Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

Reference on EC 1.2.1.75 - malonyl-CoA reductase (malonate semialdehyde-forming)

Please use the Reference Search for a specific query.
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Strauss, G.; Fuchs, G.
Enzymes of a novel autotrophic carbon dioxide fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle
Eur. J. Biochem.
215
633-643
1993
Chloroflexus aurantiacus
Manually annotated by BRENDA team
Huegler, M.; Menendez, C.; Schaegger, H.; Fuchs, G.
Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO(2) fixation
J. Bacteriol.
184
2404-2410
2002
Chloroflexus aurantiacus
Manually annotated by BRENDA team
Alber, B.; Olinger, M.; Rieder, A.; Kockelkorn, D.; Jobst, B.; Hgler, M.; Fuchs, G.
Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp
J. Bacteriol.
188
8551-8559
2006
Metallosphaera sedula, Sulfurisphaera tokodaii (Q96YK1)
Manually annotated by BRENDA team
Demmer, U.; Warkentin, E.; Srivastava, A.; Kockelkorn, D.; Ptter, M.; Marx, A.; Fuchs, G.; Ermler, U.
Structural basis for a bispecific NADP+ and CoA binding site in an archaeal malonyl-coenzyme A reductase
J. Biol. Chem.
288
6363-6370
2013
Sulfurisphaera tokodaii (Q96YK1), Sulfurisphaera tokodaii DSM 16993 (Q96YK1)
Manually annotated by BRENDA team
Cheng, Z.; Jiang, J.; Wu, H.; Li, Z.; Ye, Q.
Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli
Biores. Technol.
200
897-904
2016
Chloroflexus aurantiacus (Q6QQP7)
Manually annotated by BRENDA team
Lan, E.I.; Chuang, D.S.; Shen, C.R.; Lee, A.M.; Ro, S.Y.; Liao, J.C.
Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942
Metab. Eng.
31
163-170
2015
Sulfurisphaera tokodaii (Q96YK1), Sulfurisphaera tokodaii DSM 16993 (Q96YK1)
Manually annotated by BRENDA team
Kildegaard, K.; Jensen, N.; Schneider, K.; Czarnotta, E.; zdemir, E.; Klein, T.; Maury, J.; Ebert, B.; Christensen, H.; Chen, Y.; Kim, I.; Herrgard, M.; Blank, L.; Forster, J.; Nielsen, J.; Borodina, I.
Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway
Microb. Cell Fact.
15
53
2016
Chloroflexus aurantiacus (Q6QQP7)
Manually annotated by BRENDA team
Liu, C.; Wang, Q.; Xian, M.; Ding, Y.; Zhao, G.
Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement
PLoS ONE
8
e75554
2013
Chloroflexus aurantiacus (Q6QQP7)
Manually annotated by BRENDA team
Zhou, S.; Lama, S.; Jiang, J.; Sankaranarayanan, M.; Park, S.
Use of acetate for the production of 3-hydroxypropionic acid by metabolically-engineered Pseudomonas denitrificans
Biores. Technol.
307
123194
2020
Chloroflexus aurantiacus (Q6QQP7)
Manually annotated by BRENDA team
Lama, S.; Kim, Y.; Nguyen, D.T.; Im, C.H.; Sankaranarayanan, M.; Park, S.
Production of 3-hydroxypropionic acid from acetate using metabolically-engineered and glucose-grown Escherichia coli
Biores. Technol.
320
124362
2021
Chloroflexus aurantiacus (Q6QQP7)
Manually annotated by BRENDA team
Chang, Z.; Dai, W.; Mao, Y.; Cui, Z.; Wang, Z.; Chen, T.
Engineering Corynebacterium glutamicum for the efficient production of 3-hydroxypropionic acid from a mixture of glucose and acetate via the malonyl-CoA pathway
Catalysts
10
203
2020
Chloroflexus aurantiacus (Q6QQP7)
-
Manually annotated by BRENDA team
Lee, J.; Cha, S.; Kang, C.; Lee, G.; Lim, H.; Jung, G.
Efficient conversion of acetate to 3-hydroxypropionic acid by engineered Escherichia coli
Catalysts
8
525
2018
Chloroflexus aurantiacus (Q6QQP7)
-
Manually annotated by BRENDA team
Liu, C.; Ding, Y.; Xian, M.; Liu, M.; Liu, H.; Ma, Q.; Zhao, G.
Malonyl-CoA pathway a promising route for 3-hydroxypropionate biosynthesis
Crit. Rev. Biotechnol.
37
933-941
2017
Chloroflexus aurantiacus (Q6QQP7)
Manually annotated by BRENDA team
Son, H.F.; Kim, S.; Seo, H.; Hong, J.; Lee, D.; Jin, K.S.; Park, S.; Kim, K.J.
Structural insight into bi-functional malonyl-CoA reductase
Environ. Microbiol.
22
752-765
2020
Erythrobacter dokdonensis, Erythrobacter dokdonensis (A0A1A7BFR5), Erythrobacter dokdonensis DSW-74 (A0A1A7BFR5)
Manually annotated by BRENDA team
Ji, R.Y.; Ding, Y.; Shi, T.Q.; Lin, L.; Huang, H.; Gao, Z.; Ji, X.J.
Metabolic engineering of yeast for the production of 3-hydroxypropionic acid
Front. Microbiol.
9
2185
2018
Chloroflexus aurantiacus (Q6QQP7)
Manually annotated by BRENDA team
Liang, B.; Sun, G.; Wang, Z.; Xiao, J.; Yang, J.
Production of 3-hydroxypropionate using a novel malonyl-CoA-mediated biosynthetic pathway in genetically engineered E. coli strain
Green Chem.
21
6103-6115
2019
Chloroflexus aurantiacus (Q6QQP7)
-
Manually annotated by BRENDA team
Suyama, A.; Higuchi, Y.; Urushihara, M.; Maeda, Y.; Takegawa, K.
Production of 3-hydroxypropionic acid via the malonyl-CoA pathway using recombinant fission yeast strains
J. Biosci. Bioeng.
124
392-399
2017
Chloroflexus aurantiacus (Q6QQP7)
Manually annotated by BRENDA team
Nguyen, D.T.N.; Lee, O.K.; Lim, C.; Lee, J.; Na, J.G.; Lee, E.Y.
Metabolic engineering of type II methanotroph, Methylosinus trichosporium OB3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway
Metab. Eng.
59
142-150
2020
Chloroflexus aurantiacus (Q6QQP7)
Manually annotated by BRENDA team
Takayama, S.; Ozaki, A.; Konishi, R.; Otomo, C.; Kishida, M.; Hirata, Y.; Matsumoto, T.; Tanaka, T.; Kondo, A.
Enhancing 3-hydroxypropionic acid production in combination with sugar supply engineering by cell surface-display and metabolic engineering of Schizosaccharomyces pombe
Microb. Cell Fact.
17
176
2018
Chloroflexus aurantiacus (Q6QQP7)
Manually annotated by BRENDA team