Information on EC 1.14.21.5 - (S)-canadine synthase

for references in articles please use BRENDA:EC1.14.21.5
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Specify your search results
Select one or more organisms in this record:

The enzyme appears in viruses and cellular organisms

EC NUMBER
COMMENTARY hide
1.14.21.5
transferred to EC 1.14.19.68
RECOMMENDED NAME
GeneOntology No.
(S)-canadine synthase
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
Isoquinoline alkaloid biosynthesis
-
-
Biosynthesis of secondary metabolites
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
-
UniProt
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
metabolism
the enzyme is involved in berberine biosynthesis in Coptis chinensis
COFACTOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
cytochrome P450
a heme-thiolate enzyme
-
pI VALUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
8.92
calculated from sequence
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
55290
calculated from sequence
SUBUNITS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
?
x * 55290, calculated from sequence
Purification/COMMENTARY
ORGANISM
UNIPROT
LITERATURE
Cloned/COMMENTARY
ORGANISM
UNIPROT
LITERATURE
canadine-producing Saccharomyces cerevisiae strain harbors expression cassettes for seven heterologous enzymes: Papaper somniferum norcoclaurine 6-O-methyltransferase (Ps6OMT), Papaver somniferum 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase 2 (Ps4'OMT), Papapver somniferum coclaurine N-methyltransferase (PsCNMT), Papaver somniferum berberine bridge enzyme (PsBBE), Thalictrum flavum scoulerine 9-O-methyltransferase (TfS9OMT), Thalictrum flavum canadine synthase (TfCAS), and Arabidopsis thaliana cytochrome P450 reductase 1 (CPR). The expression cassettes for the methyltransferases Ps6OMT, PsCNMT, and Ps4'OMT and the cytochrome P450 reductase CPR were chromosomally integrated, TfS9OMT and TfCAS are expressed from a high-copy plasmid, and PsBBE is expressed from a second high-copy plasmid
expressed in Escherichia coli
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
medicine
a Saccharomyces cerevisiae strain is engineered to express seven heterologous enzymes (Papaper somniferum norcoclaurine 6-O-methyltransferase (Ps6OMT), Papaver somniferum 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase 2 (Ps4'OMT), Papapver somniferum coclaurine N-methyltransferase (PsCNMT), Papaver somniferum berberine bridge enzyme (PsBBE), Thalictrum flavum scoulerine 9-O-methyltransferase (TfS9OMT), Thalictrum flavum canadine synthase (TfCAS), and Arabidopsis thaliana cytochrome P450 reductase 1 (CPR)), resulting in protoberberine alkaloid production from a simple benzylisoquinoline alkaloid precursor. A number of strategies are implemented to improve flux through the pathway, including enzyme variant screening, genetic copy number variation, and culture optimization. This leads to an over 70-fold increase in canadine titer up to 1.8 mg/l. Increased canadine titers enable extension of the pathway to produce berberine, a major constituent of several traditional medicines in a microbial host. This strain is viable at pilot scale