Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
1,1,1-trifluoropropane + reduced acceptor + H+ + O2
(2R)-1,1,1-trifluoropropan-2-ol + (2S)-1,1,1-trifluoropropan-2-ol + acceptor + H2O
-
-
the S stereoisomer is the dominant product
-
?
1,3-butadiene + duroquinol + O2
1,2-epoxybut-3-ene + duroquinone + H2O
-
-
100% 1,2-epoxybut-3-ene is produced, 36% (R)-selectivity, 64% (S)-selectivity
-
?
1-bromopropane + duroquinol + O2
1-bromo-2-propanol + 1-propanol + 1-bromo-3-propanol + duroquinone + H2O
-
-
72% 1-bromo-2-propanol (70% (R)-selectivity, 30% (S)-selectivity), 24% 1-propanol and 4% 1-bromo-3-propanol are produced
-
?
1-bromopropene + duroquinol + O2
1-bromo-2,3-epoxypropane + allyl-alcohol + 1-propanol + duroquinone + H2O
-
-
63% 1-bromo-2,3-epoxypropane, 31% allyl-alcohol and 6% 1-propanol are produced
-
?
1-butene + duroquinol + O2
1,2-epoxybutane + duroquinone + H2O
-
-
100% epoxybutane is produced, 36% (R)-selectivity, 64% (S)-selectivity
-
?
1-butene + reduced acceptor + H+ + O2
1,2-epoxybutane + acceptor + H2O
-
-
-
-
?
1-chloropropane + duroquinol + O2
1-chloro-2-propanol + 1-propanol + 1-chloro-3-propanol + duroquinone + H2O
-
-
64% 1-chloro-2-propanol (70% (R)-selectivity, 30% (S)-selectivity), 29% 1-propanol and 7% 1-chloro-3-propanol are produced
-
?
1-chloropropene + duroquinol + O2
1-chloro-2,3-epoxypropane + allyl-alcohol + 1-propanol + duroquinone + H2O
-
-
67% 1-chloro-2,3-epoxypropane, 23% allyl-alcohol and 10% 1-propanol are produced
-
?
2 1-butene + 2 reduced acceptor + 2 H+ + 2 O2
3-buten-2-ol + 1,2-epoxybutane + 2 acceptor + 2 H2O
-
-
-
-
?
2 butane + 2 reduced acceptor + 2 H+ + 2 O2
1-butanol + 2-butanol + 2 acceptor + 2 H2O
-
-
-
-
?
2 pentane + 2 reduced acceptor + 2 H+ + 2 O2
1-pentanol + 2-pentanol + 2 acceptor + 2 H2O
-
-
-
-
?
2 propane + 2 reduced acceptor + 2 H+ + 2 O2
1-propanol + 2-propanol + 2 acceptor + 2 H2O
-
-
-
-
?
2-bromopropane + duroquinol + O2
2-bromo-1-propanol + acetone + duroquinone + H2O
-
-
2-bromo-1-propanol shows 26% (R)-selectivity and 74% (S)-selectivity
-
?
2-chloropropane + duroquinol + O2
2-chloro-1-propanol + ? + duroquinone + H2O
-
-
1-chloro-2-propanol shows 26% (R)-selectivity and 74% (S)-selectivity
-
?
3 cis-2-butene + reduced acceptor + H+ + O2
meso-2,3-dimethyloxirane + acceptor + H2O
-
-
-
-
?
3,3,3-trifluoroprop-1-ene + reduced acceptor + H+ + O2
(2S)-2-(trifluoromethyl)oxirane + (2R)-2-(trifluoromethyl)oxirane + acceptor + H2O
-
-
the S stereoisomer is the dominant product
-
?
3,3,3-trifluoropropene + reduced acceptor + H+ + O2
3,3,3-trifluoro-1,2-epoxypropane + acceptor + H2O
-
-
-
-
?
butane + duroquinol + O2
2-butanol + butanal + duroquinone + H2O
-
-
91% 2-butanal and 9% butanal are produced
-
?
cis-2-butene + duroquinol + O2
cis-2,3-epoxybutane + duroquinone + H2O
-
-
cis-2,3-epoxybutane is produced
-
?
cis-but-2-ene + reduced acceptor + H+ + O2
cis-2,3-dimethyloxirane + acceptor + H2O
-
-
-
-
?
ethane + duroquinol + O2
ethanal + duroquinone + H2O
-
-
100% ethanal is produced
-
?
ethylene + duroquinol + O2
epoxyethane + duroquinone + H2O
-
-
100% epoxyethane produced
-
?
methane + duroquinol + O2
methanol + duroquinone + H2O
methane + NADH + O2
methanol + NAD+ + H2O
methane + quinol + O2
methanol + quinone + H2O
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
methane + succinate + O2
methanol + fumarate + H2O
methane + trans-dichloroethylene + vinyl chloride + trichloroethylene + O2
?
-
-
-
-
?
n-butane + reduced acceptor + O2
2-butanol + acceptor + H2O
n-pentane + reduced acceptor + O2
2-pentanol + acceptor + H2O
pentane + duroquinol + O2
2-pentanol + pentanal + duroquinone + H2O
-
-
31% 2-pentanal and 69% pentanal are produced
-
?
propane + duroquinol + O2
2-propanol + propanal + duroquinone + H2O
-
-
84% 2-propanal and 16% propanal are produced
-
?
propene + duroquinol + O2
1,2-epoxypropane + duroquinone + H2O
-
-
57% (R)-selectivity, 43% (S)-selectivity
-
?
propene + reduced acceptor + H+ + O2
1,2-epoxypropane + acceptor + H2O
propylene + 2,3-dimethylquinol + O2
propylene oxide + 2,3-dimethylquinone + H2O
propylene + coenzyme Q0 + O2
propylene oxide + reduced coenzyme Q0 + H2O
propylene + decyl-plastoquinol + O2
propylene oxide + decyl-plastoquinone + H2O
propylene + decylubiquinol + O2
propylene oxide + decylubiquinone + H2O
-
-
-
-
?
propylene + duroquinol + O2
epoxypropane + allyl-alcohol + 1-propanol + duroquinone + H2O
-
-
95% epoxypropane, 4.6% allyl-alcohol and 0.4% butanal are produced
-
?
propylene + duroquinol + O2
propylene epoxide + duroquinone + H2O
propylene + duroquinol + O2
propylene oxide + duroquinone + H2O
propylene + duroquinol + O2
propylene oxide + reduced duroquinol + H2O
propylene + menaquinol + O2
propylene oxide + menaquinone + H2O
-
-
-
-
?
propylene + trimethylquinol + O2
propylene oxide + trimethylquinone + H2O
-
-
-
-
?
trans-2-butene + duroquinol + O2
trans-2,3-epoxybutane + trans-2-butane-1-al + duroquinone + H2O
-
-
41% trans-2,3-epoxybutane and 59% trans-2-butane-1-al are produced
-
?
trans-2-butene + reduced acceptor + H+ + O2
2,3-dimethyloxirane + acceptor + H2O
-
-
-
-
?
trans-but-2-ene + reduced acceptor + H+ + O2
(2R,3R)-trans-2,3-dimethyloxirane + (2S,3S)-trans-2,3-dimethyloxirane + acceptor + H2O
-
-
the S,S stereoisomer is the dominant product
-
?
additional information
?
-
methane + duroquinol + O2

methanol + duroquinone + H2O
-
-
-
-
?
methane + duroquinol + O2
methanol + duroquinone + H2O
-
-
-
?
methane + duroquinol + O2
methanol + duroquinone + H2O
-
-
-
-
?
methane + duroquinol + O2
methanol + duroquinone + H2O
-
-
-
?
methane + duroquinol + O2
methanol + duroquinone + H2O
-
-
-
-
?
methane + duroquinol + O2
methanol + duroquinone + H2O
-
-
-
-
?
methane + duroquinol + O2
methanol + duroquinone + H2O
-
-
-
-
?
methane + duroquinol + O2
methanol + duroquinone + H2O
-
-
-
-
?
methane + duroquinol + O2
methanol + duroquinone + H2O
-
-
100% methanol is produced
-
?
methane + NADH + O2

methanol + NAD+ + H2O
-
-
-
?
methane + NADH + O2
methanol + NAD+ + H2O
-
-
-
?
methane + quinol + O2

methanol + quinone + H2O
-
-
-
?
methane + quinol + O2
methanol + quinone + H2O
-
-
-
?
methane + quinol + O2
methanol + quinone + H2O
-
-
-
?
methane + quinol + O2
methanol + quinone + H2O
Methylococcus capsulatus (Bath) is a methanotroph that possesses both a membrane-embedded (pMMO) and a soluble methane monooxygenase (sMMO). Major changes takes place in the respiratory chain between pMMO- and sMMO-producing cells. Quinones are predominantly used as the electron donors for methane oxidation by pMMO. During production of particulate methane monooxygenase, the majority of quinones are directed to methane oxidation
-
-
?
methane + quinol + O2
methanol + quinone + H2O
enzyme pMMO activity is dependent on oxygen concentrations
-
-
?
methane + quinol + O2
methanol + quinone + H2O
Methylococcus capsulatus (Bath) is a methanotroph that possesses both a membrane-embedded (pMMO) and a soluble methane monooxygenase (sMMO). Major changes takes place in the respiratory chain between pMMO- and sMMO-producing cells. Quinones are predominantly used as the electron donors for methane oxidation by pMMO. During production of particulate methane monooxygenase, the majority of quinones are directed to methane oxidation
-
-
?
methane + quinol + O2
methanol + quinone + H2O
-
-
-
?
methane + quinol + O2
methanol + quinone + H2O
enzyme pMMO activity is dependent on oxygen concentrations
-
-
?
methane + quinol + O2
methanol + quinone + H2O
-
-
-
?
methane + quinol + O2
methanol + quinone + H2O
-
Methylococcus capsulatus (Bath) is a methanotroph that possesses both a membrane-embedded (pMMO) and a soluble methane monooxygenase (sMMO). Major changes takes place in the respiratory chain between pMMO- and sMMO-producing cells. Quinones are predominantly used as the electron donors for methane oxidation by pMMO. During production of particulate methane monooxygenase, the majority of quinones are directed to methane oxidation
-
-
?
methane + quinol + O2
methanol + quinone + H2O
-
-
-
-
?
methane + quinol + O2
methanol + quinone + H2O
-
methane activation occurs at the Cu centers of particulate methane monooxygenase
-
-
?
methane + quinol + O2
methanol + quinone + H2O
-
-
-
-
?
methane + quinol + O2
methanol + quinone + H2O
-
-
-
-
?
methane + quinol + O2
methanol + quinone + H2O
-
methane activation occurs at the Cu centers of particulate methane monooxygenase
-
-
?
methane + quinol + O2
methanol + quinone + H2O
-
methane activation occurs at the Cu centers of particulate methane monooxygenase
-
-
?
methane + reduced acceptor + H* + O2

methanol + acceptor + H2O
-
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
671965, 672301, 674005, 675831, 684112, 684114, 685113, 686085, 687284, 701759, 702501, 703343, 706752 -
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
-
in the presence of pMMO substrate methane, the H2O2 formation is diminished, which is likely to be caused by the consumption of electrons by methane oxidation
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
Q25BV2; Q25BV3; Q25BV4, Q25BV9; Q25BW0; Q25BW2; Q25BW3
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
Q25BV2; Q25BV3; Q25BV4, Q25BV9; Q25BW0; Q25BW2; Q25BW3
-
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
Soil bacterium
-
pmoA cluster JR3 may be the most important methane oxidizer for arid soils
-
-
?
methane + reduced acceptor + H* + O2
methanol + acceptor + H2O
D0FK34, D0FK37, D0FK39, D0FK43, D0FK44, D0FK45, D0FK53, D0FK57, D0FK58, D0FK59, D0FK61, D0FK62, D0FK63, D0FK65, D0FK67, D0FKJ4, D0FKK3, D0FKS0, D0FL26, D0FL48 -
-
-
?
methane + succinate + O2

methanol + fumarate + H2O
membrane-bound enzyme only
-
-
?
methane + succinate + O2
methanol + fumarate + H2O
membrane-bound enzyme only
-
-
?
Mn2+ + H2O2

?
-
-
-
-
?
n-butane + reduced acceptor + O2

2-butanol + acceptor + H2O
-
-
-
?
n-butane + reduced acceptor + O2
2-butanol + acceptor + H2O
-
-
-
-
?
n-butane + reduced acceptor + O2
2-butanol + acceptor + H2O
-
-
-
-
?
n-pentane + reduced acceptor + O2

2-pentanol + acceptor + H2O
-
-
-
?
n-pentane + reduced acceptor + O2
2-pentanol + acceptor + H2O
-
-
-
-
?
n-pentane + reduced acceptor + O2
2-pentanol + acceptor + H2O
-
-
-
-
?
propene + reduced acceptor + H+ + O2

1,2-epoxypropane + acceptor + H2O
-
-
-
-
?
propene + reduced acceptor + H+ + O2
1,2-epoxypropane + acceptor + H2O
-
enzyme form sMMO
-
?
propene + reduced acceptor + H+ + O2
1,2-epoxypropane + acceptor + H2O
-
-
-
-
?
propene + reduced acceptor + H+ + O2
1,2-epoxypropane + acceptor + H2O
-
enzyme form sMMO
-
?
propylene + 2,3-dimethylquinol + O2

propylene oxide + 2,3-dimethylquinone + H2O
-
-
-
-
?
propylene + 2,3-dimethylquinol + O2
propylene oxide + 2,3-dimethylquinone + H2O
-
-
-
-
?
propylene + coenzyme Q0 + O2

propylene oxide + reduced coenzyme Q0 + H2O
-
-
-
-
?
propylene + coenzyme Q0 + O2
propylene oxide + reduced coenzyme Q0 + H2O
-
-
-
-
?
propylene + decyl-plastoquinol + O2

propylene oxide + decyl-plastoquinone + H2O
-
higher activity compared to duroquinol
-
-
?
propylene + decyl-plastoquinol + O2
propylene oxide + decyl-plastoquinone + H2O
-
higher activity compared to duroquinol
-
-
?
propylene + duroquinol + O2

propylene epoxide + duroquinone + H2O
-
-
-
-
?
propylene + duroquinol + O2
propylene epoxide + duroquinone + H2O
-
-
-
-
?
propylene + duroquinol + O2

propylene oxide + duroquinone + H2O
-
-
-
-
?
propylene + duroquinol + O2
propylene oxide + duroquinone + H2O
-
-
-
-
?
propylene + duroquinol + O2
propylene oxide + duroquinone + H2O
-
-
-
-
?
propylene + duroquinol + O2

propylene oxide + reduced duroquinol + H2O
-
-
-
-
?
propylene + duroquinol + O2
propylene oxide + reduced duroquinol + H2O
-
-
-
-
?
additional information

?
-
-
unlike the sMMO, the pMMO enzyme has relatively narrow substrate specificity, oxidising alkanes and alkenes of up to five carbons but not aromatic compounds
-
-
?
additional information
?
-
-
pMMO cannot oxidize naphthalene
-
-
?
additional information
?
-
-
pMMO has narrower substrate specificity but higher activity with smaller hydrocarbons like methane, ethane, and propene compared to sMMO
-
-
?