal cells against metabolic and oxidative stress through maintaining redox state and bioenergetics
Age (Dordr)
37
122
2015
Homo sapiens
Manually annotated by BRENDA team
Amdahl, M.B.; Sparacino-Watkins, C.E.; Corti, P.; Gladwin, M.T.; Tejero, J.
Efficient reduction of vertebrate cytoglobins by the cytochrome b5/cytochrome b5 reductase/NADH system
Biochemistry
56
3993-4004
2017
Homo sapiens (P00387), Homo sapiens
Manually annotated by BRENDA team
Ming, H.; Lan, Y.; He, F.; Xiao, X.; Zhou, X.; Zhang, Z.; Li, P.; Huang, G.
Cytochrome b5 reductase 2 suppresses tumor formation in nasopharyngeal carcinoma by attenuating angiogenesis
Chin. J. Cancer
34
459-467
2015
Homo sapiens
Manually annotated by BRENDA team
Elahian, F.; Sepehrizadeh, Z.; Moghimi, B.; Mirzaei, S.
Human cytochrome b5 reductase Structure, function, and potential applications
Crit. Rev. Biotechnol.
34
134-143
2014
Homo sapiens, Arabidopsis thaliana (A0A178US77), Bos taurus (P07514)
-
Manually annotated by BRENDA team
Plitzko, B.; Havemeyer, A.; Bork, B.; Bittner, F.; Mendel, R.; Clement, B.
Defining the role of the NADH-cytochrome-b5 reductase 3 in the mitochondrial amidoxime reducing component enzyme system
Drug Metab. Dispos.
44
1617-1621
2016
Homo sapiens
Manually annotated by BRENDA team
Zambo, V.; Toth, M.; Schlachter, K.; Szelenyi, P.; Sarnyai, F.; Lotz, G.; Csala, M.; Kereszturi, E.
Cytosolic localization of NADH cytochrome b5 oxidoreductase (Ncb5or)
FEBS Lett.
590
661-671
2016
Homo sapiens (Q7L1T6)
Manually annotated by BRENDA team
Rahaman, M.M.; Reinders, F.G.; Koes, D.; Nguyen, A.T.; Mutchler, S.M.; Sparacino-Watkins, C.; Alvarez, R.A.; Miller, M.P.; Cheng, D.; Chen, B.B.; Jackson, E.K.; Camacho, C.J.; Straub, A.C.
Structure guided chemical modifications of propylthiouracil reveal novel small molecule inhibitors of cytochrome b5 reductase 3 that increase nitric oxide bioavailability
J. Biol. Chem.
290
16861-16872
2015
Homo sapiens (P00387)
Manually annotated by BRENDA team
Lund, R.R.; Leth-Larsen, R.; Caterino, T.D.; Terp, M.G.; Nissen, J.; Laenkholm, A.V.; Jensen, O.N.; Ditzel, H.J.
NADH-cytochrome b5 reductase 3 promotes colonization and metastasis formation and is a prognostic marker of disease-free and overall survival in estrogen receptor-negative breast cancer
Mol. Cell. Proteomics
14
2988-2999
2015
Homo sapiens (P00387), Homo sapiens
Manually annotated by BRENDA team
Xiao, X.; Zhao, W.; Tian, F.; Zhou, X.; Zhang, J.; Huang, T.; Hou, B.; Du, C.; Wang, S.; Mo, Y.; Yu, N.; Zhou, S.; You, J.; Zhang, Z.; Huang, G.; Zeng, X.
Cytochrome b5 reductase 2 is a novel candidate tumor suppressor gene frequently inactivated by promoter hypermethylation in human nasopharyngeal carcinoma
Tumour Biol.
35
3755-3763
2014
Homo sapiens
Manually annotated by BRENDA team
Benson, D.; Lovell, S.; Mehzabeen, N.; Galeva, N.; Cooper, A.; Gao, P.; Battaile, K.; Zhu, H.
Crystal structures of the naturally fused CS and cytochrome b5 reductase (b5R) domains of Ncb5or reveal an expanded CS fold, extensive CS-b5R interactions and productive binding of the NAD(P)+ nicotinamide ring
Acta Crystallogr. Sect. D
75
628-638
2019
Homo sapiens (Q7L1T6)
Manually annotated by BRENDA team
Samhan-Arias, A.K.; Almeida, R.M.; Ramos, S.; Cordas, C.M.; Moura, I.; Gutierrez-Merino, C.; Moura, J.J.G.
Topography of human cytochrome b5/cytochrome b5 reductase interacting domain and redox alterations upon complex formation
Biochim. Biophys. Acta Bioenerg.
1859
78-87
2018
Homo sapiens (P00387)
Manually annotated by BRENDA team
Kedar, P.; Desai, A.; Warang, P.; Colah, R.
A microplate reader-based method to quantify NADH-cytochrome b5 reductase activity for diagnosis of recessive congenital methaemoglobinemia
Hematology
22
252-257
2017
Homo sapiens (P00387)
Manually annotated by BRENDA team
Samhan-Arias, A.K.; Fortalezas, S.; Cordas, C.M.; Moura, I.; Moura, J.J.G.; Gutierrez-Merino, C.
Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c
Redox Biol.
15
109-114
2018
Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Szilagyi, J.T.; Fussell, K.C.; Wang, Y.; Jan, Y.H.; Mishin, V.; Richardson, J.R.; Heck, D.E.; Yang, S.; Aleksunes, L.M.; Laskin, D.L.; Laskin, J.D.
Quinone and nitrofurantoin redox cycling by recombinant cytochrome b5 reductase
Toxicol. Appl. Pharmacol.
359
102-107
2018
Homo sapiens
Manually annotated by BRENDA team