Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 1.14.18.1 - tyrosinase and Organism(s) Agaricus bisporus

for references in articles please use BRENDA:EC1.14.18.1
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
IUBMB Comments
A type III copper protein found in a broad variety of bacteria, fungi, plants, insects, crustaceans, and mammals, which is involved in the synthesis of betalains and melanin. The enzyme, which is activated upon binding molecular oxygen, can catalyse both a monophenolase reaction cycle (reaction 1) or a diphenolase reaction cycle (reaction 2). During the monophenolase cycle, one of the bound oxygen atoms is transferred to a monophenol (such as L-tyrosine), generating an o-diphenol intermediate, which is subsequently oxidized to an o-quinone and released, along with a water molecule. The enzyme remains in an inactive deoxy state, and is restored to the active oxy state by the binding of a new oxygen molecule. During the diphenolase cycle the enzyme binds an external diphenol molecule (such as L-dopa) and oxidizes it to an o-quinone that is released along with a water molecule, leaving the enzyme in the intermediate met state. The enzyme then binds a second diphenol molecule and repeats the process, ending in a deoxy state . The second reaction is identical to that catalysed by the related enzyme catechol oxidase (EC 1.10.3.1). However, the latter can not catalyse the hydroxylation or monooxygenation of monophenols.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Agaricus bisporus
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Agaricus bisporus
The expected taxonomic range for this enzyme is: Eukaryota, Bacteria, Archaea
Reaction Schemes
hide(Overall reactions are displayed. Show all >>)
2
+
=
2
+
2
Synonyms
tyrosinase, monophenolase, oxygen oxidoreductase, phenol oxidases, murine tyrosinase, melc2, o-diphenol oxidase, monophenol oxidase, met-tyrosinase, jrppo1, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
catechol oxidase
catecholase
chlorogenic acid oxidase
-
-
-
-
chlorogenic oxidase
-
-
-
-
cresolase
-
-
-
-
cresolase/monophenolase
-
-
deoxy-tyrosinase
-
-
Diphenol oxidase
-
-
-
-
dopa oxidase
-
-
-
-
met-tyrosinase
-
-
monophenol dihydroxyphenylalanine:oxygen oxidoreductase
-
-
-
-
monophenol monooxidase
-
-
-
-
monophenol monooxygenase
-
-
monophenol oxidase
-
-
-
-
monophenol oxygen oxidoreductase
-
-
monophenol, dihydroxy-L-phenylalanine oxygen oxidoreductase
-
-
-
-
monophenol, o-diphenol:oxygen oxido-reductase
-
monophenol, o-diphenol:oxygen oxidoreductase
monophenol, polyphenol oxidase
-
-
monophenolase
monphenol mono-oxygenase
-
-
mushroom tyrosinase
mushroom tyrosine
-
-
N-acetyl-6-hydroxytryptophan oxidase
-
-
-
-
o-diphenol oxidase
-
-
-
-
o-diphenol oxidoreductase
-
-
-
-
o-diphenol oxygen oxidoreductase
-
-
o-diphenol: O2 oxidoreductase
-
-
o-diphenol: oxidoreductase
-
-
o-diphenol:O2 oxidoreductase
-
-
-
-
o-diphenol:oxygen oxidoreductase
-
-
-
-
o-diphenolase
-
-
-
-
oxygen oxidoreductase
-
-
phenol oxidase
phenolase
-
-
-
-
phenoloxidase
-
-
polyaromatic oxidase
-
-
-
-
polyphenol oxidase
polyphenol oxidase 3
-
polyphenol oxidase 4
UniProt
polyphenolase
-
-
-
-
polyphenoloxidase
-
-
pyrocatechol oxidase
-
-
-
-
tryosinase
-
-
tryrosinase
-
-
tyrosinase
tyrosinase diphenolase
-
-
tyrosine-dopa oxidase
-
-
-
-
additional information
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
2 L-dopa + O2 = 2 dopaquinone + 2 H2O
show the reaction diagram
mechanism of tyrosinase on monophenols and o-diphenol, overview
-
L-tyrosine + O2 = dopaquinone + H2O
show the reaction diagram
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
oxidation
-
-
-
-
redox reaction
-
-
-
-
reduction
-
-
-
-
SYSTEMATIC NAME
IUBMB Comments
L-tyrosine,L-dopa:oxygen oxidoreductase
A type III copper protein found in a broad variety of bacteria, fungi, plants, insects, crustaceans, and mammals, which is involved in the synthesis of betalains and melanin. The enzyme, which is activated upon binding molecular oxygen, can catalyse both a monophenolase reaction cycle (reaction 1) or a diphenolase reaction cycle (reaction 2). During the monophenolase cycle, one of the bound oxygen atoms is transferred to a monophenol (such as L-tyrosine), generating an o-diphenol intermediate, which is subsequently oxidized to an o-quinone and released, along with a water molecule. The enzyme remains in an inactive deoxy state, and is restored to the active oxy state by the binding of a new oxygen molecule. During the diphenolase cycle the enzyme binds an external diphenol molecule (such as L-dopa) and oxidizes it to an o-quinone that is released along with a water molecule, leaving the enzyme in the intermediate met state. The enzyme then binds a second diphenol molecule and repeats the process, ending in a deoxy state [7]. The second reaction is identical to that catalysed by the related enzyme catechol oxidase (EC 1.10.3.1). However, the latter can not catalyse the hydroxylation or monooxygenation of monophenols.
CAS REGISTRY NUMBER
COMMENTARY hide
9002-10-2
not distinguished from EC 1.10.3.1
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
(+)-catechin hydrate + 1/2 O2
?
show the reaction diagram
-
-
-
?
(-)-epicatechin + 1/2 O2
?
show the reaction diagram
-
-
-
?
(R)-dopaxanthin + dehydroascorbic acid + O2
(R)-dopaxanthin quinone + L-ascorbic acid + H2O
show the reaction diagram
(R)-tyrosine-betaxanthin + L-DOPA + O2
(R)-dopaxanthin + dopaquinone + H2O
show the reaction diagram
-
i.e. (R)-portulacaxanthin II, the activity of the enzyme is not restricted to betaxanthins derived from (S)-amino acids
(R)-dopaxanthin is a pigment, quantitative product analysis
-
?
1,5-bis(4-hydroxyphenyl)-1,4-pentadiene-3-one + O2
?
show the reaction diagram
-
-
-
-
?
2 2-methyl-L-dopa + O2
2 2-methyldopaquinone + 2 H2O
show the reaction diagram
-
-
-
-
?
2 catechol + O2
2 1,2-benzoquinone + 2 H2O
show the reaction diagram
2 L-dopa + O2
2 dopaquinone + 2 H2O
show the reaction diagram
2 L-tyrosine + O2
2 L-dopa
show the reaction diagram
-
-
-
-
?
2-methyl-L-tyrosine + O2
2-methyldopaquinone + H2O
show the reaction diagram
-
-
-
-
?
2-methylresorcinol + O2
?
show the reaction diagram
-
acts as enzyme substrate and inhibitor, low activity
-
-
?
3,3',4',5,7-pentahydroxyflavone + 1/2 O2
?
show the reaction diagram
-
quercetin
-
-
?
3,4-dihydroxyphenyl propionic acid + O2
2-(3,4-dioxocyclohexa-1,5-dien-1-yl)propionic acid + H2O
show the reaction diagram
-
-
-
-
r
3,4-dihydroxyphenylacetic acid + 1/2 O2
(3,4-dioxocyclohexa-1,5-dien-1-yl)acetic acid + H2O
show the reaction diagram
-
DHPAA
-
-
?
3,4-dihydroxyphenylalanine + 1/2 O2
dopaquinone + H2O
show the reaction diagram
-
-
-
-
?
3,4-dihydroxyphenylalanine + O2
?
show the reaction diagram
-
-
-
-
?
3,4-dihydroxyphenylpropionic acid + 1/2 O2
3-(3,4-dioxocyclohexa-1,5-dien-1-yl)propanoic acid + H2O
show the reaction diagram
-
DHPPA
-
-
?
3-hydroxyanthranilic acid + O2
cinnabarinic acid + H2O
show the reaction diagram
-
-
-
?
3-hydroxybenzyl alcohol + O2
?
show the reaction diagram
-
-
-
-
?
3-methoxyphenol + O2
?
show the reaction diagram
-
-
-
-
?
3-[2-(3,4-dihydroxyphenyl)ethylaminocarbonyl]-3-methyl-1-(4-acetylphenyl)triazene + O2
(2E)-3-(4-acetylphenyl)-N-[2-(3,4-dioxocyclohexa-1,5-dien-1-yl)ethyl]-1-methyltriaz-2-ene-1-carboxamide + H2O
show the reaction diagram
-
-
-
-
?
3-[2-(3,4-dihydroxyphenyl)ethylaminocarbonyl]-3-methyl-1-(4-ethoxycarbonylphenyl)triazene + O2
ethyl 4-[(1E)-3-[[2-(3,4-dioxocyclohexa-1,5-dien-1-yl)ethyl]carbamoyl]-3-methyltriaz-1-en-1-yl]benzoate + H2O
show the reaction diagram
-
-
-
-
?
3-[2-(3,4-dihydroxyphenyl)ethylaminocarbonyl]-3-methyl-1-(4-tolyl)triazene + O2
(2E)-N-[2-(3,4-dioxocyclohexa-1,5-dien-1-yl)ethyl]-1-methyl-3-(4-methylphenyl)triaz-2-ene-1-carboxamide + H2O
show the reaction diagram
-
-
-
-
?
3-[2-(4-hydroxyphenyl)ethylaminocarbonyl]-3-methyl-1-(4-acetylphenyl)triazene + O2
(2E)-3-(4-acetylphenyl)-1-methyl-N-[2-(4-oxocyclohexa-1,5-dien-1-yl)ethyl]triaz-2-ene-1-carboxamide + H2O
show the reaction diagram
-
-
-
-
?
3-[2-(4-hydroxyphenyl)ethylaminocarbonyl]-3-methyl-1-(4-cyanophenyl)triazene + O2
(2E)-3-(4-cyanophenyl)-1-methyl-N-[2-(4-oxocyclohexa-1,5-dien-1-yl)ethyl]triaz-2-ene-1-carboxamide + H2O
show the reaction diagram
-
-
-
-
?
3-[2-(4-hydroxyphenyl)ethylaminocarbonyl]-3-methyl-1-(4-ethoxycarbonylphenyl)triazene + O2
ethyl 4-[(1E)-3-methyl-3-[[2-(4-oxocyclohexa-1,5-dien-1-yl)ethyl]carbamoyl]triaz-1-en-1-yl]benzoate + H2O
show the reaction diagram
-
-
-
-
?
3-[2-(4-hydroxyphenyl)ethylaminocarbonyl]-3-methyl-1-(4-tolyl)triazene + O2
(2E)-1-methyl-3-(4-methylphenyl)-N-[2-(4-oxocyclohexa-1,5-dien-1-yl)ethyl]triaz-2-ene-1-carboxamide + H2O
show the reaction diagram
-
-
-
-
?
4-bromophenol + O2
?
show the reaction diagram
-
-
-
-
?
4-chlorocatechol + 1/2 O2
4-chlorocyclohexa-3,5-diene-1,2-dione + H2O
show the reaction diagram
-
-
-
-
?
4-chlorophenol + O2
4-chloro-1,2-quinone + H2O
show the reaction diagram
-
-
-
-
?
4-ethoxyphenol + O2
?
show the reaction diagram
-
-
-
-
?
4-ethylcatechol + 1/2 O2
4-ethylcyclohexa-3,5-diene-1,2-dione + H2O
show the reaction diagram
-
-
-
-
?
4-ethylresorcinol + O2
?
show the reaction diagram
-
acts as enzyme substrate and inhibitor
-
-
?
4-fluorophenol + O2
?
show the reaction diagram
-
-
-
-
?
4-hexylresorcinol + O2
?
show the reaction diagram
-
-
-
-
?
4-hydroxyanisole + O2
3,4-dihydoxyanisol + H2O
show the reaction diagram
4-hydroxyanisole + O2
?
show the reaction diagram
-
-
-
-
?
4-hydroxybenzaldehyde + O2
?
show the reaction diagram
-
-
-
-
?
4-hydroxybenzyl alcohol + O2
?
show the reaction diagram
4-hydroxyphenyl acetic acid + O2
?
show the reaction diagram
-
-
-
-
?
4-hydroxyphenyl propionic acid + O2
3,4-dihydroxyphenyl propionic acid + H2O
show the reaction diagram
-
-
-
-
r
4-hydroxyphenyl propionic acid + O2
?
show the reaction diagram
-
-
-
-
?
4-iodophenol + O2
?
show the reaction diagram
-
-
-
-
?
4-methoxyphenol + O2
?
show the reaction diagram
-
-
-
-
?
4-methylcatechol + 1/2 O2
4-methyl-1,2-benzoquinone + H2O
show the reaction diagram
4-methylcatechol + O2
4-methyl-o-benzoquinone + H2O
show the reaction diagram
-
-
-
-
?
4-Methylphenol + O2
?
show the reaction diagram
-
-
-
-
?
4-methylresorcinol + O2
?
show the reaction diagram
-
acts as enzyme substrate and inhibitor
-
-
?
4-n-butylresorcinol + O2
?
show the reaction diagram
-
-
-
-
?
4-nitrocatechol + 1/2 O2
4-nitrocyclohexa-3,5-diene-1,2-dione + H2O
show the reaction diagram
-
-
-
-
?
4-tert-butylcatechol + 1/2 O2
4-tert-butylcyclohexa-3,5-diene-1,2-dione + H2O
show the reaction diagram
-
-
-
-
?
4-tert-butylcatechol + O2
4-tert-butyl-o-benzoquinone + H2O
show the reaction diagram
-
-
-
-
r
4-tert-butylphenol + O2
4-tert-butyl 1,2-benzoquinone + H2O
show the reaction diagram
-
-
-
?
4-tert-butylphenol + O2
?
show the reaction diagram
-
-
-
-
?
4-[(4-methylphenyl)azo]-1,2-benzendiol + 1/2 O2
4-[(E)-(4-methylphenyl)diazenyl]cyclohexa-3,5-diene-1,2-dione + H2O
show the reaction diagram
4-[(4-methylphenyl)azo]-phenol + O2 + AH2
4-[(4-methylbenzo)azo]-1,2-benzendiol + H2O + A
show the reaction diagram
alpha-arbutin + O2
?
show the reaction diagram
-
alpha-arbutin also has a weaker inhibitory effect on the monophenolase activity of the enzyme, molecular docking, overview. The hydroxyl group establishes hydrogen bonds with the peroxide ion and polar contacts with a copper ion as well as with residues H259 and H263. The aromatic ring position cannot be stabilized by Pi-Pi-interactions
-
-
?
beta-arbutin + O2
?
show the reaction diagram
caffeic acid + 1/2 O2
caffeoyl quinone + H2O
show the reaction diagram
-
-
-
?
caffeic acid + O2
caffeoyl quinone + H2O
show the reaction diagram
-
-
-
-
?
catechin + O2
?
show the reaction diagram
-
-
-
-
?
catechin dimer + O2
?
show the reaction diagram
-
-
-
-
?
catechin trimer + O2
?
show the reaction diagram
-
-
-
-
?
catechol + 1/2 O2
1,2-benzoquinone + H2O
show the reaction diagram
-
pyrogallol and catechol are best substrates for catalysis and inactivation
-
-
?
catechol + O2
?
show the reaction diagram
reaction of EC 1.10.3.1
-
-
?
D-ascorbic acid + O2
?
show the reaction diagram
-
-
-
-
r
D-dopa + 1/2 O2
D-dopaquinone + H2O
show the reaction diagram
tyrosinase oxidizes L- and D-forms with similar rate
-
-
?
D-tyrosine + L-dopa + O2
D-dopa + dopaquinone + H2O
show the reaction diagram
-
-
-
-
?
D-tyrosine + O2 + AH2
D-dopa + H2O + A
show the reaction diagram
tyrosinase oxidizes L- and D-forms with similar rate
-
-
?
deoxyarbutin + O2
?
show the reaction diagram
oxytyrosinase is able to hydroxylate deoxyarbutin and finishes the catalytic cycle by oxidizing the formed o-diphenol to quinone, while the enzyme becomes deoxytyrosinase, which evolves to oxytyrosinase in the presence of oxygen. deoxyarbutin can alsio act as enzyme inhibitor. This compound is the only one described that does not release o-diphenol after the hydroxylation step. Oxytyrosinase hydroxylates the deoxyarbutin in ortho position of the phenolic hydroxyl group by means of an aromatic electrophilic substitution. As the oxygen orbitals and the copper atoms are not coplanar, but in axial/equatorial position, the concerted oxidation/reduction cannot occur and the release of a copper atom to bind again in coplanar position, enabling the oxidation/reduction or release of the o-diphenol from the active site to the medium. In the case of deoxyarbutin, the o-diphenol formed is repulsed by the water due to its hydrophobicity, and so can bind correctly and be oxidized to a quinone before being released
-
-
?
DL-2-methyltyrosine + O2
?
show the reaction diagram
-
-
-
-
?
DL-dopa + 1/2 O2
DL-dopaquinone + H2O
show the reaction diagram
tyrosinase oxidizes L- and D-forms with similar rate
-
-
?
DL-tyrosine + O2 + AH2
DL-dopa + H2O + A
show the reaction diagram
tyrosinase oxidizes L- and D-forms with similar rate
-
-
?
dopa methyl ester + O2
dopaquinone methyl ester + H2O
show the reaction diagram
-
-
-
-
r
dopamine + O2
?
show the reaction diagram
dopamine + O2
dopamine quinone + H2O
show the reaction diagram
ellagic acid + O2
?
show the reaction diagram
epicatechin + O2
?
show the reaction diagram
-
-
-
-
?
esculetin + 1/2 O2
2H-chromene-2,6,7-trione + H2O
show the reaction diagram
-
demonstration, that esculetin is no inhibitor, but a substrate of mushroom polyphenol oxidase (PPO) and horseradish peroxidase (POD)
-
-
?
gallic acid + 1/2 O2
5-hydroxy-3,4-dioxocyclohexa-1,5-diene-1-carboxylic acid + H2O
show the reaction diagram
-
-
-
-
?
gamma-L-glutaminyl-3,4-dihydroxybenzene + O2
gamma-L-glutaminyl-3,4-benzoquinone + H2O
show the reaction diagram
-
-
-
?
gamma-L-glutaminyl-4-hydroxybenzene + O2 + AH2
gamma-L-glutaminyl-3,4-dihydroxybenzene + H2O + A
show the reaction diagram
-
-
-
?
Gly-Gly-L-Tyr + O2
?
show the reaction diagram
-
-
-
-
?
Gly-L-Tyr-Gly + O2
?
show the reaction diagram
-
-
-
-
?
hydrocaffeic acid + O2
?
show the reaction diagram
-
-
-
-
?
hydroquinone + O2
?
show the reaction diagram
-
-
-
-
?
hydroxyhydroquinone + O2
2-hydroxy-p-benzoquinone + H2O
show the reaction diagram
-
the oxidation of hydroxyhydroquinone by O2 catalyzed by tyrosinase occurs simultaneously with the non-enzymatic oxidation of hydroxyhydroquinone at pH 7.0, the identical isosbestic points indicating that there is a stoichiometric transformation from hydroxyhydroquinone to 2-hydroxy p-benzoquinone, a red p-quinone
-
-
?
L-3,4-dihydroxyphenylalanine + 1/2 O2
L-dopaquinone + H2O
show the reaction diagram
-
individually grafted onto a novel CSG1.0 membrane as a ligand
-
-
?
L-alpha-methyl tyrosine + O2
L-alpha-methyldopa + H2O
show the reaction diagram
-
-
-
-
r
L-alpha-methyldopa + H2O
L-alpha-methyl tyrosine + O2
show the reaction diagram
-
-
-
-
r
L-alpha-methyldopa + O2
L-alpha-methyldopaquinone + H2O
show the reaction diagram
-
-
-
-
r
L-dopa + 1/2 O2
L-dopachrome + H2O
show the reaction diagram
-
-
-
-
?
L-dopa + 1/2 O2
L-dopaquinone + H2O
show the reaction diagram
L-DOPA + O2
?
show the reaction diagram
-
-
-
-
?
L-DOPA + O2
dopaquinone + H2O
show the reaction diagram
L-Dopa + O2
L-dopaquinone + H2O
show the reaction diagram
L-isoproterenol + O2
1-[1-hydroxy-2-(propan-2-ylamino)ethyl]-3,4-dioxocyclohexa-1,5-diene + H2O
show the reaction diagram
-
-
-
-
r
L-Tyr + O2
L-Dopa + H2O
show the reaction diagram
-
diphenolase activity
-
-
?
L-Tyr-Gly-Gly + O2
?
show the reaction diagram
-
-
-
-
?
L-tyrosine + L-dopa + O2
L-dopa + dopaquinone + H2O
show the reaction diagram
L-tyrosine + O2
dihydroxyphenylalanine quinone + H2O
show the reaction diagram
-
-
-
?
L-tyrosine + O2
dopaquinone + H2O
show the reaction diagram
L-tyrosine + O2
L-DOPA + H2O
show the reaction diagram
L-tyrosine + O2 + AH2
L-3,4-dihydroxyphenylalanine + H2O + A
show the reaction diagram
L-tyrosine + O2 + AH2
L-dopa + H2O + A
show the reaction diagram
L-tyrosine methyl ester + O2
?
show the reaction diagram
-
-
-
-
?
methyl gallate + O2
methyl 5-hydroxy-3,4-dioxocyclohexa-1,5-diene-1-carboxylate + H2O
show the reaction diagram
-
-
-
-
?
N-acetyl-L-tyrosine + O2
N-acetyl-dopaquinone + H2O
show the reaction diagram
-
-
-
?
oxyresveratrol + O2
?
show the reaction diagram
p-coumaric acid + O2
caffeic acid + H2O
show the reaction diagram
-
-
-
-
?
p-cresol + O2 + AH2
4-methylpyrocatechol + H2O + A
show the reaction diagram
-
-
-
?
p-tyrosol + O2
2-(3,4-dihydroxyphenyl)ethanol + H2O
show the reaction diagram
-
-
-
-
?
p-tyrosol + O2 + AH2
2-(3,4-dihydroxyphenyl)ethanol + H2O + A
show the reaction diagram
-
-
-
?
phenol + O2
?
show the reaction diagram
phenol + O2
catechol + H2O
show the reaction diagram
-
-
-
-
r
phenol + O2 + AH2
catechol + H2O + A
show the reaction diagram
phloretic acid + O2
?
show the reaction diagram
-
-
-
-
?
phloretin + O2
?
show the reaction diagram
-
the compound is a substrate and an inhibitor for tyrosinase
-
-
?
phloridzin + O2
?
show the reaction diagram
-
the compound is a substrate and an inhibitor for tyrosinase
-
-
?
phloroglucinol + 1/2 O2
?
show the reaction diagram
-
-
-
-
?
protocatechuic acid + 1/2 O2
3,4-dioxocyclohexa-1,5-diene-1-carboxylic acid + H2O
show the reaction diagram
-
-
-
-
?
protocatechuic aldehyde + 1/2 O2
3,4-dioxocyclohexa-1,5-diene-1-carbaldehyde + H2O
show the reaction diagram
-
-
-
-
?
pyrocatechol + 1/2 O2
1,2-benzoquinone + H2O
show the reaction diagram
pyrogallol + 1/2 O2
?
show the reaction diagram
resorcinol + O2
?
show the reaction diagram
-
acts as enzyme substrate and inhibitor
-
-
?
resveratrol + O2
?
show the reaction diagram
-
-
-
-
?
rhododendrol + O2
?
show the reaction diagram
-
-
-
-
?
tyramine + O2
4-(2-aminoethyl)cyclohexa-3,5-diene-1,2-dione + H2O
show the reaction diagram
-
-
-
?
tyramine + O2
?
show the reaction diagram
tyramine + O2
dopamine + H2O
show the reaction diagram
-
-
-
-
r
tyrosol + O2
?
show the reaction diagram
-
the compound is a substrate and an inhibitor for tyrosinase
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
2 L-dopa + O2
2 dopaquinone + 2 H2O
show the reaction diagram
2 L-tyrosine + O2
2 L-dopa
show the reaction diagram
-
-
-
-
?
dopamine + O2
?
show the reaction diagram
-
-
-
-
?
L-DOPA + O2
dopaquinone + H2O
show the reaction diagram
-
-
-
-
?
L-tyrosine + L-dopa + O2
L-dopa + dopaquinone + H2O
show the reaction diagram
-
-
-
-
?
L-tyrosine + O2
dihydroxyphenylalanine quinone + H2O
show the reaction diagram
-
-
-
?
L-tyrosine + O2
dopaquinone + H2O
show the reaction diagram
L-tyrosine + O2
L-DOPA + H2O
show the reaction diagram
-
-
-
-
?
additional information
?
-
COFACTOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
additional information
-
if L-DOPA is an active cofactor, its formation as an intermediate during o-dopaquinone production is controversial
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
copper
H2O2
-
the exogenous oxygen molecule is bound as peroxide and bridges the two copper centers, conferring a distinct O2-Cu(II) charge transfer
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(+)-gallocatechin-3-O-gallate
-
GCG, tyrosinase inhibitor
(+)haemanthamine
-
-
(-)-epicatechin-3-O-gallate
-
ECG, tyrosinase inhibitor
(-)-epigallocatechin
-
competitive, IC50: 0.035 mM
(-)-epigallocatechin-3-O-gallate
(1E,2E)-3-(2,4-dimethoxyphenyl)-N-hydroxy-1-(pyridin-2-yl)prop-2-en-1-imine
-
52.5% inhibition at 50 mM
(1E,4E)-1,5-bis(2-fluoro-4-methoxyphenyl)penta-1,4-dien-3-one
-
-
(1E,4E)-1,5-bis(4-fluorophenyl)penta-1,4-dien-3-one
-
-
(1E,4E)-1,5-bis(4-hydroxy-3-methoxyphenyl)penta-1,4-dien-3-one
-
-
(2-([4-(4-methoxy-benzyloxy)-benzylidene]-hydrazono)-4-oxothiazolidin-5-ylidene)-acetic acid methyl ester
-
-
(2-[(2-hydroxy-benzylidene)-hydrazono]-4-oxo-thiazolidin-5-ylidene)-acetic acid methyl ester
-
-
(2-[(5-methyl-furan-2-ylmethylene)-hydrazono]-4-oxothiazolidin-5-ylidene)-acetic acid methyl ester
-
-
(2E)-1-(2-hydroxyphenyl)-3-(pyridin-2-yl)prop-2-en-1-one
-
59.2% inhibition at 50 mM
(2E)-1-(2-hydroxyphenyl)-3-(pyridin-3-yl)prop-2-en-1-one
-
55.9% inhibition at 50 mM
(2E)-1-(2-hydroxyphenyl)-3-(pyridin-4-yl)prop-2-en-1-one
-
48.9% inhibition at 50 mM
(2E)-1-(3-hydroxynaphthalen-2-yl)-3-(pyridin-2-yl)prop-2-en-1-one
-
49.5% inhibition at 50 mM
-
(2E)-1-(3-hydroxynaphthalen-2-yl)-3-(pyridin-3-yl)prop-2-en-1-one
-
59.2% inhibition at 50 mM
(2E)-1-(3-hydroxynaphthalen-2-yl)-3-(pyridin-4-yl)prop-2-en-1-one
-
42.7% inhibition at 50 mM
(2E)-3-(2,4-dimethoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one
-
12.3% inhibition at 50 mM
(2E)-3-(3,4-dihydroxyphenyl)-N-(2-phenylethyl)prop-2-enamide
-
-
(2E)-3-(3,4-dihydroxyphenyl)-N-(4-hydroxybenzyl)prop-2-enamide
-
-
(2E)-3-(3,4-dihydroxyphenyl)-N-[2-(3,4-dihydroxyphenyl)ethyl]prop-2-enamide
-
-
(2E)-3-(3,4-dihydroxyphenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]prop-2-enamide
-
-
(2E)-3-(3,4-dihydroxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide
-
-
(2E)-3-(3,4-dihydroxyphenyl)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]prop-2-enamide
-
-
(2E)-3-(3,4-dimethoxyphenyl)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]prop-2-enamide
-
-
(2E)-3-(4-chlorophenyl)-N-[2-(4-chlorophenyl)ethyl]prop-2-enamide
-
-
(2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]prop-2-enamide
-
-
(2E)-3-(4-hydroxyphenyl)-N-(2-phenylethyl)prop-2-enamide
-
strong tyrosinase inhibitory potential
(2E)-3-(4-hydroxyphenyl)prop-2-enoic acid
-
-
(2E)-3-(4-methoxyphenyl)-N-(1-phenylethyl)prop-2-enamide
-
-
(2E)-3-(4-methoxyphenyl)-N-(2-phenylethyl)prop-2-enamide
-
-
(2E)-3-(4-methoxyphenyl)prop-2-enoic acid
-
-
(2E)-3-phenyl-N-(1-phenylethyl)prop-2-enamide
-
-
(2E)-3-phenyl-N-(2-phenylethyl)prop-2-enamide
-
-
(2E)-3-phenylprop-2-enoic acid
-
-
(2E)-3-[4-(dimethylamino)phenyl]-1-(pyridin-2-yl)prop-2-en-1-one
-
16.9% inhibition at 50 mM
(2E)-but-2-enoic acid
-
non-competitive inhibition
(2E)-N-(3,4-dihydroxybenzyl)-3-(3,4-dihydroxyphenyl)prop-2-enamide
-
-
(2E)-N-(4-chlorobenzyl)-3-phenylprop-2-enamide
-
-
(2E)-N-benzyl-3-(3,4-dihydroxyphenyl)prop-2-enamide
-
-
(2E)-N-benzyl-3-(4-hydroxyphenyl)prop-2-enamide
-
strong tyrosinase inhibitory potential
(2E)-N-benzyl-3-(4-methoxyphenyl)prop-2-enamide
-
-
(2E)-N-benzyl-3-phenylprop-2-enamide
-
-
(2E)-N-[2-(4-chlorophenyl)ethyl]-3-(4-hydroxyphenyl)prop-2-enamide
-
-
(2E)-N-[2-(4-chlorophenyl)ethyl]-3-phenylprop-2-enamide
-
-
(2E)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-3-(3-hydroxy-4-methoxyphenyl)prop-2-enamide
-
-
(2E)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-3-(4-hydroxy-3-methoxyphenyl)prop-2-enamide
-
-
(2E)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-3-(4-hydroxyphenyl)prop-2-enamide
-
-
(2E)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-3-(4-methoxyphenyl)prop-2-enamide
-
-
(2E)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-3-phenylprop-2-enamide
-
-
(2E,4E)-hexa-2,4-dienoic acid
-
non-competitive inhibition
(2E,6E)-2,6-bis[(4-chlorophenyl)methylidene]cyclohexanone
-
-
(2E,6E)-2,6-bis[(4-hydroxyphenyl)methylidene]cyclohexanone
-
-
(2R,3R)-taxifolin
-
isolated from the sprout of Polygonum hydropiper L. (Benitade), inhibited 70% of tyrosinase activity at a concentration of 0.50 mM
(2Z)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid
-
-
(2Z)-3-(3,4-dimethoxyphenyl)prop-2-enoic acid
-
-
(2Z)-3-(3-hydroxy-4-methoxyphenyl)prop-2-enoic acid
-
-
(2Z)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid
-
-
(2Z)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid
-
-
(2Z)-3-(4-hydroxyphenyl)prop-2-enoic acid
-
-
(2Z)-3-(4-methoxyphenyl)prop-2-enoic acid
-
-
(2Z)-3-phenylprop-2-enoic acid
-
-
(4-oxo-2-[(1H-pyrrol-2-ylmethylene)-hydrazono]-thiazolidin-5-ylidene)-acetic acid methyl ester
-
-
(4-oxo-2-[(3-phenyl-allylidene)-hydrazono]-thiazolidin-5-ylidene)-acetic acid methyl ester
-
-
(7S, 8R, 8'R)-(-)-lariciresinol-4'-O-beta-D-glucopyranoside
-
tyrosinase inhibitors from Marrubium velutinum, lignan glucosides
(7S, 8R, 8'R)-(-)-lariciresinol-4,4'-O-bis-beta-D-glucopyranoside
-
tyrosinase inhibitors from Marrubium velutinum, lignan glucosides
(7S, 8R, 8'R)-(-)-lariciresinol-4-O-beta-D-glucopyranoside
-
tyrosinase inhibitors from Marrubium velutinum, lignan glucosides
(R)-HTCCA
-
-
(S)-HTCCA
-
-
1,10-bis(1,10-carboxyethyl) ether
-
-
1,3-dimethylimidazolium methylsulfate
-
69.7% residual activity at 5% (w/v)
1,5-bis(4-hydroxyphenyl)-1,4-pentadiene-3-one
-
-
1-(1,4-diacetylphenyl)dithiosemicarbazide
-
-
1-(1-(2,4,6-trihydroxyphenyl)ethylidene)thiosemicarbazide
-
-
1-(1-(2,4-dihydroxyphenyl)ethylidene)thiosemicarbazide
-
-
1-(1-(4-bromophenyl)ethylidene)thiosemicarbazide
-
-
1-(1-(4-fluorophenyl)ethylidene)thiosemicarbazide
-
-
1-(1-(4-hydroxyphenyl)ethylidene)thiosemicarbazide
-
-
1-(1-(4-isopropylphenyl)ethylidene)thiosemicarbazide
-
-
1-(1-(4-methoxyphenyl)ethylidene)thiosemicarbazide
-
-
1-(1-(4-methoxyphenyl)propan-2-ylidene)-thiosemicarbazide
-
-
1-(1-(4-methoxyphenyl)propan-2-ylidene)thiosemicarbazide
-
-
1-(1-(pyrazin-2-yl)ethylidene)thiosemicarbazide
-
-
1-(1-(pyridin-3-yl)ethylidene)thiosemicarbazide
-
-
1-(1-(thiophen-2-yl)ethylidene)thiosemicarbazide
-
-
1-(1-p-tolylethylidene)thiosemicarbazide
-
-
1-(1-phenylethylidene)thiosemicarbazide
-
-
1-(2,4-dihydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)propane
-
tyrosinase inhibitor with strong depigmenting effects, found in the medicinal plant Dianella ensifolia. Synthetic and plant derived versions of the enzyme inhibit mushroom tyrosinase with similar potencies
1-(2,4-dimethoxyphenyl)-3-hydroxyurea
-
-
1-(2,5-dimethyl-1H-pyrrol-1-yl)thiourea
-
-
1-(2-hydroxy-1,2-diphenylethylidene)thiosemicarbazide
-
-
1-(2-oxo-1,2-diphenylethylidene)thiosemicarbazide
-
-
1-(3-methylbutylidene)thiosemicarbazide
-
-
1-(3-oxocyclohexylidene)thiosemicarbazide
-
-
1-(3-phenylallylidene)thiosemicarbazide
-
-
1-(4-(4-hydroxyphenyl)butan-2-ylidene)-thiosemicarbazide
-
-
1-(4-(4-hydroxyphenyl)butan-2-ylidene)thiosemicarbazide
-
-
1-(4-bromophenyl)-3-hydroxyurea
-
-
1-(4-butoxyphenyl)-3-hydroxyurea
-
-
1-(4-fluorophenyl)-ethanone
-
-
1-(4-methoxyphenyl)-ethanone
-
-
1-(4-methylpent-3-en-2-ylidene) thiosemicarbazide
-
-
1-(but-2-enylidene)thiosemicarbazide
-
-
1-(butan-2-ylidene)thiosemicarbazide
-
-
1-(propan-2-ylidene)thiosemicarbazide
1-(thiophen-2-yl)-ethanone
-
-
1-butyl-3-methylimidazolium methylsulfate
-
47.8% residual activity at 5% (w/v)
1-cyclohexylidenethiosemicarbazide
-
-
1-cyclopentyl-1-hydroxy-2-oxohydrazine
-
inhibition of the diphenolase activity of mushroom tyrosinase over the pH range of 5.5-8.0 is studied
1-cyclopentylidenethiosemicarbazide
-
-
1-dodecyl-1-hydroxy-2-oxohydrazine
-
inhibition of the diphenolase activity of mushroom tyrosinase over the pH range of 5.5-8.0 is studied
1-ethyl-3-methylimidazolium methylsulfate
-
64.1% residual activity at 5% (w/v)
1-ethylidenethiosemicarbazide
-
-
1-hydroxy-1,3-dimethyl-3-phenylurea
-
-
1-hydroxy-1-methyl-3-(4-nitrophenyl)urea
-
-
1-hydroxy-1-methyl-3-phenylurea
-
-
1-hydroxy-1-naphthalen-1-yl-2-oxohydrazine
-
inhibition of the diphenolase activity of mushroom tyrosinase over the pH range of 5.5-8.0 is studied
1-hydroxy-2-oxo-1-phenylhydrazine
-
inhibition of the diphenolase activity of mushroom tyrosinase over the pH range of 5.5-8.0 is studied
1-hydroxy-3-(4-hydroxyphenyl)urea
-
-
1-hydroxy-3-(4-methoxyphenyl)urea
-
-
1-hydroxy-3-(4-nitrophenyl)urea
-
-
1-hydroxy-3-phenylthiourea
-
-
1-hydroxy-3-phenylurea
-
also retains a substantial potency in cell culture by reducing pigment synthesis by 78%
1-hydroxy-3-[4-(trifluoromethyl)phenyl]urea
-
-
1-methoxy-3-(4-nitrophenyl)thiourea
-
-
1-methoxy-3-naphthalen-2-ylthiourea
-
-
1-methoxy-3-phenylurea
-
-
1-methylethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
-
-
1-pentanoyl-3-(2,3-dichlorophenyl)thiourea
-
-
1-pentanoyl-3-(2,4,6-trimethylphenyl)thiourea
-
-
1-pentanoyl-3-(2,4-dinitrophenyl)thiourea
-
-
1-pentanoyl-3-(2,6-dibromo-4-fluorophenyl)thiourea
-
-
1-pentanoyl-3-(3-nitrophenyl)thiourea
-
-
1-pentanoyl-3-(4-bromo-2-fluorophenyl)thiourea
-
-
1-pentanoyl-3-(4-bromophenyl)thiourea
-
-
1-pentanoyl-3-(4-chlorophenyl)thiourea
-
-
1-pentanoyl-3-(4-methoxyphenyl)thiourea
-
noncompetitive inhibition, docking interaction analysis between 1-pentanoyl-3-(4-methoxyphenyl)thiourea and mushroom tyrosinase
1-pentanoyl-3-(4-nitrophenyl)thiourea
-
-
1-propylidenethiosemicarbazide
-
-
1-[1-(4-methoxyphenyl)ethylidene]thiosemicarbazide
-
-
1-[4-(benzyloxy)phenyl]-3-hydroxyurea
-
-
1-[[tert-butyl(dimethyl)silyl]oxy]-3-phenylurea
-
-
2'-(3,4-dihydroxyphenyl)-3',5,5',7,7'-pentahydroxy-2-(4-hydroxyphenyl)-2,2',3,3',4a,8a-hexahydro-4H,4'H-3,8'-bichromene-4,4'-dione
-
most potent inhibitor
2,2':4',2''-ter-1,3,4-oxadiazole-5,5',5''(4H,4''H)-trithione
-
-
2,2':4',2''-ter-1,3,4-thiadiazole-5,5',5''(4H,4''H)-trithione
-
-
2,3,4'-trihydroxy-4-methoxydeoxybenzoin
-
displays stable and significant inhibitory effect on tyrosinase activity
2,3,4,4'-tetrahydroxydeoxybenzoin
-
-
2,3,4-trihydroxy-3',4'-dimethoxydeoxybenzoin
-
-
2,3,4-trihydroxy-4'-methoxydeoxybenzoin
-
-
2,4,4',6-tetrahydroxydeoxybenzoin
-
-
2,4,4'-trihydroxydeoxybenzoin
-
-
2,4,5-trihydroxy-4'-methoxydeoxybenzoin
-
-
2,4,6-trihydroxy-4'-methoxydeoxybenzoin
-
-
2,4-dichlorocinnamic acid
-
-
2,4-dihydroxy-3',4'-dimethoxydeoxybenzoin
-
-
2,4-dihydroxy-4'-methoxydeoxybenzoin
-
-
2,4-dihydroxy-N-(3,4,5-trihydroxybenzyl)benzamide
-
IC50: 0.550 mM
2,4-dihydroxy-N-(4-hydroxybenzyl)benzamide
-
IC50: 1.820 mM
2-(2-furanylmethylene)-thiosemicarbazone
-
-
2-(2-hydroxyethoxy)ethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
-
-
2-(2-methoxyethoxy)ethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
-
-
2-(3,4-dihydroxy-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyethyl 3,4,5-trihydroxybenzoate
-
mixed-type inhibitor
2-(4-fluorophenyl)-quinazolin-4(3H)-one
-
synthesis of the tyrosinase inhibitor, inhibits the diphenolase activity of tyrosinase. Structure analysis by 1H and 13C NMR spectroscopy, Fourier transform infrared spectroscopy (FTIR), and high resolution mass spectrometry. Molecular docking simulation analysis and inhibition mechanism, a mixed-type inhibitor exerting reversible inhibition, overview. The inhibitor does not reduce the amount of the enzyme, but decreases the enzyme activity for the oxidation of L-dopa
2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl (2E)-3-(4-chlorophenyl)prop-2-enoate
-
mixed-type inhibition
2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate
-
reversible, mixed-type inhibition
2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl 2,4-dihydroxybenzoate
-
mixed-type inhibition
2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl 3,4-dihydroxybenzoate
-
-
2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl 3,5-dihydroxybenzoate
-
-
2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl 4-hydroxybenzoate
-
-
2-(chloromethyl)-10-(2-fluorophenyl)-7,7-dimethyl-6,7,8,10-tetrahydropyrano[3,2-b]chromene-4,9-dione
-
-
2-(chloromethyl)-10-(4-fluorophenyl)-7,7-dimethyl-6,7,8,10-tetrahydropyrano[3,2-b]chromene-4,9-dione
-
i.e. DHPC04, binding mode of R-DHPC04 and S-DHPC04 on the catalytic site of the enzyme, interactions between DHPC04 and residues His243 and Asn260
2-(hydroxymethyl)-7,7-dimethyl-10-phenyl-6,7,8,10-tetrahydropyrano[3,2-b]chromene-4,9-dione
-
weak inhibition
2-(phenylmethylene)-thiosemicarbazone
-
-
2-acetylamino-1,3,4-thiadiazole-5-sulfonamide
-
acetazolamide or ACZ, in vitro, in vivo studies, and in silico docking studies. Inhibition kinetics, noncompetitive inhibition. Molecular dynamics simulations, overview
2-butyl-5-hydroxyphenyl 3-(3,4-dihydroxyphenyl)propanoate
-
KI-063, a new tyrosinase inhibitor, strong concentration-dependent inhibitory effect on tyrosinase activity
2-chlorobenzaldehyde thiosemicarbazone
-
exhibits significant inhibitory potency on both monophenolase activity and diphenolase activity of tyrosinase, reversible noncompetitive inhibitor
2-chlorocinnamic acid
-
-
2-cyano-4-hydroxycinnamic acid
-
-
2-ethyl-3-hydroxy-4H-pyran-4-one
-
-
2-hydroxy-4-methoxybenzoic acid
-
-
2-hydroxy-4-methylbenzoic acid
-
-
2-hydroxy-5-methoxybenzoic acid
-
-
2-hydroxy-5-methylbenzoic acid
-
-
2-Hydroxybenzaldehyde
-
-
2-hydroxybenzoic acid
-
-
2-hydroxyethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
-
-
2-mercaptoethanol
-
2-methoxyethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
-
-
2-Methylbenzaldehyde
-
-
2-Methylbenzoic acid
-
-
2-Methylresorcinol
-
acts as enzyme substrate and inhibitor
2-oxoglutaric acid
-
AKG, a reversible inhibitor of tyrosinase, inhibition kinetics integrated with molecular dynamics simulations reveal a complex induced parabolic slope mixed-type inhibition. AKG significantly inhibits the L-dopa oxidation of tyrosinase in a dose-dependent manner, complete inactivation at about 25 mM. Enzyme residues His85, His259, Asn260, Phe264, Met280, Gly281, and Val283 interact with the inhibitor
2-[(1E,2E)-N-hydroxy-3-(pyridin-2-yl)prop-2-enimidoyl]phenol
-
77.5% inhibition at 50 mM, reversible competitive inhibition
2-[(1E,2E)-N-hydroxy-3-(pyridin-3-yl)prop-2-enimidoyl]phenol
-
80.6% inhibition at 50 mM, reversible competitive inhibition
2-[(1E,2E)-N-hydroxy-3-(pyridin-4-yl)prop-2-enimidoyl]phenol
-
69.8% inhibition at 50 mM
2-[(2,3,4-trihydroxyphenyl)methylene]-thiosemicarbazone
-
-
2-[(2,4-dihydroxyphenyl)methylene]-thiosemicarbazone
-
most potent tyrosinase inhibitor
2-[(2,5-dihydroxyphenyl)methylene]-thiosemicarbazone
-
-
2-[(2,5-dimethoxyphenyl)methylene]-thiosemicarbazone
-
-
2-[(2-hydroxy-4-bromophenyl)methylene]thiosemicarbazone
-
-
2-[(2-hydroxyphenyl)methylene]-thiosemicarbazone
-
-
2-[(3,4,5-trihydroxyphenyl)methylene]-thiosemicarbazone
-
-
2-[(3,4,5-trimethoxyphenyl)methylene]-thiosemicarbazone
-
-
2-[(3,4-dihydroxyphenyl)methylene]-thiosemicarbazone
-
-
2-[(3,5-dihydroxyphenyl)methylene]-thiosemicarbazone
-
-
2-[(3-hydroxy-4-methoxyphenyl)methylene]-thiosemicarbazone
-
-
2-[(3-hydroxyphenyl)methylene]-thiosemicarbazone
-
-
2-[(3-methoxy-4-hydroxyphenyl)methylene]-thiosemicarbazone
-
-
2-[(4-bromophenyl)methylene]-thiosemicarbazone
-
-
2-[(4-hydroxyphenyl)methylene]-thiosemicarbazone
-
-
2-[(4-methoxyphenyl)methylene]-thiosemicarbazone
-
-
2-[2-(2,4-dihydroxyphenyl)ethyl]-5-(D-xylopyranosyloxy)phenyl D-xylopyranoside
-
isolated from Chlorophytum arundinaceum (liliaceae)
2-[2-(2,4-dihydroxyphenyl)ethyl]-5-hydroxyphenyl D-xylopyranoside
-
isolated from Chlorophytum arundinaceum (liliaceae)
2-[2-(2-hydroxyethoxy)ethoxy]ethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
-
-
2-[2-(2-methoxyethoxy)ethoxy]ethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
-
-
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl (2E)-3-(2,4-dihydroxyphenyl)prop-2-enoate
non-competitive inhibitor, binding to the enzyme's binuclear active site is irreversible. The 2-hydroxy group in the compound interacts with amino acid HIS85 which is present in active binding site
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl (2E)-3-(4-chlorophenyl)prop-2-enoate
-
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate
mixed-type inhibition
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl (2E)-3-phenylprop-2-enoate
-
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl 2,4-dihydroxybenzoate
mixed-type inhibition
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl 3,4,5-trihydroxybenzoate
-
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl 3,4-dihydroxybenzoate
-
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl 3,5-dihydroxybenzoate
-
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl 3-hydroxybenzoate
-
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl 4-hydroxybenzoate
-
2-[3-(2,4-dimethoxy-3-methylphenyl)propyl]benzene-1,4-diol
-
plant-derived diarylpropane tyrosinase inhibitor
2alpha,3alpha,23-trihydroxyolean-12-en-28-oic acid
-
pentacyclic triterpene extracted from Rhododendron collettianum
3'',4''-dihydroglabridin
-
100% inhibition at 0.33 mg/ml
3',5,5',7,7'-pentahydroxy-2,2'-bis(4-hydroxyphenyl)-2,2',3,3',4a,8a-hexahydro-4H,4'H-3,8'-bichromene-4,4'-dione
-
-
3,4,5-trihydroxy-N-(3,4,5-trihydroxybenzyl)benzamide
-
IC50: 0.555 mM
3,4,5-trihydroxy-N-(4-hydroxybenzyl)benzamide
-
IC50: 1.180 mM
3,4-dihydroxy-4'-methoxydeoxybenzoin
-
-
3,4-dihydroxy-N-(3,4,5-trihydroxybenzyl)benzamide
-
IC50: 0.280 mM
3,4-dihydroxy-N-(4-hydroxybenzyl)benzamide
-
IC50: 2.0 mM
3,4-dihydroxybenzaldehyde-O-ethyloxime
-
-
3,4-dihydroxycinnamic acid
-
noncompetitive inhibition
3,4-dimethoxycinnamic acid
-
2.5% inhibition at 0.33 mM
3,4-dimethoxydihydrocinnamic acid
-
20.2% inhibition at 1 mM
3,5-dihydroxy-N-(3,4,5-trihydroxybenzyl)benzamide
-
IC50: 0.705 mM
3,5-dihydroxy-N-(4-hydroxybenzyl)benzamide
-
IC50: 0.710 mM
3,7,3',4'-taxifolin tetraacetate
-
assayed together with (2R,3R)-taxifolin
3-(3',4',5'-trihydroxyphenyl)-6,8-dihydroxycoumarin
-
potent, non-competitive tyrosinase inhibitor, 68.3% inhibition at 0.8 mM
3-(3-hydroxyphenyl)-2H-chromen-2-one
-
19.3% inhibition at 0.8 mM
3-(4-bromophenyl)-1-hydroxy-1-methylurea
-
-
3-hydroxy-1,2-dimethyl-4(1H)-pyridone
-
-
3-hydroxy-1-methyl-1-phenylurea
-
-
3-Hydroxybenzaldehyde
-
-
3-hydroxycinnamic acid
-
-
3-hydroxycoumarin
-
-
3-hydroxyphloretin
-
constituents from the formosan apple (Malus doumeri var. formosana), exhibits a dose-dependent inhibitory effect on mushroom tyrosinase activity, competitive inhibitor. Enzyme kinetics study of 3-hydroxyphloretin as inhibitor with various concentrations of the L-tyrosine substrate (15.625, 31.25, 62.5, 125, 250, 500 microM)
3-methoxy-1-methyl-1-phenylurea
-
-
3-Methoxybenzaldehyde
-
-
3-methylbenzaldehyde
-
-
3-methylbenzoic acid
-
-
3-methylcrotonic acid
-
-
3-O-[2,6-di-O-alpha-L-rhamnopyranosyl-beta-D-galactopyranosyl]-quercetin
-
from Guioa villosa leaf extract
3-[(1E,2E)-N-hydroxy-3-(pyridin-2-yl)prop-2-enimidoyl]naphthalen-2-ol
-
58.2% inhibition at 50 mM
3-[(1E,2E)-N-hydroxy-3-(pyridin-3-yl)prop-2-enimidoyl]naphthalen-2-ol
-
62.6% inhibition at 50 mM
3-[(1E,2E)-N-hydroxy-3-(pyridin-4-yl)prop-2-enimidoyl]naphthalen-2-ol
-
57.5% inhibition at 50 mM
3beta, 23, 24-trihydroxyolean-12-en-28-oic acid
-
pentacyclic triterpene extracted from Rhododendron collettianum
4'-hydroxy-[1,1'-biphenyl]-2-carboxylic acid
-
-
4'-hydroxy-[1,1'-biphenyl]-3-carboxylic acid
-
-
4'-hydroxy-[1,1'-biphenyl]-4-carboxylic acid
-
binding mode, modeling
4'-methoxy-[1,1'-biphenyl]-2-carboxylic acid
-
-
4'-methoxy-[1,1'-biphenyl]-3-carboxylic acid
-
-
4'-methoxy-[1,1'-biphenyl]-4-carboxylic acid
-
binding mode, modeling
4,4'-diamino-3-(4-hydroxyphenyl)-1'H-1,3'-bi-1,2,4-triazole-5,5'(4H,4'H)-dithione
-
-
4,4'-diamino-3-(pyridin-4-yl)-1'H-1,3'-bi-1,2,4-triazole-5,5'(4H,4'H)-dithione
-
-
4,4'-ethane-1,2-diyldibenzene-1,3-diol
-
-
4-(1-methylethyl)benzaldehyde
-
-
4-(1-methylethyl)benzoic acid
-
-
4-(2-(hydroxymethyl)-7,7-dimethyl-4,9-dioxo-4,6,7,8,9,10-hexahydropyrano[3,2-b]chromen-10-yl)benzonitrile
-
-
4-(benzyloxy)-N'-(hydrazinylcarbonyl)benzohydrazide
-
-
4-(hexyloxy)benzoic acid
-
-
4-(pentyloxy)benzoic acid
-
-
4-Aminobenzoic acid
-
a noncompetitive inhibitor
4-butoxybenzoic acid
-
-
4-butylbenzaldehyde
-
-
4-butylbenzoic acid
-
-
4-chlorobenzaldehyde thiosemicarbazone
-
exhibits significant inhibitory potency on both monophenolase activity and diphenolase activity of tyrosinase, reversible mixed-type inhibitor
4-chlorosalicylic acid
-
-
4-coumaric acid
-
74.4% inhibition at 0.33 mM
4-ethenylbenzaldehyde
-
-
4-ethenylbenzoic acid
-
-
4-ethoxybenzoic acid
-
-
4-Ethylbenzaldehyde
-
-
4-ethylbenzoic acid
-
-
4-ethylresorcinol
-
acts as enzyme substrate and inhibitor
4-formyl-2-methoxyphenyl (4-methylpiperazin-1-yl)acetate
-
reversible, non-competitive inhibition
4-formyl-2-methoxyphenyl (4-phenylpiperazin-1-yl)acetate
-
-
4-formyl-2-methoxyphenyl chloroacetate
-
-
4-formylphenyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside
-
-
4-formylphenyl 2,3,4-tri-O-acetyl-beta-D-allopyranoside
-
-
4-formylphenyl 2,3,4-tri-O-benzyl-beta-D-ribopyranoside
-
-
4-formylphenyl 2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside
-
-
4-formylphenyl 2,3-O-(1-methylethylidene)-beta-D-allopyranoside
-
-
4-formylphenyl 4,6-O-(phenylmethylidene)-beta-D-gulopyranoside
-
-
4-formylphenyl 6-O-(dimethoxyphosphoryl)-beta-D-allopyranoside
-
-
4-formylphenyl 6-O-trityl-beta-D-allopyranoside
-
-
4-formylphenyl beta-D-allopyranoside
-
-
4-formylphenyl beta-D-glucopyranoside
-
-
4-formylphenyl beta-D-ribopyranoside
-
-
4-formylphenyl-O-beta-D-allopyranoside
-
-
4-heptylbenzaldehyde
-
-
4-heptylbenzoic acid
-
-
4-hexylbenzaldehyde
-
-
4-hexylbenzoic acid
-
-
4-hexylresorcinol
4-hydroxy-3-methoxycinnamic acid
-
noncompetitive inhibition
4-hydroxyanisole
-
can also act as enzyme substrate
4-hydroxybenzaldehyde
4-hydroxybenzoic acid
-
-
4-Hydroxybenzyl alcohol
-
the compound is a substrate and an inhibitor for tyrosinase, 39% inhibition at 1.5 mM
4-hydroxycinnamic acid
-
competitive inhibition of tyrosinase by 4-hydroxycinnamic acid is a slow, reversible reaction with fractional remaining activity, has no effects on the proliferation of normal liver L02 cells, delays the mushroom browning. Molecular docking analysis and kinetic modeling, structure-function analysis, detailed overview
4-Hydroxycoumarin
-
weak inhibition
4-hydroxyphenyl beta-D-xyloside
-
-
4-hydroxyphenyl beta-xylodioside
-
competitive inhibitor
4-hydroxyphenyl beta-xylotetraoside
-
competitive inhibitor, shows 35fold more potent inhibitory activity than beta-arbutin
4-hydroxyphenyl beta-xylotrioside
-
competitive inhibitor
4-methoxybenzaldehyde
-
-
4-methoxybenzoic acid
-
-
4-methoxycinnamic acid
4-methylbenzaldehyde
-
-
4-methylbenzoic acid
-
-
4-methylresorcinol
-
acts as enzyme substrate and inhibitor
4-n-butylresorcinol
-
-
4-octylbenzaldehyde
-
-
4-octylbenzoic acid
-
-
4-pentylbenzaldehyde
-
-
4-pentylbenzoic acid
-
-
4-phenyl-2-butanol
-
a reversible, potent inhibitor of tyrosinase, mixed-type inhibitor fothe monophenoase activity and noncompetitive-type inhibitor for the diphenolase activity
4-propoxybenzoic acid
-
-
4-propylbenzaldehyde
-
-
4-propylbenzoic acid
-
-
4-tert-butylbenzaldehyde
-
-
4-tert-butylbenzoic acid
-
-
4-xylidine-bis(dithiocarbamate) sodium salt
-
Na-SSC-NH-CH2-C6H4-CH2-NH-CSS-Na, mixed-type inhibition for both, catecholase and cresolase activities
4-[(1E,3E)-3-(hydroxyimino)-3-(pyridin-2-yl)prop-1-en-1-yl]-N,N-dimethylaniline
-
50.6% inhibition at 50 mM
4-[(E)-(carbamothioylhydrazono)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-allopyranoside
-
-
4-[(E)-(carbamothioylhydrazono)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranoside
-
-
4-[(E)-(carbamothioylhydrazono)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside
-
-
4-[(E)-(carbamothioylhydrazono)methyl]phenyl 2,3,4,6-tetrakis-O-(phenylcarbonyl)-beta-D-glucopyranoside
-
-
4-[(E)-(carbamothioylhydrazono)methyl]phenyl 2,3,4-tris-O-(phenylcarbonyl)-beta-D-xylopyranoside
-
-
4-[(E)-(carbamothioylhydrazono)methyl]phenyl 2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside
-
-
4-[(E)-(carbamothioylhydrazono)methyl]phenyl beta-D-allopyranoside
-
-
4-[(E)-(carbamothioylhydrazono)methyl]phenyl beta-D-glucopyranoside
-
-
4-[(E)-(hydroxyimino)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-allopyranoside
-
reversible and competitive-type inhibitor
4-[(E)-(hydroxyimino)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranoside
-
-
4-[(E)-(hydroxyimino)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside
-
-
4-[(E)-(hydroxyimino)methyl]phenyl 2,3,4,6-tetrakis-O-(phenylcarbonyl)-beta-D-glucopyranoside
-
-
4-[(E)-(hydroxyimino)methyl]phenyl 2,3,4-tris-O-(phenylcarbonyl)-beta-D-xylopyranoside
-
-
4-[(E)-(hydroxyimino)methyl]phenyl 2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside
-
-
4-[(E)-(hydroxyimino)methyl]phenyl beta-D-allopyranoside
-
-
4-[(E)-(hydroxyimino)methyl]phenyl beta-D-glucopyranoside
-
-
4-[(E)-(methoxyimino)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-allopyranoside
-
-
4-[(E)-(methoxyimino)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranoside
-
-
4-[(E)-(methoxyimino)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside
-
-
4-[(E)-(methoxyimino)methyl]phenyl 2,3,4,6-tetrakis-O-(phenylcarbonyl)-beta-D-glucopyranoside
-
-
4-[(E)-(methoxyimino)methyl]phenyl 2,3,4-tris-O-(phenylcarbonyl)-beta-D-xylopyranoside
-
-
4-[(E)-(methoxyimino)methyl]phenyl 2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside
-
-
4-[(E)-(methoxyimino)methyl]phenyl beta-D-allopyranoside
-
-
4-[(E)-(methoxyimino)methyl]phenyl beta-D-glucopyranoside
-
-
4-[2-(2,4-dihydroxyphenyl)ethyl]-3-hydroxyphenyl D-xylopyranoside
-
isolated from Chlorophytum arundinaceum (liliaceae)
4-[3-(2-hydroxy-5-methoxyphenyl)propyl]benzene-1,3-diol
-
plant-derived diarylpropane tyrosinase inhibitor
4-[[hydroxy(nitroso)amino]methyl]benzene-1,3-diol
-
inhibition of the diphenolase activity of mushroom tyrosinase over the pH range of 5.5-8.0 is studied
4-[[hydroxy(nitroso)amino]methyl]phenol
-
inhibition of the diphenolase activity of mushroom tyrosinase over the pH range of 5.5-8.0 is studied
5'-(3-hydroxyphenyl)-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
-
-
5'-(4-hydroxyphenyl)-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
-
-
5'-(4-hydroxyphenyl)-2,3'-bi-1,3,4-thiadiazole-2',5(4H)-dithione
-
-
5'-(4-[[tert-butyl(dimethyl)silyl]oxy]phenyl)-2,3'-bi-1,3,4-thiadiazole-2',5(4H)-dithione
-
-
5'-(diphenylmethyl)-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
-
-
5'-(diphenylmethyl)-2,3'-bi-1,3,4-thiadiazole-2',5(4H)-dithione
-
-
5'-(naphthalen-1-yl)-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
-
-
5'-(pyridin-4-yl)-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
-
-
5'-(pyridin-4-yl)-2,3'-bi-1,3,4-thiadiazole-2',5(4H)-dithione
-
-
5'-benzyl-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
-
-
5'-cyclohexyl-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
-
-
5'-phenyl-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
-
-
5'-phenyl-2,3'-bi-1,3,4-thiadiazole-2',5(4H)-dithione
-
-
5'-[(5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)methyl]-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
-
-
5'-[(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)methyl]-2,3'-bi-1,3,4-thiadiazole-2',5(4H)-dithione
-
-
5'-[3-(5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)propyl]-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
-
-
5'-[3-(benzyloxy)phenyl]-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
-
-
5'-[4-(benzyloxy)phenyl]-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
-
-
5,2',4'-trihydroxy-2'',2''-dimethylchromene-(6,7:5'',6'')-flavanone
-
dalenin, the reversible inhibitor is 52 and 495times more effective as a monophenolase inhibitor than hydroquinone and kojic acid, respectively, non-competitive inhibitor with L-DOPA as substrate, mixed-I type inhibitor with L-tyrosine as substrate
5,5',7,7'-tetrahydroxy-2,2'-bis(4-hydroxyphenyl)-2,2',3,3',4a,8a-hexahydro-4H,4'H-3,8'-bichromene-4,4'-dione
-
-
5,5',7-trihydroxy-2,2'-bis(4-hydroxyphenyl)-4,4'-dioxo-3,3',4,4',4a,8a-hexahydro-2H,2'H-3,8'-bichromen-7'-yl D-glucopyranoside
-
tyrosinase inhibitor isolated from extracts of the seeds of Garcinia kola
5,6,7,4'-tetramethylscutellarein
-
tyrosinase inhibitors from Marrubium velutinum, flavones/flavonols. Methoxylated flavones, like the methylethers of scutellarein, showed 10times lower inhibitory activity than kojic acid
5,6,7,8,4'-pentahydroxyflavone
-
tyrosinase inhibitors from Marrubium cylleneum, flavones/flavonols
5,7,3',4'-taxifolin teramethyl ether
-
assayed together with (2R,3R)-taxifolin
5,7,4'-trimethylscutellarein
-
tyrosinase inhibitors from Marrubium velutinum, flavones/flavonols. Methoxylated flavones, like the methylethers of scutellarein, showed 10times lower inhibitory activity than kojic acid
5-(4-(2-(2-methoxyethoxy)ethoxy)benzyl)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
-
97.49% inhibition at 0.2 mM
5-(4-(2-(2-methoxyethoxy)ethoxy)benzyl)pyrimidine-2,4,6(1H,3H,5H)trione
-
14.3% inhibition at 0.2 mM
5-(4-(2-(2-methoxyethoxy)ethoxy)benzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
-
complete inhibition at 0.2 mM
5-(4-(2-(2-methoxyethoxy)ethoxy)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
-
88.67% inhibition at 0.2 mM
5-(4-(2-butoxyethoxy)benzyl)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
-
78.67% inhibition at 0.2 mM
5-(4-(2-butoxyethoxy)benzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
-
85.88% inhibition at 0.2 mM
5-(4-(2-butoxyethoxy)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
-
complete inhibition at 0.2 mM
5-(4-(2-hydroxyethoxy)benzyl)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
-
95.86% inhibition at 0.2 mM
5-(4-(2-hydroxyethoxy)benzyl)pyrimidine-2,4,6(1H,3H,5H)-trione
-
5.27% inhibition at 0.2 mM
5-(4-(2-hydroxyethoxy)benzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
-
16.54% inhibition at 0.2 mM
5-(4-(2-hydroxyethoxy)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
-
22.41% inhibition at 0.2 mM
5-(4-(2-methoxyethoxy)benzyl)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
-
complete inhibition at 0.2 mM
5-(4-(2-methoxyethoxy)benzyl)pyrimidine-2,4,6(1H,3H,5H)-trione
-
23.12% inhibition at 0.2 mM
5-(4-(2-methoxyethoxy)benzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
-
complete inhibition at 0.2 mM
5-(4-(2-methoxyethoxy)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
-
complete inhibition at 0.2 mM
5-(4-(4-methoxy)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
-
12.2% inhibition at 0.2 mM
5-(4-(4-methoxybutoxy)benzyl)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
-
9.85% inhibition at 0.2 mM
5-(4-(4-methoxyethoxy)benzyl)pyrimidine-2,4,6(1H,3H,5H)-trione
-
1.15% inhibition at 0.2 mM
5-(4-(4-methoxyethoxy)benzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
-
complete inhibition at 0.2 mM
5-(4-hydroxybenzyl)-2-thioxo-dihydropyrimidine-4,6(1H,5H)-dione
-
complete inhibition at 0.2 mM
5-(4-hydroxybenzyl)pyrimidine-2,4,6(1H,3H,5H)-trione
-
47.5% inhibition at 0.2 mM
5-(4-hydroxybenzylidene)-2-thioxo-dihydropyrimidine-4,6(1H,5H)-dione
-
complete inhibition at 0.2 mM
5-(4-hydroxybenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
-
complete inhibition at 0.2 mM
5-ethenyl-5-hydroxy-3-isocyanocyclopent-2-en-1-one
-
inhibitor produced by Trichoderma viride strain H1-7 from a marine environment. Competitive inhibition
5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one
-
-
5-hydroxy-4-oxo-4H-pyran-2-carboxylic acid
-
-
5-hydroxymethyl-2-furfural
-
noncompetitive inhibition
6'-glucosyl-martynoside
-
tyrosinase inhibitors from Marrubium velutinum, phenylethanoid glycosides. Bathochromic shift of 6'-glucosyl-martynoside in the presence of CuSO4 (0.05 mM)
6-hydroxy-2H-pyran-3-carbaldehyde
-
a new tyrosinase inhibitor from Crinum yemense, testing for tyrosinase inhibiting activity, based on structural similarity to kojic acid. It shows a concentration-dependant reduction in tyrosinase activity similar to kojic acid in an in vitro assay, more potent than kojic acid
6-hydroxy-3-(4'-hydroxyphenyl)coumarin
-
26.7% inhibition at 0.8 mM
6-hydroxy-kaempferol-3-O-rutinoside
-
tyrosinase inhibitors from Marrubium velutinum, flavone/flavonol glucosides
6-hydroxyapigenin
-
5,6,7-trihydroxyflavone, high inhibitory effects on tyrosinase. Acts as a cofactor to monophenolase
6-hydroxycoumarin
-
weak inhibition
6-hydroxygalangin
-
5,6,7-trihydroxyflavone, high inhibitory effects on tyrosinase. Acts as a cofactor to monophenolase
6-hydroxykaempferol
-
5,6,7-trihydroxyflavone, high inhibitory effects on tyrosinase. Acts as a cofactor to monophenolase. competitive inhibitor
7-(2,4-dihydroxyphenyl)-4-hydroxy-2-(2-hydroxypropan-2-yl)-2,3-dihydrofuro(3,2-g)chromen-5-one
-
artocarpfuranol, isolated from the wood of Artocarpus heterophyllus, strong mushroom tyrosinase inhibitory activity
7-hydroxy-3-(4-hydroxyphenyl)-2H-chromen-2-one
-
9.6% inhibition at 0.8 mM
7-hydroxycoumarin
-
-
8-isoprenyl-5'-geranyl-5,7,2',4'-tetrahydroxy flavanone
-
competitive inhibitor
8-O-methyltianmushanol
-
-
9-hydroxy-4-methoxypsoralen
-
noncompetitive inhibition
Ac-KSRFR
-
N-acetyl-pentapeptide Ac-P2, mixed-type inhibition
Ac-KSSFR
-
N-acetyl-pentapeptide Ac-P3, mixed-type inhibition
Ac-RSRFK
-
N-acetyl-pentapeptide Ac-P1, mixed-type inhibition
Ac-RSRFS
-
N-acetyl-pentapeptide Ac-P4, mixed-type inhibition
acetone
-
increasing solvent concentration up to 80% (v/v) yields a gradual reduction in the activity of the soluble and cross-linked enzyme forms, the cross-linked enzyme aggregate shows about 40% residual activity after incubation in acetone for about 34 h
acetophenone
-
-
acteoside
-
tyrosinase inhibitors from Marrubium velutinum, phenylethanoid glycosides. Bathochromic shift of acteoside in the presence of CuSO4 (0.05 mM)
afzelechin
-
-
Agaritine
-
uncompetitive inhibition
albafuran A
-
-
aloesin
alpha-arbutin
-
inhibition of monophenolase activity, the inhibitory activity of beta-arbutin is higher compared to alpha-arbutin, molecular docking, overview. The hydroxyl group establishes hydrogen bonds with the peroxide ion and polar contacts with a copper ion as well as with residues H259 and H263. The aromatic ring position cannot be stabilized by Pi-Pi-interactions
alpha-cyano-4-hydroxycinnamic acid
-
-
alpha-picolyl heptyl amine
-
-
alpha-picolyl nonyl amine
-
-
alpha-picolyl pentyl amine
-
-
alpha-picolyl propyl amine
-
-
alyssonoside
-
tyrosinase inhibitors from Marrubium velutinum, phenylethanoid glycosides
ammonium tetramolybdate
-
anacardic acid
-
competitive inhibition
angelic acid
-
-
Anisaldehyde
Anisic acid
-
uncompetitive inhibition
anthraglycoside B
-
anthraquinone, isolated from the root of Polygonum cuspidatum
Antrodia camphorata extract
-
basidiomycete, only other effect on tyrosinase activity is prepared from Antrodia camphorata using 75% ethanol extraction
-
apigenin
-
tyrosinase inhibitors from Marrubium velutinum, flavones/flavonols
apigenin 4'-O-beta-D-glucopyranoside
-
from Guioa villosa leaf extract
apigenin-7-O-(3'',6''-di-p-coumaroyl)-glucoside
-
tyrosinase inhibitors from Marrubium velutinum, flavone/flavonol acylated glucosides
apigenin-7-O-(6''-p-coumaroyl)-glucoside
-
tyrosinase inhibitors from Marrubium cylleneum, flavone/flavonol acylated glucosides
arbutin
arbutine
-
clinically used tyrosinase inhibitor
arjungenin
-
pentacyclic triterpene extracted from Rhododendron collettianum
arjunilic acid
-
pentacyclic triterpene extracted from Rhododendron collettianum, most potent inhibitor, have potential to be used for the treatment of hyperpigmentation associated with the high production of melanocytes
artocarpanone
-
isolated from the wood of Artocarpus heterophyllus, strong mushroom tyrosinase inhibitory activity
artocarpesin
-
isolated from the wood of Artocarpus heterophyllus, strong mushroom tyrosinase inhibitory activity
artocarpetin
-
isolated from the wood of Artocarpus heterophyllus
artocarpin
-
isolated from the wood of Artocarpus heterophyllus
ascorbic acid
azelaic acid
baicalein
-
5,6,7-trihydroxyflavone, high inhibitory effects on tyrosinase. Acts as a cofactor to monophenolase
Barbituric acid
-
5.95% inhibition at 0.2 mM
bayogenin
-
pentacyclic triterpene extracted from Rhododendron collettianum
benzaldehyde
benzohydroxamic acid
-
is known to inhibit tyrosinase by chelating with copper. Completely independent of pH
benzoic acid
benzylacetone
-
a reversible, potent inhibitor of tyrosinase, mixed-type inhibitor
benzyldithiocarbamate sodium salt
-
C6H5-CH2-NH-CSS-Na, noncompetitive inhibition for both, catecholase and cresolase activities
benzylideneacetone
-
a reversible, potent inhibitor of tyrosinase, mixed-type inhibitor
beta-arbutin
beta-picolyl heptyl amine
-
uncompetitive inhibition of monophenolase and diphenolase activities
beta-picolyl nonyl amine
-
-
beta-picolyl pentyl amine
-
uncompetitive inhibition of monophenolase and diphenolase activities
beta-picolyl propyl amine
-
uncompetitive inhibition of monophenolase and diphenolase activities
betulin
-
from Guioa villosa leaf extract
betulinic acid
-
pentacyclic triterpene extracted from Rhododendron collettianum
Bromoacetate
-
noncompetitive inhibition in a dose-dependent manner
brosimone I
-
isolated from the wood of Artocarpus heterophyllus
broussonin C
-
competitive inhibition
bufobutanoic acid
-
-
butylxanthate sodium salt
-
sodium salt of n-alkyl xanthate compound, competitive inhibition for the cresolase activity, competitive inhibition for the catecholase activity
caffeic acid
campestrol
-
isolated from Trifolium balansae, NMR structure identification, IC50: 0.00890 mM
captopril
-
-
carpachromene
-
isolated from the wood of Artocarpus heterophyllus
catechin
catechol
cefazolin
cefodizime
chloroform
-
the cross-linked enzyme aggregate shows about 30% residual activity after incubation in chloroform for about 3 h
chlorogenic acid
-
tyrosinase inhibitors from Marrubium velutinum, phenolic acids
choline acetate
-
27.9% residual activity at 5% (w/v)
choline dihydrophosphate
-
27.4% residual activity at 5% (w/v)
choline methylsulfonate
-
39.7% residual activity at 5% (w/v)
choline nitrate
-
54.6% residual activity at 5% (w/v)
chrysoeriol
-
tyrosinase inhibitors from Marrubium velutinum, flavones/flavonols
chrysoeriol 4'-O-beta-D-glucopyranoside
-
from Guioa villosa leaf extract
chrysoeriol-7-O-(3'',6''-di-p-coumaroyl)-glucoside
-
tyrosinase inhibitors from Marrubium velutinum, flavone/flavonol acylated glucosides
cinnamaldehyde
-
-
Cinnamic acid
cistanoside F
-
tyrosinase inhibitors from Marrubium velutinum, phenylethanoid glycosides. Comparing the activity of tetrasaccharides with cistanoside F
citreorosein
-
anthraquinone, isolated from the root of Polygonum cuspidatum
crenulatoside A
-
from Guioa villosa leaf extract, inhibition at 5 mg/ml 23.7%
crenulatoside B
-
from Guioa villosa leaf extract
crenulatoside C
-
from Guioa villosa leaf extract
crenulatoside D
-
from Guioa villosa leaf extract
crotonic acid
-
-
crude ethanol phase
-
ECPE, inhibitory effect on diphenolase activity of tyrosinase
-
cudraflavone B
-
isolated from the wood of Artocarpus heterophyllus
cumic acid
-
noncompetitive inhibition
cuminaldehyde
Cupferron
-
-
cyanomaclurin
-
isolated from the wood of Artocarpus heterophyllus
cycloartocarpesin
-
isolated from the wood of Artocarpus heterophyllus
cycloartocarpin
-
isolated from the wood of Artocarpus heterophyllus
cyclomorusin
-
exhibits competitive inhibition characteristics. Flavone displaying tyrosinase inhibitory activity, isolated from the stem barks of Morus lhou. Inhibitory potency of this flavonoid toward monophenolase activity of mushroom tyrosinase is investigated
D-ascorbic acid
-
met-tyrosinase is stable in anaerobic conditions but, in the presence of D-ascorbic acid undergoes an inactivation
D-ascorbic acid-6-p-hydroxybenzoic acid ester
-
irreversible inhibitor
daedalin A
-
(2R)-6-hydroxy-2-hydroxymethyl-2-methyl-2H-chromene from mycelial culture of Daedalea dickinsii
davanol
-
competitive, IC50: 0.017 mM
decahydro-2-naphthyl gallate
-
-
deoxyarbutin
competitive, a potent inhibitor of tyrosinase that can also act as substrate of the enzyme, shows membrane breaking and toxicity towards melanosomes, induces hydroxyl free radicals. Inhibition mechanism, overview
dihydro-4-coumaric acid
-
19.6% inhibition at 1 mM
dihydro-4-methoxycinnamic acid
-
46.4% inhibition at 1 mM
dihydrocaffeic acid
-
2.7% inhibition at 1 mM
dihydrocinnamic acid
-
40.5% inhibition at 1 mM
dihydroferulic acid
-
17.9% inhibition at 1 mM
dihydroisoferulic acid
-
60.6% inhibition at 0.33 mM
dihydromorin
-
isolated from the wood of Artocarpus heterophyllus, strong mushroom tyrosinase inhibitory activity
dihydrosinapic acid
-
22.6% inhibition at 1 mM
dioxane
-
increasing solvent concentration up to 80% (v/v) yields a gradual reduction in the activity of the soluble and cross-linked enzyme forms, the cross-linked enzyme aggregate shows about 40% residual activity after incubation in dioxane for about 62 h
DL-dithiothreitol
-
very slight inhibition at 300 pmol/unit of enzyme
echinacoside
-
tyrosinase inhibitors from Marrubium velutinum, phenylethanoid glycosides. Bathochromic shift of echinacoside in the presence of CuSO4 (0.05 mM)
ellagic acid
-
-
emodin
-
anthraquinone, isolated from the root of Polygonum cuspidatum
epiafzelechin
-
-
epicatechin
-
-
epicatechin-(4beta-8, 2beta-O-7)-epicatechin-(4beta-8)-epicatechin
-
from Guioa villosa leaf extract, inhibition at 5 mg/ml 34.6%
epigallocatechin
-
-
epigallocatechin gallate
-
exhibits a greater anti-tyrosinase activity than arbutin
erythrodiol
-
pentacyclic triterpene extracted from Rhododendron collettianum
esculetin
ethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
-
-
ethylxanthate sodium salt
-
sodium salt of n-alkyl xanthate compound, uncompetitive inhibition for the cresolase activity, mixed inhibition for the catecholase activity
farnesic acid
-
-
ferulic acid
flemichin D
-
competitive inhibition
fleminchalcone A
-
i.e. 1-(5-hydroxy-2,2-dimethyl-3,4-dihydro-2H-chroman-8-yl)-3-(4-methoxyphenyl)-propan-1-one, competitive inhibition
fleminchalcone B
-
i.e. 1-(3,5-dihydroxy-2,2-dimethylchroman-6-yl)-3-(4-methoxyphenyl)propan-1-one, competitive inhibition
fleminchalcone C
-
i.e. 1-(5-hydroxy-8-(2-hydroxypropan-2-yl)-2,2-dimethyl-7,8-dihydro-2H-furo[2,3-h]chromen-6-yl)-3-(4-methoxyphenyl)propan-1-one, competitive inhibition
fluorodeoxyarbutin
-
forsythoside B
-
tyrosinase inhibitors from Marrubium velutinum, phenylethanoid glycosides. Bathochromic shift of for sythoside B in the presence of CuSO4 (0.05 mM)
galangin
-
and its flavonoid mixture from Alpinia officinarum
gallic acid
gallocatechin
-
-
gamma-picolyl heptyl amine
-
uncompetitive inhibition of monophenolase activity and mixed-type inhibition of diphenolase activity
gamma-picolyl nonyl amine
-
-
gamma-picolyl pentyl amine
-
uncompetitive inhibition of monophenolase activity and mixed-type inhibition of diphenolase activity
gamma-picolyl propyl amine
-
uncompetitive inhibition of monophenolase activity and mixed-type inhibition of diphenolase activity
Ganoderma lucidum extract
-
basidiomycete, also known as Lingzhi in the herbal medicine community, exhibits significant inhibition of tyrosinase activity. No difference in inhibitory effects on tyrosinase activity is observed by Ganoderma lucidum extracts obtained by the three different extraction methods (75%, 50% ethanol, and distilled water extraction)
-
geranic acid
-
in lemongrass (Cymbopogon citratus)
geranic acid ethyl amide
-
-
geranic acid ethyl ester
-
-
geranic acid ethylene glycol ester
-
-
geranyl gallate
-
-
glabridin
glabridine
-
tyrosinase inhibitor
glutamic acid
-
individually grafted onto a novel CSG1.0 membrane as a ligand for enzyme purification
glyasperin C
-
tyrosinase inhibitor
glycolic acid
-
tyrosinase inhibitor
Guanidine-HCl
-
treatment with guanidine-HCl at increasing concentrations (0-800 mM) results in a reduced activity for both enzyme forms, but aggregation as cross-linked enzyme aggregate improves tyrosinase stability at higher concentrations (above 314 mM)
hesperidin
-
inhibitory effect on tyrosinase diphenolase, from citrus peel crude extracts
hexane
-
the cross-linked enzyme aggregate shows about 20% residual activity after incubation in hexane for about 24 h
hexanoic acid
-
mixed-type inhibition
hexylxanthate sodium salt
-
sodium salt of n-alkyl xanthate compound, competitive inhibition for the cresolase activity, competitive inhibition for the catecholase activity
histidine
-
individually grafted onto a novel CSG1.0 membrane as a ligand for enzyme purification
hydroquinone
hydroxyanisole
-
tyrosinase inhibitor
isoartocarpesin
-
isolated from the wood of Artocarpus heterophyllus, strong mushroom tyrosinase inhibitory activity
isoferulate
-
tyrosinase inhibitors from Marrubium cylleneum, phenolic acids
isoferulic acid
-
77.8% inhibition at 0.33 mM
isoliquiritigenin
-
-
isorhamnetin-3-O-(6''-OAc)-glucoside
-
tyrosinase inhibitors from Marrubium velutinum, flavone/flavonol acylated glucosides
isorhamnetin-3-O-glucoside
-
tyrosinase inhibitors from Marrubium velutinum, flavone/flavonol glucosides
isorhamnetin-3-O-rutinoside
-
tyrosinase inhibitors from Marrubium velutinum, flavone/flavonol glucosides
isorhamnetin-7-O-(6''-p-coumaroyl)-glucoside
-
tyrosinase inhibitors from Marrubium velutinum, flavone/flavonol acylated glucosides
isovaleric acid
-
-
kaempferol
kaempferol 3-O-alpha-L-rhamnopyranosyl-(1->6)-beta-D-glucopyranoside
-
IC50 of 0.1806 mg/ml
kaempferol 3-O-[beta-D-glucopyranosyl-(1->4)][alpha-L-rhamnopyranosyl-(1->6)]-beta-D-glucopyranoside
-
IC50 of 0.1935 mg/ml
kaempferol-3-O-(6''-p-coumaroyl)-glucoside
-
tyrosinase inhibitors from Marrubium velutinum and Marrubium cylleneum, flavone/flavonol acylated glucosides
kaempferol-3-O-glucoside
-
tyrosinase inhibitors from Marrubium cylleneum, flavone/flavonol glucosides
kazinol C
-
competitive inhibition
kazinol D
-
-
kazinol F
-
competitive inhibition
kazinol S
-
competitive inhibition, i.e. 5'-(2-methylbut-3-en-2-yl)-6''-(3-methylbut-2-enyl)-5''-(2,3-epoxy-3-methylbytyl)-2',4',3'',4''-tetrahydroxy diphenylpropane
kazinol T
-
i.e. 5'-(2-methylbut-3-en-2-yl)-6''-(3-methylbut-2-enyl)-4'',5''-[(2-(1-hydroxy-1-methylethyl)]-dihydrofuranyl)-2',4',3''-trihydroxy diphenylpropane
khonklonginol H
-
competitive inhibition
kojic acid
kolaflavonone
-
-
kuraridinol
-
prenylated flavonoid from Sophora flavescens, isolated from the EtOAc fraction, inhibitory effects on tyrosinase and melanin synthesis. Inhibitory activity 20times more potent than that of the positive control, kojic acid. Kuraridinol is a chalcone compound belonging to the prenylated flavonoids
kurarinol
kurarinone
-
from the root of Sophora flavescens, exhibits potent antibacterial activity, noncompetitive inhibitor, binds at an allosteric site
kuwanon A
-
-
kuwanon C
-
exhibits competitive inhibition characteristics. Flavone displaying tyrosinase inhibitory activity, isolated from the stem barks of Morus lhou. Inhibitory potency of this flavonoid toward monophenolase activity of mushroom tyrosinase is investigated
kuwanon E
-
competitive inhibitor
kuwanon U
-
-
L-ascorbic acid
-
met-tyrosinase is stable in anaerobic conditions but, in the presence of L-ascorbic acid undergoes an inactivation
L-cysteine
-
effects of inhibitors on mushroom PPO are determined by using pyrogallol as substrate
L-mimosine
L-Pro-L-Leu-Gly
-
-
ladanein
-
tyrosinase inhibitors from Marrubium velutinum, flavones/flavonols. Methoxylated flavones, like the methylethers of scutellarein, showed 10times lower inhibitory activity than kojic acid
lamiophlomiside
-
tyrosinase inhibitors from Marrubium velutinum, phenylethanoid glycosides
lavandulifolioside
-
tyrosinase inhibitors from Marrubium velutinum, phenylethanoid glycosides. Bathochromic shift of lavandulifolioside in the presence of CuSO4 (0.05 mM)
leucosceptoside A
-
tyrosinase inhibitors from Marrubium velutinum, phenylethanoid glycosides. Bathochromic shift of leucosceptoside A in the presence of CuSO4 (0.05 mM)
lupeol
-
from Guioa villosa leaf extract
lupinifolin
-
competitive inhibition
luteolin 4'-O-beta-D-glucopyranoside
-
from Guioa villosa leaf extract, inhibition at 5 mg/ml 14%
luteolin 7-O-glucoside
-
-
luteolin-7-O-glucoside
-
tyrosinase inhibitors from Marrubium cylleneum, flavone/flavonol glucosides
macroporus adsorption resin
-
FGRE, inhibitory effect on diphenolase activity of tyrosinase
-
martynoside
-
tyrosinase inhibitors from Marrubium velutinum, phenylethanoid glycosides
maslinic acid
-
pentacyclic triterpene extracted from Rhododendron collettianum
mauritianin
-
from Guioa villosa leaf extract
Methacrylic acid
-
-
methanol
-
the soluble enzyme retains 7.8% of its original activity, as compared to 31% by the cross-linked enzyme aggregates, after being incubated in the presence of 40% (v/v) methanol
Methimazole
methyl (Z)-2-((E)-2-(((E)-(5-bromothiophen-2-yl)methylene)hydrazono)-4-oxothiazolidin-5-ylidene)acetate
-
-
methyl (Z)-2-((E)-2-(((E)-4-(dimethylamino)benzylidene)hydrazono)-4-oxothiazolidin-5-ylidene)acetate
-
-
methyl arjunolate
-
pentacyclic triterpene extracted from Rhododendron collettianum
methyl gallate
-
shows a concentration-dependent inhibitory activity against tyrosinase with IC50 of 0.0625 mg/ml
monobenzyl hydroquinone
-
benoquin, PBP, tyrosinase inhibitor
moracin M
-
competitive inhibitor
moracin N
-
competitive inhibitor
moracinoside M
-
competitive inhibitor
morin
-
competitive, IC50: 2.320 mM
mormin
-
exhibits competitive inhibition characteristics. Characterized as a new flavone possesing a 3-hydroxymethyl-2-butenyl at C-3. Flavone displaying tyrosinase inhibitory activity, isolated from the stem barks of Morus lhou. Inhibitory potency of this flavonoid toward monophenolase activity of mushroom tyrosinase is investigated
morusin
-
Flavone displaying tyrosinase inhibitory activity, isolated from the stem barks of Morus lhou. Inhibitory potency of this flavonoid toward monophenolase activity of mushroom tyrosinase is investigated
morusinol
-
-
N',N'''-benzene-1,4-diylbis(1-hydroxyurea)
-
-
N'-(hydrazinylcarbonyl)-4-hydroxybenzohydrazide
-
-
N'-(hydrazinylcarbonyl)naphthalene-2-carbohydrazide
-
-
N,N-unsubstituted selenourea derivatives
-
55.5% inhibition at 0.2 mM, IC50: 0.17-0.23 mM
-
N-(2,4-dihydroxybenzyl)-2,4-dihydroxybenzamide
-
IC50: 0.029 mM
N-(2,4-dihydroxybenzyl)-3,4,5-trihydroxybenzamide
-
IC50: 0.017 mM
N-(2,4-dihydroxybenzyl)-3,4-dihydroxybenzamide
-
IC50: 0.011 mM
N-(2,4-dihydroxybenzyl)-3,5-dihydroxybenzamide
-
IC50: 0.0022 mM
N-benzyl-2,4-dihydroxybenzamide
-
IC50: 1.660 mM
N-benzyl-3,4,5-trihydroxybenzamide
-
IC50: 0.780 mM
N-benzyl-3,4-dihydroxybenzamide
-
IC50: 2.0 mM
N-benzyl-3,5-dihydroxybenzamide
-
IC50: 0.700 mM
N-benzylamide
-
IC50: 1.990 mM
N-benzylbenzamide derivatives
-
inhibitory potency, structure–activity relationships, overview
-
N-hydroxy-N-(phenylcarbamoyl)acetamide
-
-
N-phenylthiourea
-
PTU induces a strong inhibition of the tyrosinase activity
N-phenylurea
-
-
NaN3
-
treatment with NaN3 at increasing concentrations (0-4 mM) results in a reduced activity for both soluble and cross-linked enzyme forms, but aggregation as cross-linked enzyme aggregates improves tyrosinase stability at higher concentrations (above 0.4 mM)
neocyclomorusin
-
competitive inhibitor
nikotiflorin
-
tyrosinase inhibitors from Marrubium velutinum, flavone/flavonol glucosides
nobiletin
-
inhibitory effect on tyrosinase diphenolase, from citrus peel crude extracts
norartocarpetin
octanoic acid
-
mixed-type inhibition
octyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
-
-
oxyresveratrol
p-Aminobenzoic acid
-
individually grafted onto a novel CSG1.0 membrane as a ligand. This study indicates the p-aminobenzoic acid (ABA) grafted chitosan membrane (CSG-ABA) exhibits the best sorption capacity on tyrosinase
p-coumaric acid
p-hydroxybenzyl alcohol
-
4HBA, inhibitory effect on tyrosinase activity and melanogenesis. As the concentration of p-hydroxybenzyl alcohol increases, the enzyme activity rapidly decreases. Results indicate that the tyrosinase binds to the p-hydroxybenzyl alcohol and induces the enzyme conformation changes, and then causes total loss of the enzyme
pentagalloyl glucopyranose
-
exhibits potent, dose-dependent inhibitory effect on tyrosinase with respect to L-DOPA with IC50 of 0.04265 mg/ml
petroleum ether
-
PCPE, inhibitory effect on diphenolase activity of tyrosinase
-
phaselic acid
-
tyrosinase inhibitors from Marrubium velutinum, phenolic acids
phenylacetic acid
-
-
phenylethylamide
-
-
Phenylthiourea
-
IC50: 0.17 mM
phloretin
-
the compound is a substrate and an inhibitor for tyrosinase, 63% inhibition at 0.2 mM
phloridzin
-
the compound is a substrate and an inhibitor for tyrosinase, 53% inhibition at 0.15 mM
phloridzin dihydrate
-
-
phloroglucinol
-
enzyme-inhibitor interaction measurement by SPR
physcion
-
anthraquinone, isolated from the root of Polygonum cuspidatum. Most potent tyrosinase inhibition among the four anthraquinones examined, which is comparable to kojic acid
procyanidin B1
-
-
prodelphindin
-
-
propelargonidin
-
-
propylxanthate sodium salt
-
sodium salt of n-alkyl xanthate compound, uncompetitive inhibition for the cresolase activity, mixed inhibition for the catecholase activity
pyrogallol
-
enzyme-inhibitor interaction measurement by SPR
quercetin
quercetin 3-O-alpha-L-rhamnopyranosyl-(1->6)-beta-D-glucopyranoside
-
IC50 of 0.1297 mg/ml
quercetin 3-O-[beta-D-glucopyranosyl-(1->4)][alpha-L-rhamnopyranosyl-(1->6)]-beta-D-glucopyranoside
-
IC50 of 0.1462 mg/ml
quercetin-3-O-(6''-p-coumaroyl)-glucoside
-
tyrosinase inhibitors from Marrubium cylleneum, flavone/flavonol acylated glucosides
resorcinol
-
acts as enzyme substrate and inhibitor
resveratrol
-
can also act as enzyme substrate
rutin
-
tyrosinase inhibitors from Marrubium velutinum, flavone/flavonol glucosides
saffron
-
enzyme-inhibitor interaction measurement by SPR
-
Salicylhydroxamic acid
-
serotonin
-
-
Sinapic acid
-
1.6% inhibition at 1 mM
Sodium azide
Sodium fluoride
-
effects of inhibitors on mushroom PPO are determined by using pyrogallol as substrate
sodium iso-butylxanthate
-
-
sodium iso-pentylxanthate
-
-
sodium iso-propylxanthate
-
-
sophoraflavanone G
-
from the root of Sophora flavescens, exhibits potent antibacterial activity, noncompetitive inhibitor
soyacerebroside I
-
from Guioa villosa leaf extract, inhibition at 5 mg/ml 86.3%
stachydrine
-
tyrosinase inhibitors from Marrubium cylleneum, lignan glucosides
stachysoside D
-
tyrosinase inhibitors from Marrubium velutinum, phenylethanoid glycosides
steppogenin
stigmast-5-ene-3beta,26-diol
-
isolated from Trifolium balansae, NMR structure identification, IC50: 0.00239 mM
stigmast-5-ene-3beta-ol
-
isolated from Trifolium balansae, NMR structure identification, IC50: 0.00525 mM
Streptomyces hiroshimensis strain TI-C3 with anti-tyrosinase activity
-
bacterial strain TI-C3, isolated and verified to display 498 U/ml of anti-tyrosinase acitivity. The anti-tyrosinase activity of the strain TI-C3 is improved to 905 U/ml under cultivation, usong glucose and malt extract as the sole carbon and nitrogen sources
-
Tannic acid
-
enzyme-inhibitor interaction measurement by SPR
terrein
-
examine the effects of a combination of 2-butyl-5-hydroxyphenyl 3-(3,4-dihydroxyphenyl)propanoate with terrein, an agent that down-regulates microphthalmia-associated transcription factor
tert-butanol
-
the cross-linked enzyme aggregate shows about 50% residual activity after incubation in tert-butanol for about 326 h
tetrabutylammonium acetate
-
24.1% residual activity at 5% (w/v)
tetrabutylammonium methylsulfonate
-
45.3% residual activity at 5% (w/v)
tetramethylammonium acetate
-
30% residual activity at 5% (w/v)
Thai honey
-
different types of Thai honey on pathogenic bacteria causing skin diseases, tyrosinase enzyme and generating free radicals, antibacterial and antioxidant activities of Thai honey, overview. Honey from longan flower gives the highest activity on multiresistent Staphylococcus aureus (MRSA isolate 49) when compared to the other types of honey, with a minimum inhibitory concentration of 12.5% v/v and minimum bactericidal concentration of 25% v/v. The antioxidant activity of the honey obtained from coffee pollen is the highest with highest level of phenolic and flavonoid compounds. Honey from coffee flower shows inhibition of tyrosinase by 63.46%. The highest activity of tyrosinase inhibition from manuka honey is also very high
-
Thiobarbituric acid
-
8.21% inhibition at 0.2 mM
thiodeoxyarbutin
-
Thiosemicarbazide
-
-
tianmushanol
-
-
tiglic acid
-
-
tiliroside
-
tyrosinase inhibitors from Marrubium velutinum, flavone/flavonol acylated glucosides
trans-cinnamaldehyde
-
competitive inhibition
trans-geranic acid
-
-
tributylammonium dihydrophosphate
-
27.5% residual activity at 5% (w/v)
triethylammonium dihydrophosphate
-
23.4% residual activity at 5% (w/v)
trifolirhizin
-
prenylated flavonoid from Sophora flavescens, isolated from the EtOAc fraction, inhibitory effects on tyrosinase and melanin synthesis
trimethylammonium dihydrophosphate
-
12% residual activity at 5% (w/v)
trimethylammonium methylsulfonate
-
40.9% residual activity at 5% (w/v)
tropolone
tyrosol
-
the compound is a substrate and an inhibitor for tyrosinase, 18% inhibition at 1.5 mM
umbelliferone
-
-
velutinoside I
-
tyrosinase inhibitors from Marrubium velutinum, phenylethanoid glycosides
velutinoside II
-
tyrosinase inhibitors from Marrubium velutinum, phenylethanoid glycosides. Bathochromic shift of velutinoside II in the presence of CuSO4 (0.05 mM)
velutinoside III
-
tyrosinase inhibitors from Marrubium velutinum, phenylethanoid glycosides
velutinoside IV
-
tyrosinase inhibitors from Marrubium velutinum, phenylethanoid glycosides
YRSRKYSSWY
-
-
[1,1''-biphenyl]-3-carboxylic acid
-
little availability of the carboxylic acid group in 2-phenylbenzooic acid to chelate with cupric ions in the active site
[1,1'-biphenyl]-2-carboxylic acid
-
-
[1,1'-biphenyl]-4-carboxylic acid
-
-
[2-(furan-2-ylmethylene-hydrazono)-4-oxo-thiazolidin-5-ylidene]-acetic acid methyl ester
-
-
[2-[(4-benzyloxy-benzylidene)-hydrazono]-4-oxo-thiazolidin-5-ylidene]-acetic acid methyl ester
-
-
[4-oxo-2-(pyridin-4-ylmethylene-hydrazono)-thiazolidin-5-ylidene]-acetic acid methyl ester
-
non-competitive inhibition
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
2,3,5,4'-tetrahydroxystilbene-2-O-beta-D-glucoside
2-morpholinoethyl (E)-3-(3,4-dihydroxyphenyl)acrylate
-
a caffeic acid-4-(2-hydroxyethyl) morpholine ester, activates mushroom tyrosinase activity dramatically, the activation of mushroom tyrosinase is noncompetitive
3-hydroxyanthranilic acid
-
higher than 0.005 mM, 600% activation of N-acetyl-tyrosine hydroxylation, activation of 4-tert-butylphenol oxidation, shortens lag time of the enzyme
3-morpholinopropyl (E)-3-(3,4-dihydroxyphenyl)acrylate
-
a caffeic acid-4-(3-hydroxypropyl) morpholine ester, activates mushroom tyrosinase activity dramatically the activation of mushroom tyrosinase is noncompetitive
Aloe-emodin
-
shows mild activating effects on tyrosinase. Isolated from Radix polygoni multiflori, a herb used effectively to prevent graying and treat skin depigmentation diseases in traditional Chinese medicine
chrysophanol
dithiothreitol
-
small amounts abolish the characteristic lag phase of monohydric phenol oxidation without effect on the maximum rate of reaction or on the total O2 consumption
emodin
gallic acid
-
-
H2O2
-
the addition of hydrogen peroxide transforms Em to Eox, which is able to hydroxylate alpha/beta-arbutin, although the o-quinone that is originated is unstable
physcion
SDS
activates at 2 mM
additional information
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
2.7
2-Methylresorcinol
-
pH 7.0, 25°C
1.89 - 5.1
3,4-dihydroxyphenyl propionic acid
1.3
3,4-dihydroxyphenylacetic acid
-
-
0.7
3,4-Dihydroxyphenylpropionic acid
-
-
0.78
3-hydroxyanthranilic acid
-
-
10.1
3-Hydroxybenzyl alcohol
-
-
5.4
3-methoxyphenol
-
-
0.71
3-[2-(3,4-dihydroxyphenyl)ethylaminocarbonyl]-3-methyl-1-(4-ethoxycarbonylphenyl)triazene
-
in phosphate buffer (pH 7.4), at 37°C
0.31
3-[2-(4-hydroxyphenyl)ethylaminocarbonyl]-3-methyl-1-(4-cyanophenyl)triazene
-
in phosphate buffer (pH 7.4), at 37°C
1.98
4-Bromophenol
-
pH and temperature not specified in the publication
0.6
4-Chlorocatechol
-
-
1.87
4-Chlorophenol
-
pH and temperature not specified in the publication
0.17
4-ethoxyphenol
0.17
4-Ethylcatechol
-
-
0.117
4-ethylresorcinol
-
pH 7.0, 25°C
0.41
4-Fluorophenol
-
pH and temperature not specified in the publication
0.08
4-hydroxyanisole
1.14
4-hydroxybenzaldehyde
-
pH and temperature not specified in the publication
1.1
4-Hydroxybenzyl alcohol
-
-
0.44
4-hydroxyphenyl propionic acid
-
-
1.91
4-hydroxyphenyl acetic acid
-
-
0.44
4-hydroxyphenyl propionic acid
-
-
2.02
4-iodophenol
-
pH and temperature not specified in the publication
0.08
4-methoxyphenol
0.1 - 33
4-methylcatechol
0.38
4-Methylphenol
-
pH and temperature not specified in the publication
0.203
4-methylresorcinol
-
pH 7.0, 25°C
0.1
4-nitrocatechol
-
-
1.45 - 2.8
4-tert-butylcatechol
0.016 - 0.45
4-tert-butylphenol
6.5
alpha-arbutin
-
pH 7.0, 25°C
3
beta-arbutin
1.69
caffeic acid
-
in 0.1 M sodium phosphate buffer (pH 7.0) at 25°C
0.16 - 4.65
catechol
4.28
D-ascorbic acid
-
-
1.86
D-Tyr
-
-
0.033
deoxyarbutin
pH and temperature not specified in the publication
1.2
DL-2-methyltyrosine
-
-
0.25 - 0.46
Dopa
1
dopa methyl ester
-
-
0.84 - 15.2
dopamine
0.1 - 0.12
ellagic acid
0.63 - 0.9
esculetin
0.18
gallic acid
-
-
7.8
gamma-L-glutaminyl-3,4-dihydroxybenzene
-
-
0.3
gamma-L-Glutaminyl-4-hydroxybenzene
-
-
0.11
Gly-Gly-L-Tyr
-
in 0.1 M sodium phosphate buffer (pH 7.0) at 25°C
0.18
Gly-L-Tyr-Gly
-
in 0.1 M sodium phosphate buffer (pH 7.0) at 25°C
0.91
Hydrocaffeic acid
-
in 0.1 M sodium phosphate buffer (pH 7.0) at 25°C
0.92
hydroquinone
-
pH 7.0, 25°C
0.4
Hydroxyhydroquinone
-
pH and temperature not specified in the publication
1.2
L-alpha-methyl tyrosine
-
-
6.8
L-alpha-methyldopa
-
-
2.79
L-ascorbic acid
-
-
0.17 - 26.1
L-Dopa
7.1
L-isoproterenol
-
-
0.21
L-Tyr
-
-
0.21
L-Tyr-Gly-Gly
-
in 0.1 M sodium phosphate buffer (pH 7.0) at 25°C
0.18 - 4.1
L-tyrosine
0.38
L-tyrosine methyl ester
-
-
0.12
methyl gallate
-
-
0.015 - 421
O2
0.00865
oxyresveratrol
-
pH 7.0, 25°C
0.06
p-tyrosol
-
in 0.1 M sodium phosphate buffer (pH 7.0) at 25°C
0.33 - 12.5
phenol
0.64
phloretic acid
-
in 0.1 M sodium phosphate buffer (pH 7.0) at 25°C
0.07
protocatechuic acid
-
-
0.15
Protocatechuic aldehyde
-
-
0.4
pyrocatechol
-
Lineweaver-Burk plot of pyrocatechol oxidation by the mushroom PPO
1.4 - 1.96
pyrogallol
0.46
resorcinol
-
pH 7.0, 25°C
0.51 - 9.53
tyramine
additional information
additional information
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
9.94
2-Methylresorcinol
-
pH 7.0, 25°C
554 - 632
3,4-dihydroxyphenyl propionic acid
433.1
3,4-dihydroxyphenylacetic acid
-
-
607.2
3,4-Dihydroxyphenylpropionic acid
-
-
12.1
3-Hydroxybenzyl alcohol
-
-
46.8
3-methoxyphenol
-
-
6
3-[2-(3,4-dihydroxyphenyl)ethylaminocarbonyl]-3-methyl-1-(4-ethoxycarbonylphenyl)triazene
-
in phosphate buffer (pH 7.4), at 37°C
0.6
3-[2-(4-hydroxyphenyl)ethylaminocarbonyl]-3-methyl-1-(4-cyanophenyl)triazene
-
in phosphate buffer (pH 7.4), at 37°C
6.9
4-Bromophenol
-
pH and temperature not specified in the publication
859.2
4-Chlorocatechol
-
-
4.6
4-Chlorophenol
-
pH and temperature not specified in the publication
132 - 202.2
4-ethoxyphenol
802.3
4-Ethylcatechol
-
-
6
4-ethylresorcinol
-
pH 7.0, 25°C
10.54
4-Fluorophenol
-
pH and temperature not specified in the publication
184 - 274.9
4-hydroxyanisole
0.19
4-hydroxybenzaldehyde
-
pH and temperature not specified in the publication
20 - 88.2
4-Hydroxybenzyl alcohol
66.7
4-hydroxyphenyl propionic acid
-
-
44.3
4-hydroxyphenyl acetic acid
-
-
66.7
4-hydroxyphenyl propionic acid
-
-
2.73
4-iodophenol
-
pH and temperature not specified in the publication
184 - 184.2
4-methoxyphenol
842 - 842.1
4-methylcatechol
14.76
4-Methylphenol
-
pH and temperature not specified in the publication
7.73
4-methylresorcinol
-
pH 7.0, 25°C
0.9
4-nitrocatechol
-
-
640.1 - 642
4-tert-butylcatechol
5.61
4-tert-butylphenol
-
pH and temperature not specified in the publication
4.43
alpha-arbutin
-
pH 7.0, 25°C
3.7 - 3.77
beta-arbutin
874.1 - 1080
catechol
0.92
D-ascorbic acid
-
-
1.95
deoxyarbutin
pH and temperature not specified in the publication
0.6
DL-2-methyltyrosine
-
-
35.5
dopa methyl ester
-
-
439 - 2540
dopamine
551 - 928
esculetin
28.2
gallic acid
-
-
3
Gly-Gly-L-Tyr
-
in 0.1M sodium phosphate buffer (pH 7.0) at 25°C
3.1
Gly-L-Tyr-Gly
-
in 0.1M sodium phosphate buffer (pH 7.0) at 25°C
101.5
hydroquinone
-
pH 7.0, 25°C
229
Hydroxyhydroquinone
-
pH and temperature not specified in the publication
0.6
L-alpha-methyl tyrosine
-
-
44.3
L-alpha-methyldopa
-
-
0.97
L-ascorbic acid
-
-
107 - 1810
L-Dopa
29.4
L-isoproterenol
-
-
7.9
L-Tyr
-
-
4
L-Tyr-Gly-Gly
-
in 0.1M sodium phosphate buffer (pH 7.0) at 25°C
3.77 - 7.9
L-tyrosine
3.4
L-tyrosine methyl ester
-
-
80.2
methyl gallate
-
-
5.39
oxyresveratrol
-
pH 7.0, 25°C
11.3 - 14.36
phenol
8.1
protocatechuic acid
-
-
1.5
Protocatechuic aldehyde
-
-
1280
pyrogallol
-
-
18.34
resorcinol
-
pH 7.0, 25°C
15.6 - 25.9
tyramine
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
3.7
2-Methylresorcinol
-
pH 7.0, 25°C
776.5
4-ethoxyphenol
-
pH 7.0, 25°C
51.3
4-ethylresorcinol
-
pH 7.0, 25°C
2300
4-hydroxyanisole
-
pH 7.0, 25°C
2300
4-methoxyphenol
-
pH 7.0, 25°C
38.1
4-methylresorcinol
-
pH 7.0, 25°C
210
D-ascorbic acid
-
-
26.5
Gly-Gly-L-Tyr
-
in 0.1 M sodium phosphate buffer (pH 7.0) at 25°C
17.1
Gly-L-Tyr-Gly
-
in 0.1 M sodium phosphate buffer (pH 7.0) at 25°C
110.3
hydroquinone
-
pH 7.0, 25°C
340
L-ascorbic acid
-
-
19
L-Tyr-Gly-Gly
-
in 0.1 M sodium phosphate buffer (pH 7.0) at 25°C
33 - 37.6
L-tyrosine
620
oxyresveratrol
-
pH 7.0, 25°C
18.1
phenol
-
pH 7.0, 25°C
39.9
resorcinol
-
pH 7.0, 25°C
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
12
(2E)-but-2-enoic acid
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 30°C
0.91
(2E,4E)-hexa-2,4-dienoic acid
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 30°C
0.0003
1-(2,4-dihydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)propane
-
inhibition is competitive and reversible, about 15times more potent than kojic acid
0.0011 - 0.0016
1-pentanoyl-3-(4-methoxyphenyl)thiourea
-
pH 6.8, 25°C
0.041
2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl (2E)-3-(4-chlorophenyl)prop-2-enoate
-
pH 6.8, 25°C
0.013
2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate
-
pH 6.8, 25°C
0.065
2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl 2,4-dihydroxybenzoate
-
pH 6.8, 25°C
0.009
2-(chloromethyl)-10-(2-fluorophenyl)-7,7-dimethyl-6,7,8,10-tetrahydropyrano[3,2-b]chromene-4,9-dione
-
pH 7.2, temperature not specified in the publication
2.4
2-(hydroxymethyl)-7,7-dimethyl-10-phenyl-6,7,8,10-tetrahydropyrano[3,2-b]chromene-4,9-dione
-
pH 7.2, temperature not specified in the publication
0.01261
2-acetylamino-1,3,4-thiadiazole-5-sulfonamide
-
pH 6.8, 25°C
0.0012
2-chlorobenzaldehyde thiosemicarbazone
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 30°C
1
2-ethyl-3-hydroxy-4H-pyran-4-one
-
pH 7.2, temperature not specified in the publication
7.93
2-oxoglutaric acid
-
pH 7.0, 25°C
0.0051
2-[(1E,2E)-N-hydroxy-3-(pyridin-2-yl)prop-2-enimidoyl]phenol
-
pH 6.8, 30°C
0.0025
2-[(1E,2E)-N-hydroxy-3-(pyridin-3-yl)prop-2-enimidoyl]phenol
-
pH 6.8, 30°C
0.064
3-hydroxy-1,2-dimethyl-4(1H)-pyridone
-
pH 7.2, temperature not specified in the publication
0.006
4-(2-(hydroxymethyl)-7,7-dimethyl-4,9-dioxo-4,6,7,8,9,10-hexahydropyrano[3,2-b]chromen-10-yl)benzonitrile
-
pH 7.2, temperature not specified in the publication
0.00125
4-chlorobenzaldehyde thiosemicarbazone
-
in 5 0mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 30°C
0.06
4-formyl-2-methoxyphenyl (4-phenylpiperazin-1-yl)acetate
-
pH 6.8, 25°C
3.7
4-hydroxyphenyl beta-D-xyloside
-
in 100 mM sodium phosphate buffer (pH 6.8), at 25°C
0.2
4-hydroxyphenyl beta-xylodioside
-
in 100 mM sodium phosphate buffer (pH 6.8), at 25°C
0.057
4-hydroxyphenyl beta-xylotetraoside
-
in 100 mM sodium phosphate buffer (pH 6.8), at 25°C
0.29
4-hydroxyphenyl beta-xylotrioside
-
in 100 mM sodium phosphate buffer (pH 6.8), at 25°C
0.00029 - 0.00105
4-xylidine-bis(dithiocarbamate) sodium salt
0.00198 - 0.16
5,2',4'-trihydroxy-2'',2''-dimethylchromene-(6,7:5'',6'')-flavanone
0.145
5-hydroxy-4-oxo-4H-pyran-2-carboxylic acid
-
pH 7.2, temperature not specified in the publication
0.148
6-hydroxykaempferol
-
a competitive inhibitor of tyrosinase, L-DOPA as a substrate
0.53 - 0.6
benzoic acid
-
versus different substrates, pH and temperature not specified in the publication
0.0057 - 0.0141
benzyldithiocarbamate sodium salt
0.9 - 1.42
beta-arbutin
0.008 - 0.013
butylxanthate sodium salt
0.11
cefazolin
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 30°C
0.0129
cefodizime
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 30°C
0.44 - 0.59
Cinnamic acid
-
versus different substrates, pH and temperature not specified in the publication
0.04 - 0.078
deoxyarbutin
0.0014 - 0.0138
ethylxanthate sodium salt
18
gamma-picolyl heptyl amine
-
in 0.1 M phosphate buffer (pH 6.5)
20
gamma-picolyl pentyl amine
-
in 0.1 M phosphate buffer (pH 6.5)
23
gamma-picolyl propyl amine
-
in 0.1 M phosphate buffer (pH 6.5)
0.079
glutamic acid
-
-
9.16
hesperidin
-
-
2.51
hexanoic acid
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 30°C
0.005 - 0.025
hexylxanthate sodium salt
0.148
histidine
-
-
0.0043 - 0.0223
kojic acid
0.00039
kuraridinol
-
noncompetitive inhibition
0.000045 - 0.014
kurarinol
0.0041
kurarinone
-
-
2.82
nobiletin
-
-
1.54
octanoic acid
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 30°C
0.052
p-Aminobenzoic acid
-
-
0.005 - 0.011
propylxanthate sodium salt
0.0072 - 0.0218
sodium iso-butylxanthate
0.0061 - 0.0422
sodium iso-pentylxanthate
0.0098 - 0.0129
sodium iso-propylxanthate
0.0074
sophoraflavanone G
-
-
0.0008 - 0.8
tropolone
0.0015
[4-oxo-2-(pyridin-4-ylmethylene-hydrazono)-thiazolidin-5-ylidene]-acetic acid methyl ester
-
pH 6.8, 25°C, substrate L-DOPA
additional information
additional information
-
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.035
(+)-gallocatechin-3-O-gallate
Agaricus bisporus
-
competitive inhibition
0.034
(-)-epigallocatechin-3-O-gallate
Agaricus bisporus
-
competitive inhibition
0.25
(1E,4E)-1,5-bis(2-fluoro-4-methoxyphenyl)penta-1,4-dien-3-one
Agaricus bisporus
-
IC50 above 0.25 mM
0.25
(1E,4E)-1,5-bis(4-fluorophenyl)penta-1,4-dien-3-one
Agaricus bisporus
-
IC50 above 0.25 mM
0.25
(1E,4E)-1,5-bis(4-hydroxy-3-methoxyphenyl)penta-1,4-dien-3-one
Agaricus bisporus
-
IC50 above 0.25 mM
0.298
(2-([4-(4-methoxy-benzyloxy)-benzylidene]-hydrazono)-4-oxothiazolidin-5-ylidene)-acetic acid methyl ester
Agaricus bisporus
-
pH 6.8, 25°C, substrate L-DOPA
0.0498
(2-[(5-methyl-furan-2-ylmethylene)-hydrazono]-4-oxothiazolidin-5-ylidene)-acetic acid methyl ester
Agaricus bisporus
-
pH 6.8, 25°C, substrate L-DOPA
1
(2E)-3-(3,4-dihydroxyphenyl)-N-(2-phenylethyl)prop-2-enamide
Agaricus bisporus
-
IC50 above 1 mM
0.35
(2E)-3-(3,4-dihydroxyphenyl)-N-(4-hydroxybenzyl)prop-2-enamide
Agaricus bisporus
-
-
1
(2E)-3-(3,4-dihydroxyphenyl)-N-[2-(3,4-dihydroxyphenyl)ethyl]prop-2-enamide
Agaricus bisporus
-
IC50 above 1 mM
0.6
(2E)-3-(3,4-dihydroxyphenyl)-N-[2-(3,4-dimethoxyphenyl)ethyl]prop-2-enamide
Agaricus bisporus
-
-
0.25
(2E)-3-(3,4-dihydroxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide
Agaricus bisporus
-
-
0.2781
(2E)-3-(3,4-dihydroxyphenyl)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]prop-2-enamide
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.3218
(2E)-3-(3,4-dimethoxyphenyl)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]prop-2-enamide
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 7.0), at 37°C
1
(2E)-3-(4-chlorophenyl)-N-[2-(4-chlorophenyl)ethyl]prop-2-enamide
Agaricus bisporus
-
IC50 above 1 mM
0.35
(2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]prop-2-enamide
Agaricus bisporus
-
IC50 above 0.35 mM, in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.03
(2E)-3-(4-hydroxyphenyl)-N-(2-phenylethyl)prop-2-enamide
Agaricus bisporus
-
-
0.5
(2E)-3-(4-hydroxyphenyl)prop-2-enoic acid
Agaricus bisporus
-
-
1
(2E)-3-(4-methoxyphenyl)-N-(1-phenylethyl)prop-2-enamide
Agaricus bisporus
-
IC50 above 1 mM
1
(2E)-3-(4-methoxyphenyl)-N-(2-phenylethyl)prop-2-enamide
Agaricus bisporus
-
IC50 above 1 mM
0.42
(2E)-3-(4-methoxyphenyl)prop-2-enoic acid
Agaricus bisporus
-
-
0.1
(2E)-3-phenyl-N-(1-phenylethyl)prop-2-enamide
Agaricus bisporus
-
IC50 above 0.1 mM
0.1
(2E)-3-phenyl-N-(2-phenylethyl)prop-2-enamide
Agaricus bisporus
-
IC50 above 0.1 mM
2.1
(2E)-3-phenylprop-2-enoic acid
Agaricus bisporus
-
-
12.05 - 20
(2E)-but-2-enoic acid
0.35
(2E)-N-(3,4-dihydroxybenzyl)-3-(3,4-dihydroxyphenyl)prop-2-enamide
Agaricus bisporus
-
-
0.1
(2E)-N-(4-chlorobenzyl)-3-phenylprop-2-enamide
Agaricus bisporus
-
IC50 above 0.1 mM
0.25
(2E)-N-benzyl-3-(3,4-dihydroxyphenyl)prop-2-enamide
Agaricus bisporus
-
-
0.028
(2E)-N-benzyl-3-(4-hydroxyphenyl)prop-2-enamide
Agaricus bisporus
-
-
1
(2E)-N-benzyl-3-(4-methoxyphenyl)prop-2-enamide
Agaricus bisporus
-
IC50 above 1 mM
0.1
(2E)-N-benzyl-3-phenylprop-2-enamide
Agaricus bisporus
-
IC50 above 0.1 mM
0.1
(2E)-N-[2-(4-chlorophenyl)ethyl]-3-(4-hydroxyphenyl)prop-2-enamide
Agaricus bisporus
-
IC50 above 0.1 mM
1
(2E)-N-[2-(4-chlorophenyl)ethyl]-3-phenylprop-2-enamide
Agaricus bisporus
-
IC50 above 1 mM
0.0054
(2E)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-3-(3-hydroxy-4-methoxyphenyl)prop-2-enamide
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.008
(2E)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-3-(4-hydroxy-3-methoxyphenyl)prop-2-enamide
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.008
(2E)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-3-(4-hydroxyphenyl)prop-2-enamide
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.0238
(2E)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-3-(4-methoxyphenyl)prop-2-enamide
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.0404
(2E)-N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-3-phenylprop-2-enamide
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.9 - 4.95
(2E,4E)-hexa-2,4-dienoic acid
0.25
(2E,6E)-2,6-bis[(4-chlorophenyl)methylidene]cyclohexanone
Agaricus bisporus
-
IC50 above 0.25 mM
0.25
(2E,6E)-2,6-bis[(4-hydroxyphenyl)methylidene]cyclohexanone
Agaricus bisporus
-
IC50 above 0.25 mM
0.24
(2R,3R)-taxifolin
Agaricus bisporus
-
-
0.35
(2Z)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid
Agaricus bisporus
-
IC50 above 0.35 mM, in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.35
(2Z)-3-(3,4-dimethoxyphenyl)prop-2-enoic acid
Agaricus bisporus
-
IC50 above 0.35 mM, in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.1152
(2Z)-3-(3-hydroxy-4-methoxyphenyl)prop-2-enoic acid
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.35
(2Z)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid
Agaricus bisporus
-
IC50 above 0.35 mM, in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.35
(2Z)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid
Agaricus bisporus
-
IC50 above 0.35 mM, in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.1213
(2Z)-3-(4-hydroxyphenyl)prop-2-enoic acid
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.35
(2Z)-3-(4-methoxyphenyl)prop-2-enoic acid
Agaricus bisporus
-
IC50 above 0.35 mM, in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.35
(2Z)-3-phenylprop-2-enoic acid
Agaricus bisporus
-
IC50 above 0.35 mM, in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.0501
(4-oxo-2-[(1H-pyrrol-2-ylmethylene)-hydrazono]-thiazolidin-5-ylidene)-acetic acid methyl ester
Agaricus bisporus
-
pH 6.8, 25°C, substrate L-DOPA
0.208
(4-oxo-2-[(3-phenyl-allylidene)-hydrazono]-thiazolidin-5-ylidene)-acetic acid methyl ester
Agaricus bisporus
-
pH 6.8, 25°C, substrate L-DOPA
0.07905
1,5-bis(4-hydroxyphenyl)-1,4-pentadiene-3-one
Agaricus bisporus
-
-
0.00015
1-(1,4-diacetylphenyl)dithiosemicarbazide
Agaricus bisporus
-
-
0.022
1-(1-(2,4,6-trihydroxyphenyl)ethylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.00058
1-(1-(2,4-dihydroxyphenyl)ethylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.00052
1-(1-(4-bromophenyl)ethylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.00017
1-(1-(4-fluorophenyl)ethylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.00031
1-(1-(4-hydroxyphenyl)ethylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.001
1-(1-(4-isopropylphenyl)ethylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.00011
1-(1-(4-methoxyphenyl)ethylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.00042
1-(1-(4-methoxyphenyl)propan-2-ylidene)-thiosemicarbazide
Agaricus bisporus
-
-
0.00042
1-(1-(4-methoxyphenyl)propan-2-ylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.00088
1-(1-(pyrazin-2-yl)ethylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.00082
1-(1-(pyridin-3-yl)ethylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.00014
1-(1-(thiophen-2-yl)ethylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.00027
1-(1-p-tolylethylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.00034
1-(1-phenylethylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.00024
1-(2,4-dihydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)propane
Agaricus bisporus
-
-
0.00085
1-(2,5-dimethyl-1H-pyrrol-1-yl)thiourea
Agaricus bisporus
-
-
0.0555
1-(2-hydroxy-1,2-diphenylethylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.1
1-(2-oxo-1,2-diphenylethylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.00062
1-(3-methylbutylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.0151
1-(3-oxocyclohexylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.0027
1-(3-phenylallylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.00054
1-(4-(4-hydroxyphenyl)butan-2-ylidene)-thiosemicarbazide
Agaricus bisporus
-
-
0.00054
1-(4-(4-hydroxyphenyl)butan-2-ylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.0027
1-(4-bromophenyl)-3-hydroxyurea
Agaricus bisporus
-
-
0.99
1-(4-fluorophenyl)-ethanone
Agaricus bisporus
-
-
2
1-(4-methoxyphenyl)-ethanone
Agaricus bisporus
-
-
0.0115
1-(4-methylpent-3-en-2-ylidene) thiosemicarbazide
Agaricus bisporus
-
-
0.001
1-(but-2-enylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.00028
1-(butan-2-ylidene)thiosemicarbazide
Agaricus bisporus
-
-
0.000086 - 0.00011
1-(propan-2-ylidene)thiosemicarbazide
0.15
1-(thiophen-2-yl)-ethanone
Agaricus bisporus
-
-
0.00095
1-cyclohexylidenethiosemicarbazide
Agaricus bisporus
-
-
0.000075 - 0.0006
1-cyclopentyl-1-hydroxy-2-oxohydrazine
0.00017
1-cyclopentylidenethiosemicarbazide
Agaricus bisporus
-
-
0.00026 - 0.0022
1-dodecyl-1-hydroxy-2-oxohydrazine
0.00023
1-ethylidenethiosemicarbazide
Agaricus bisporus
-
-
0.77
1-hydroxy-1-methyl-3-(4-nitrophenyl)urea
Agaricus bisporus
-
-
0.0062 - 0.046
1-hydroxy-1-naphthalen-1-yl-2-oxohydrazine
0.00013 - 0.0011
1-hydroxy-2-oxo-1-phenylhydrazine
0.041
1-hydroxy-3-(4-hydroxyphenyl)urea
Agaricus bisporus
-
-
0.032
1-hydroxy-3-(4-methoxyphenyl)urea
Agaricus bisporus
-
-
0.0026
1-hydroxy-3-(4-nitrophenyl)urea
Agaricus bisporus
-
-
0.00029
1-hydroxy-3-phenylurea
Agaricus bisporus
-
-
0.0043
1-hydroxy-3-[4-(trifluoromethyl)phenyl]urea
Agaricus bisporus
-
-
0.026
1-methoxy-3-naphthalen-2-ylthiourea
Agaricus bisporus
-
-
0.0803
1-methylethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 6.8), at 37°C
0.0078
1-pentanoyl-3-(2,3-dichlorophenyl)thiourea
Agaricus bisporus
-
pH 6.8, 25°C
0.0197
1-pentanoyl-3-(2,4,6-trimethylphenyl)thiourea
Agaricus bisporus
-
pH 6.8, 25°C
0.0101
1-pentanoyl-3-(2,4-dinitrophenyl)thiourea
Agaricus bisporus
-
pH 6.8, 25°C
0.0195
1-pentanoyl-3-(2,6-dibromo-4-fluorophenyl)thiourea
Agaricus bisporus
-
pH 6.8, 25°C
0.0166
1-pentanoyl-3-(3-nitrophenyl)thiourea
Agaricus bisporus
-
pH 6.8, 25°C
0.0065
1-pentanoyl-3-(4-bromo-2-fluorophenyl)thiourea
Agaricus bisporus
-
pH 6.8, 25°C
0.0034
1-pentanoyl-3-(4-bromophenyl)thiourea
Agaricus bisporus
-
pH 6.8, 25°C
0.0023
1-pentanoyl-3-(4-chlorophenyl)thiourea
Agaricus bisporus
-
pH 6.8, 25°C
0.0016
1-pentanoyl-3-(4-methoxyphenyl)thiourea
Agaricus bisporus
-
pH 6.8, 25°C
0.008
1-pentanoyl-3-(4-nitrophenyl)thiourea
Agaricus bisporus
-
pH 6.8, 25°C
0.0002
1-propylidenethiosemicarbazide
Agaricus bisporus
-
-
0.000086
1-[1-(4-methoxyphenyl)ethylidene]thiosemicarbazide
Agaricus bisporus
-
-
0.0063
1-[4-(benzyloxy)phenyl]-3-hydroxyurea
Agaricus bisporus
-
-
0.07
1-[[tert-butyl(dimethyl)silyl]oxy]-3-phenylurea
Agaricus bisporus
-
-
0.582
2'-(3,4-dihydroxyphenyl)-3',5,5',7,7'-pentahydroxy-2-(4-hydroxyphenyl)-2,2',3,3',4a,8a-hexahydro-4H,4'H-3,8'-bichromene-4,4'-dione
Agaricus bisporus
-
-
0.0694
2,2':4',2''-ter-1,3,4-oxadiazole-5,5',5''(4H,4''H)-trithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.0029
2,2':4',2''-ter-1,3,4-thiadiazole-5,5',5''(4H,4''H)-trithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.0431 - 0.0461
2,3,4'-trihydroxy-4-methoxydeoxybenzoin
0.3 - 0.5
2,3,4,4'-tetrahydroxydeoxybenzoin
0.2033 - 0.3
2,3,4-trihydroxy-4'-methoxydeoxybenzoin
0.2613 - 0.3
2,4,4',6-tetrahydroxydeoxybenzoin
0.1359 - 0.1785
2,4,4'-trihydroxydeoxybenzoin
0.08435 - 0.1974
2,4,5-trihydroxy-4'-methoxydeoxybenzoin
0.07105 - 0.2302
2,4,6-trihydroxy-4'-methoxydeoxybenzoin
0.1121 - 0.2397
2,4-dihydroxy-3',4'-dimethoxydeoxybenzoin
0.0788 - 0.1814
2,4-dihydroxy-4'-methoxydeoxybenzoin
0.55
2,4-dihydroxy-N-(3,4,5-trihydroxybenzyl)benzamide
Agaricus bisporus
-
IC50: 0.550 mM
1.82
2,4-dihydroxy-N-(4-hydroxybenzyl)benzamide
Agaricus bisporus
-
IC50: 1.820 mM
0.00045
2-(2-furanylmethylene)-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.0265
2-(2-hydroxyethoxy)ethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 6.8), at 37°C
0.0591
2-(2-methoxyethoxy)ethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 6.8), at 37°C
0.16
2-(3,4-dihydroxy-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyethyl 3,4,5-trihydroxybenzoate
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8) for 10 min at 25°C
0.12
2-(4-fluorophenyl)-quinazolin-4(3H)-one
Agaricus bisporus
-
pH and temperature not specified in the publication
0.0309
2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl (2E)-3-(4-chlorophenyl)prop-2-enoate
Agaricus bisporus
-
pH 6.8, 25°C
0.0161
2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate
Agaricus bisporus
-
pH 6.8, 25°C
0.0426
2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl 2,4-dihydroxybenzoate
Agaricus bisporus
-
pH 6.8, 25°C
0.1569
2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl 3,4-dihydroxybenzoate
Agaricus bisporus
-
pH 6.8, 25°C
0.0598
2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl 3,5-dihydroxybenzoate
Agaricus bisporus
-
pH 6.8, 25°C
0.2012
2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl 4-hydroxybenzoate
Agaricus bisporus
-
pH 6.8, 25°C
0.00193
2-(phenylmethylene)-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.00122 - 0.0154
2-chlorobenzaldehyde thiosemicarbazone
2.28
2-hydroxy-4-methoxybenzoic acid
Agaricus bisporus
-
-
1.65
2-hydroxy-4-methylbenzoic acid
Agaricus bisporus
-
-
7.9
2-hydroxy-5-methoxybenzoic acid
Agaricus bisporus
-
-
2.15
2-hydroxy-5-methylbenzoic acid
Agaricus bisporus
-
-
2.85
2-Hydroxybenzaldehyde
Agaricus bisporus
-
-
4.3
2-hydroxybenzoic acid
Agaricus bisporus
-
-
0.0749
2-hydroxyethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 6.8), at 37°C
0.0004
2-hydroxytropone
Agaricus bisporus
-
-
0.0981
2-methoxyethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 6.8), at 37°C
2.6
2-Methylbenzaldehyde
Agaricus bisporus
-
-
2.56
2-Methylbenzoic acid
Agaricus bisporus
-
-
0.717 - 1.415
2-Methylresorcinol
15
2-oxoglutaric acid
Agaricus bisporus
-
pH 7.0, 25°C
0.0153
2-[(1E,2E)-N-hydroxy-3-(pyridin-2-yl)prop-2-enimidoyl]phenol
Agaricus bisporus
-
pH 6.8, 30°C
0.0127
2-[(1E,2E)-N-hydroxy-3-(pyridin-3-yl)prop-2-enimidoyl]phenol
Agaricus bisporus
-
pH 6.8, 30°C
0.2
2-[(2,3,4-trihydroxyphenyl)methylene]-thiosemicarbazone
Agaricus bisporus
-
IC50 above 0.2 mM, in 50 mM phosphate buffer (pH 6.8), at 25°C
0.00018
2-[(2,4-dihydroxyphenyl)methylene]-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.0065
2-[(2,5-dihydroxyphenyl)methylene]-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.0875
2-[(2,5-dimethoxyphenyl)methylene]-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.00033
2-[(2-hydroxy-4-bromophenyl)methylene]thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.00038
2-[(2-hydroxyphenyl)methylene]-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.1152
2-[(3,4,5-trihydroxyphenyl)methylene]-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.1455
2-[(3,4,5-trimethoxyphenyl)methylene]-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.0422
2-[(3,4-dihydroxyphenyl)methylene]-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.0336
2-[(3,5-dihydroxyphenyl)methylene]-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.00488
2-[(3-hydroxy-4-methoxyphenyl)methylene]-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.0039
2-[(3-hydroxyphenyl)methylene]-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.00568
2-[(3-methoxy-4-hydroxyphenyl)methylene]-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.00028
2-[(4-bromophenyl)methylene]-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.00041
2-[(4-hydroxyphenyl)methylene]-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.00148
2-[(4-methoxyphenyl)methylene]-thiosemicarbazone
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8), at 25°C
0.00073
2-[2-(2,4-dihydroxyphenyl)ethyl]-5-(D-xylopyranosyloxy)phenyl D-xylopyranoside
Agaricus bisporus
-
-
0.0016
2-[2-(2,4-dihydroxyphenyl)ethyl]-5-hydroxyphenyl D-xylopyranoside
Agaricus bisporus
-
5times more potent than that of kojic acid
0.0792
2-[2-(2-hydroxyethoxy)ethoxy]ethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 6.8), at 37°C
0.0676
2-[2-(2-methoxyethoxy)ethoxy]ethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 6.8), at 37°C
0.0000167
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl (2E)-3-(2,4-dihydroxyphenyl)prop-2-enoate
Agaricus bisporus
pH 6.8, 25°C
0.0067
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl (2E)-3-(4-chlorophenyl)prop-2-enoate
Agaricus bisporus
pH 6.8, 25°C
0.0065
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate
Agaricus bisporus
pH 6.8, 25°C
0.0077
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl (2E)-3-phenylprop-2-enoate
Agaricus bisporus
pH 6.8, 25°C
0.0067
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl 2,4-dihydroxybenzoate
Agaricus bisporus
pH 6.8, 25°C
0.0652
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl 3,4,5-trihydroxybenzoate
Agaricus bisporus
pH 6.8, 25°C
0.0159
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl 3,4-dihydroxybenzoate
Agaricus bisporus
pH 6.8, 25°C
0.0938
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl 3,5-dihydroxybenzoate
Agaricus bisporus
pH 6.8, 25°C
0.0149
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl 3-hydroxybenzoate
Agaricus bisporus
pH 6.8, 25°C
0.0149
2-[2-methyl-5-(propan-2-yl)phenoxy]-2-oxoethyl 4-hydroxybenzoate
Agaricus bisporus
pH 6.8, 25°C
0.001
2-[3-(2,4-dimethoxy-3-methylphenyl)propyl]benzene-1,4-diol
Agaricus bisporus
-
-
0.00112
2alpha,3alpha,23-trihydroxyolean-12-en-28-oic acid
Agaricus bisporus
-
-
0.0114
3'',4''-dihydroglabridin
Agaricus bisporus
-
in 20 mM phosphate buffer (pH 6.8), at 25°C
0.555
3,4,5-trihydroxy-N-(3,4,5-trihydroxybenzyl)benzamide
Agaricus bisporus
-
IC50: 0.555 mM
1.18
3,4,5-trihydroxy-N-(4-hydroxybenzyl)benzamide
Agaricus bisporus
-
IC50: 1.180 mM
0.168 - 0.3
3,4-dihydroxy-4'-methoxydeoxybenzoin
0.28
3,4-dihydroxy-N-(3,4,5-trihydroxybenzyl)benzamide
Agaricus bisporus
-
IC50: 0.280 mM
2
3,4-dihydroxy-N-(4-hydroxybenzyl)benzamide
Agaricus bisporus
-
IC50: 2.0 mM
0.0003
3,4-dihydroxybenzaldehyde-O-ethyloxime
Agaricus bisporus
-
-
0.97
3,4-dihydroxycinnamic acid
Agaricus bisporus
-
-
1
3,4-dimethoxycinnamic acid
Agaricus bisporus
-
IC50 above 1.0 mM in 0.1 M phosphate buffer (pH 7.0), at 37°C
1
3,4-dimethoxydihydrocinnamic acid
Agaricus bisporus
-
IC50 above 1.0 mM in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.705
3,5-dihydroxy-N-(3,4,5-trihydroxybenzyl)benzamide
Agaricus bisporus
-
IC50: 0.705 mM
0.71
3,5-dihydroxy-N-(4-hydroxybenzyl)benzamide
Agaricus bisporus
-
IC50: 0.710 mM
0.27
3-(3',4',5'-trihydroxyphenyl)-6,8-dihydroxycoumarin
Agaricus bisporus
-
in 0.067 M phosphoric acid buffer (pH 6.8), at 25°C
3.68
3-(3-hydroxyphenyl)-2H-chromen-2-one
Agaricus bisporus
-
in 0.067 M phosphoric acid buffer (pH 6.8), at 25°C
0.035
3-cymene
Agaricus bisporus
-
competitive, IC50: 0.035 mM
0.016
3-hydroxy-1-methyl-1-phenylurea
Agaricus bisporus
-
-
3.7
3-Hydroxybenzaldehyde
Agaricus bisporus
-
-
1
3-hydroxycinnamic acid
Agaricus bisporus
-
IC50 above 1 mM
0.0634
3-hydroxyphloretin
Agaricus bisporus
-
exhibits a dose-dependent inhibitory effect on mushroom tyrosinase activity, enzyme kinetics study of 3-hydroxyphloretin as inhibitor with various concentrations of the L-tyrosine substrate (15.625, 31.25, 62.5, 125, 250, 500 microM)
1.8
3-Methoxybenzaldehyde
Agaricus bisporus
-
-
0.45
3-methylbenzaldehyde
Agaricus bisporus
-
-
0.58
3-methylbenzoic acid
Agaricus bisporus
-
-
1.7
3-methylcrotonic acid
Agaricus bisporus
-
-
0.01102
3beta, 23, 24-trihydroxyolean-12-en-28-oic acid
Agaricus bisporus
-
-
0.1
4'-hydroxy-[1,1'-biphenyl]-2-carboxylic acid
Agaricus bisporus
-
pH 6.5, 30°C
0.01059
4'-hydroxy-[1,1'-biphenyl]-3-carboxylic acid
Agaricus bisporus
-
pH 6.5, 30°C
0.0147
4'-hydroxy-[1,1'-biphenyl]-4-carboxylic acid
Agaricus bisporus
-
pH 6.5, 30°C
0.1
4'-methoxy-[1,1'-biphenyl]-2-carboxylic acid
Agaricus bisporus
-
above, pH 6.5, 30°C
0.0153
4'-methoxy-[1,1'-biphenyl]-3-carboxylic acid
Agaricus bisporus
-
pH 6.5, 30°C
0.0153
4'-methoxy-[1,1'-biphenyl]-4-carboxylic acid
Agaricus bisporus
-
pH 6.5, 30°C
0.0024
4,4'-diamino-3-(4-hydroxyphenyl)-1'H-1,3'-bi-1,2,4-triazole-5,5'(4H,4'H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00101
4,4'-diamino-3-(pyridin-4-yl)-1'H-1,3'-bi-1,2,4-triazole-5,5'(4H,4'H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00037
4,4'-ethane-1,2-diyldibenzene-1,3-diol
Agaricus bisporus
-
-
0.075
4-(1-methylethyl)benzaldehyde
Agaricus bisporus
-
-
0.225
4-(1-methylethyl)benzoic acid
Agaricus bisporus
-
-
0.049
4-(benzyloxy)-N'-(hydrazinylcarbonyl)benzohydrazide
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
1.15
4-(hexyloxy)benzoic acid
Agaricus bisporus
-
-
1.4
4-(pentyloxy)benzoic acid
Agaricus bisporus
-
-
1.65
4-butoxybenzoic acid
Agaricus bisporus
-
-
0.038
4-butylbenzaldehyde
Agaricus bisporus
-
-
0.165
4-butylbenzoic acid
Agaricus bisporus
-
-
0.00182 - 0.0067
4-chlorobenzaldehyde thiosemicarbazone
0.1156
4-coumaric acid
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.023
4-ethenylbenzaldehyde
Agaricus bisporus
-
-
0.33
4-ethenylbenzoic acid
Agaricus bisporus
-
-
1.1
4-ethoxybenzoic acid
Agaricus bisporus
-
-
0.095
4-Ethylbenzaldehyde
Agaricus bisporus
-
-
0.29
4-ethylbenzoic acid
Agaricus bisporus
-
-
0.0019 - 0.00931
4-ethylresorcinol
0.0216
4-formyl-2-methoxyphenyl (4-methylpiperazin-1-yl)acetate
Agaricus bisporus
-
pH 6.8, 25°C
0.1014
4-formyl-2-methoxyphenyl (4-phenylpiperazin-1-yl)acetate
Agaricus bisporus
-
pH 6.8, 25°C
0.0789
4-formyl-2-methoxyphenyl chloroacetate
Agaricus bisporus
-
pH 6.8, 25°C
3
4-formylphenyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside
Agaricus bisporus
-
-
3
4-formylphenyl 2,3,4-tri-O-acetyl-beta-D-allopyranoside
Agaricus bisporus
-
-
3
4-formylphenyl 2,3,4-tri-O-benzyl-beta-D-ribopyranoside
Agaricus bisporus
-
-
3
4-formylphenyl 2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside
Agaricus bisporus
-
-
0.62
4-formylphenyl 2,3-O-(1-methylethylidene)-beta-D-allopyranoside
Agaricus bisporus
-
-
0.052
4-formylphenyl 4,6-O-(phenylmethylidene)-beta-D-gulopyranoside
Agaricus bisporus
-
-
0.43
4-formylphenyl 6-O-(dimethoxyphosphoryl)-beta-D-allopyranoside
Agaricus bisporus
-
-
3
4-formylphenyl 6-O-trityl-beta-D-allopyranoside
Agaricus bisporus
-
-
2.54
4-formylphenyl beta-D-allopyranoside
Agaricus bisporus
-
-
0.94
4-formylphenyl beta-D-glucopyranoside
Agaricus bisporus
-
-
0.28
4-formylphenyl beta-D-ribopyranoside
Agaricus bisporus
-
-
2.54
4-formylphenyl-O-beta-D-allopyranoside
Agaricus bisporus
-
-
0.0088
4-heptylbenzaldehyde
Agaricus bisporus
-
-
0.095
4-heptylbenzoic acid
Agaricus bisporus
-
-
0.008
4-hexylbenzaldehyde
Agaricus bisporus
-
-
0.11
4-hexylbenzoic acid
Agaricus bisporus
-
-
0.0025 - 0.018
4-hexylresorcinol
0.97
4-hydroxy-3-methoxycinnamic acid
Agaricus bisporus
-
-
1.12 - 1.22
4-hydroxybenzaldehyde
1.3
4-hydroxybenzoic acid
Agaricus bisporus
-
-
3
4-hydroxyphenyl beta-D-xyloside
Agaricus bisporus
-
in 100 mM sodium phosphate buffer (pH 6.8), at 25°C
0.74
4-hydroxyphenyl beta-xylodioside
Agaricus bisporus
-
in 100 mM sodium phosphate buffer (pH 6.8), at 25°C
0.18
4-hydroxyphenyl beta-xylotetraoside
Agaricus bisporus
-
in 100 mM sodium phosphate buffer (pH 6.8), at 25°C
0.48
4-hydroxyphenyl beta-xylotrioside
Agaricus bisporus
-
in 100 mM sodium phosphate buffer (pH 6.8), at 25°C
0.35
4-methoxybenzaldehyde
Agaricus bisporus
-
-
0.42
4-methoxybenzoic acid
Agaricus bisporus
-
-
0.41 - 0.8617
4-methoxycinnamic acid
0.12
4-methylbenzaldehyde
Agaricus bisporus
-
-
0.35
4-methylbenzoic acid
Agaricus bisporus
-
-
0.0011
4-methylresorcinol
Agaricus bisporus
-
pH 7.0, 25°C, inhibition of the diphenolase activity of mushroom tyrosinase
0.01
4-octylbenzaldehyde
Agaricus bisporus
-
-
0.082
4-octylbenzoic acid
Agaricus bisporus
-
-
0.0135
4-pentylbenzaldehyde
Agaricus bisporus
-
-
0.12
4-pentylbenzoic acid
Agaricus bisporus
-
-
0.8 - 1.1
4-phenyl-2-butanol
1.85
4-propoxybenzoic acid
Agaricus bisporus
-
-
0.075
4-propylbenzaldehyde
Agaricus bisporus
-
-
0.235
4-propylbenzoic acid
Agaricus bisporus
-
-
0.038
4-tert-butylbenzaldehyde
Agaricus bisporus
-
-
0.215
4-tert-butylbenzoic acid
Agaricus bisporus
-
-
0.00341
4-[(E)-(carbamothioylhydrazono)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-allopyranoside
Agaricus bisporus
-
-
0.00041
4-[(E)-(carbamothioylhydrazono)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranoside
Agaricus bisporus
-
-
0.00031
4-[(E)-(carbamothioylhydrazono)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside
Agaricus bisporus
-
-
0.0528
4-[(E)-(carbamothioylhydrazono)methyl]phenyl 2,3,4,6-tetrakis-O-(phenylcarbonyl)-beta-D-glucopyranoside
Agaricus bisporus
-
-
0.0365
4-[(E)-(carbamothioylhydrazono)methyl]phenyl 2,3,4-tris-O-(phenylcarbonyl)-beta-D-xylopyranoside
Agaricus bisporus
-
-
0.00065
4-[(E)-(carbamothioylhydrazono)methyl]phenyl 2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside
Agaricus bisporus
-
-
0.00361
4-[(E)-(carbamothioylhydrazono)methyl]phenyl beta-D-allopyranoside
Agaricus bisporus
-
-
0.00296
4-[(E)-(carbamothioylhydrazono)methyl]phenyl beta-D-glucopyranoside
Agaricus bisporus
-
-
0.2
4-[(E)-(hydroxyimino)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-allopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.2
4-[(E)-(hydroxyimino)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.2
4-[(E)-(hydroxyimino)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.2
4-[(E)-(hydroxyimino)methyl]phenyl 2,3,4,6-tetrakis-O-(phenylcarbonyl)-beta-D-glucopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.2
4-[(E)-(hydroxyimino)methyl]phenyl 2,3,4-tris-O-(phenylcarbonyl)-beta-D-xylopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.2
4-[(E)-(hydroxyimino)methyl]phenyl 2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.2
4-[(E)-(hydroxyimino)methyl]phenyl beta-D-allopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.2
4-[(E)-(hydroxyimino)methyl]phenyl beta-D-glucopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.2
4-[(E)-(methoxyimino)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-allopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.2
4-[(E)-(methoxyimino)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.2
4-[(E)-(methoxyimino)methyl]phenyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.2
4-[(E)-(methoxyimino)methyl]phenyl 2,3,4,6-tetrakis-O-(phenylcarbonyl)-beta-D-glucopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.2
4-[(E)-(methoxyimino)methyl]phenyl 2,3,4-tris-O-(phenylcarbonyl)-beta-D-xylopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.2
4-[(E)-(methoxyimino)methyl]phenyl 2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.2
4-[(E)-(methoxyimino)methyl]phenyl beta-D-allopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.2
4-[(E)-(methoxyimino)methyl]phenyl beta-D-glucopyranoside
Agaricus bisporus
-
IC50 above 0.2 mM
0.00043
4-[2-(2,4-dihydroxyphenyl)ethyl]-3-hydroxyphenyl D-xylopyranoside
Agaricus bisporus
-
-
0.024
4-[3-(2-hydroxy-5-methoxyphenyl)propyl]benzene-1,3-diol
Agaricus bisporus
-
-
0.0027 - 0.0238
4-[[hydroxy(nitroso)amino]methyl]benzene-1,3-diol
0.0011 - 0.0137
4-[[hydroxy(nitroso)amino]methyl]phenol
0.0185
5'-(3-hydroxyphenyl)-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00177
5'-(4-hydroxyphenyl)-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00019
5'-(4-hydroxyphenyl)-2,3'-bi-1,3,4-thiadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00053
5'-(4-[[tert-butyl(dimethyl)silyl]oxy]phenyl)-2,3'-bi-1,3,4-thiadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00676
5'-(diphenylmethyl)-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.0052
5'-(diphenylmethyl)-2,3'-bi-1,3,4-thiadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.0336
5'-(naphthalen-1-yl)-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.0142
5'-(pyridin-4-yl)-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00247
5'-(pyridin-4-yl)-2,3'-bi-1,3,4-thiadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00367
5'-benzyl-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00494
5'-cyclohexyl-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00647
5'-phenyl-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00131
5'-phenyl-2,3'-bi-1,3,4-thiadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00442
5'-[(5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)methyl]-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00049
5'-[(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)methyl]-2,3'-bi-1,3,4-thiadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.0019
5'-[3-(5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)propyl]-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00364
5'-[3-(benzyloxy)phenyl]-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00135
5'-[4-(benzyloxy)phenyl]-2,3'-bi-1,3,4-oxadiazole-2',5(4H)-dithione
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.00026 - 0.01861
5,2',4'-trihydroxy-2'',2''-dimethylchromene-(6,7:5'',6'')-flavanone
0.1325
5-(4-(2-(2-methoxyethoxy)ethoxy)benzyl)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
Agaricus bisporus
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.2
5-(4-(2-(2-methoxyethoxy)ethoxy)benzyl)pyrimidine-2,4,6(1H,3H,5H)trione
Agaricus bisporus
-
IC50 above 0.2 mM, in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.0342
5-(4-(2-(2-methoxyethoxy)ethoxy)benzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
Agaricus bisporus
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.1374
5-(4-(2-(2-methoxyethoxy)ethoxy)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
Agaricus bisporus
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.1793
5-(4-(2-butoxyethoxy)benzyl)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
Agaricus bisporus
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.1074
5-(4-(2-butoxyethoxy)benzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
Agaricus bisporus
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.04545
5-(4-(2-butoxyethoxy)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
Agaricus bisporus
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.1559
5-(4-(2-hydroxyethoxy)benzyl)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
Agaricus bisporus
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.2
5-(4-(2-hydroxyethoxy)benzyl)pyrimidine-2,4,6(1H,3H,5H)-trione
Agaricus bisporus
-
IC50 above 0.2 mM, in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.2
5-(4-(2-hydroxyethoxy)benzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
Agaricus bisporus
-
IC50 above 0.2 mM, in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.2
5-(4-(2-hydroxyethoxy)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
Agaricus bisporus
-
IC50 above 0.2 mM, in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.1128
5-(4-(2-methoxyethoxy)benzyl)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
Agaricus bisporus
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.2
5-(4-(2-methoxyethoxy)benzyl)pyrimidine-2,4,6(1H,3H,5H)-trione
Agaricus bisporus
-
IC50 above 0.2 mM, in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.02843
5-(4-(2-methoxyethoxy)benzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
Agaricus bisporus
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.07542
5-(4-(2-methoxyethoxy)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
Agaricus bisporus
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.2
5-(4-(4-methoxy)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
Agaricus bisporus
-
IC50 above 0.2 mM, in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.2
5-(4-(4-methoxybutoxy)benzyl)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
Agaricus bisporus
-
IC50 above 0.2 mM, in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.2
5-(4-(4-methoxyethoxy)benzyl)pyrimidine-2,4,6(1H,3H,5H)-trione
Agaricus bisporus
-
IC50 above 0.2 mM, in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.0778
5-(4-(4-methoxyethoxy)benzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
Agaricus bisporus
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.07002
5-(4-hydroxybenzyl)-2-thioxo-dihydropyrimidine-4,6(1H,5H)-dione
Agaricus bisporus
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.2
5-(4-hydroxybenzyl)pyrimidine-2,4,6(1H,3H,5H)-trione
Agaricus bisporus
-
IC50 above 0.2 mM, in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.01449
5-(4-hydroxybenzylidene)-2-thioxo-dihydropyrimidine-4,6(1H,5H)-dione
Agaricus bisporus
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.01398
5-(4-hydroxybenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
Agaricus bisporus
-
in 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.8), at 25°C
0.0514 - 0.0516
5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one
0.98
5-hydroxymethyl-2-furfural
Agaricus bisporus
-
-
0.0422
6-hydroxy-2H-pyran-3-carbaldehyde
Agaricus bisporus
-
-
1.567
6-hydroxy-3-(4'-hydroxyphenyl)coumarin
Agaricus bisporus
-
in 0.067 M phosphoric acid buffer (pH 6.8), at 25°C
0.193
6-hydroxyapigenin
Agaricus bisporus
-
-
0.182
6-hydroxygalangin
Agaricus bisporus
-
-
0.124
6-hydroxykaempferol
Agaricus bisporus
-
-
0.1
7-hydroxy-3-(4-hydroxyphenyl)-2H-chromen-2-one
Agaricus bisporus
-
IC50 above 0.1 mM, in 0.067 M phosphoric acid buffer (pH 6.8), at 25°C
0.0442 - 0.2
8-isoprenyl-5'-geranyl-5,7,2',4'-tetrahydroxy flavanone
0.312
8-O-methyltianmushanol
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 37°C
0.2
9-hydroxy-4-methoxypsoralen
Agaricus bisporus
-
-
0.00078
Ac-KSRFR
Agaricus bisporus
-
pH 6.8, 25°C
0.00081
Ac-KSSFR
Agaricus bisporus
-
pH 6.8, 25°C
0.00075
Ac-RSRFK
Agaricus bisporus
-
pH 6.8, 25°C
0.00029
Ac-RSRFS
Agaricus bisporus
-
pH 6.8, 25°C
0.85
acetophenone
Agaricus bisporus
-
-
0.03
Agaritine
Agaricus bisporus
-
-
0.0985 - 0.2
albafuran A
0.1
aloesin
Agaricus bisporus
-
-
12
alpha-picolyl heptyl amine
Agaricus bisporus
-
IC50 above 12 mM, in 0.1 M phosphate buffer (pH 6.5)
12
alpha-picolyl pentyl amine
Agaricus bisporus
-
IC50 above 12 mM, in 0.1 M phosphate buffer (pH 6.5)
12
alpha-picolyl propyl amine
Agaricus bisporus
-
IC50 above 12 mM, in 0.1 M phosphate buffer (pH 6.5)
0.0075 - 0.028
ammonium tetramolybdate
0.0001
anacardic acid
Agaricus bisporus
-
-
0.38
Anisaldehyde
Agaricus bisporus
-
-
0.68
Anisic acid
Agaricus bisporus
-
-
0.04 - 548
arbutin
0.006577
arjungenin
Agaricus bisporus
-
-
0.001
arjunilic acid
Agaricus bisporus
-
-
0.001545
artocarpanone
Agaricus bisporus
-
-
0.0005254
artocarpesin
Agaricus bisporus
-
-
0.2009
artocarpetin
Agaricus bisporus
-
-
0.04793
artocarpfuranol
Agaricus bisporus
-
-
0.273
baicalein
Agaricus bisporus
-
-
0.0011
bayogenin
Agaricus bisporus
-
-
0.8
benzaldehyde
Agaricus bisporus
-
-
1
benzoic acid
Agaricus bisporus
-
-
0.6 - 2.8
benzylacetone
1.5 - 2
benzylideneacetone
6.3
beta-arbutin
Agaricus bisporus
-
-
9.5
beta-picolyl heptyl amine
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 6.5)
12
beta-picolyl pentyl amine
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 6.5)
12
beta-picolyl propyl amine
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 6.5)
1.44
betulin
Agaricus bisporus
-
-
0.00214
betulinic acid
Agaricus bisporus
-
-
25
Bromoacetate
Agaricus bisporus
-
-
0.06028
brosimone I
Agaricus bisporus
-
-
0.00043 - 0.00057
broussonin C
0.35
bufobutanoic acid
Agaricus bisporus
-
IC50 above 0.35 mM, in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.4 - 1
caffeic acid
0.0089
campestrol
Agaricus bisporus
-
isolated from Trifolium balansae, NMR structure identification, IC50: 0.00890 mM
0.09438
carpachromene
Agaricus bisporus
-
-
0.02 - 7
cefazolin
0.13 - 0.21
cefodizime
1
Cinnamic acid
0.1666
cudraflavone B
Agaricus bisporus
-
-
0.26
cumic acid
Agaricus bisporus
-
-
0.05
cuminaldehyde
Agaricus bisporus
-
-
0.06873
cyanomaclurin
Agaricus bisporus
-
-
0.092
cyclomorusin
Agaricus bisporus
-
for monophenolase activity
0.58
D-ascorbic acid-6-p-hydroxybenzoic acid ester
Agaricus bisporus
-
in 50 mM phosphate buffer (pH 6.8) for 10 min at 25°C
0.194
daedalin A
Agaricus bisporus
-
-
0.017
davanol
Agaricus bisporus
-
competitive, IC50: 0.017 mM
1
dihydro-4-coumaric acid
Agaricus bisporus
-
IC50 above 1.0 mM in 0.1 M phosphate buffer (pH 7.0), at 37°C
1
dihydro-4-methoxycinnamic acid
Agaricus bisporus
-
IC50 above 1.0 mM in 0.1 M phosphate buffer (pH 7.0), at 37°C
1
dihydrocaffeic acid
Agaricus bisporus
-
IC50 above 1.0 mM in 0.1 M phosphate buffer (pH 7.0), at 37°C
1
dihydrocinnamic acid
Agaricus bisporus
-
IC50 above 1.0 mM in 0.1 M phosphate buffer (pH 7.0), at 37°C
1
dihydroferulic acid
Agaricus bisporus
-
IC50 above 1.0 mM in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.1957
dihydroisoferulic acid
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.01035
dihydromorin
Agaricus bisporus
-
-
1
dihydrosinapic acid
Agaricus bisporus
-
IC50 above 1.0 mM in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.034
dillapiole
Agaricus bisporus
-
competitive, IC50: 0.034 mM
0.0655
epigallocatechin gallate
Agaricus bisporus
-
-
0.00312
erythrodiol
Agaricus bisporus
-
-
0.21 - 0.225
esculetin
0.0363
ethyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 6.8), at 37°C
0.11
farnesic acid
Agaricus bisporus
-
-
1
ferulic acid
Agaricus bisporus
-
IC50 above 1.0 mM in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.00179 - 0.00748
flemichin D
0.00101 - 0.0195
fleminchalcone A
0.0184 - 0.0326
fleminchalcone B
0.00128 - 0.00522
fleminchalcone C
6.8
gamma-picolyl heptyl amine
Agaricus bisporus
-
-
4.2
gamma-picolyl pentyl amine
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 6.5)
5.8
gamma-picolyl propyl amine
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 6.5)
1.62
geranial
Agaricus bisporus
-
-
0.01858
glabridin
Agaricus bisporus
-
in 20 mM phosphate buffer (pH 6.8), at 25°C
16.08
hesperidin
Agaricus bisporus
-
-
3.35 - 13.2
hexanoic acid
0.01348 - 1.09
hydroquinone
0.0006628
isoartocarpesin
Agaricus bisporus
-
-
0.1149
isoferulic acid
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.23 - 0.262
kaempferol
0.0155 - 0.0228
kazinol C
0.1647 - 0.2
kazinol D
0.00096 - 0.0017
kazinol F
0.0179 - 0.0269
kazinol S
0.1031 - 0.2
kazinol T
3.6
KFEKKFEK
Agaricus bisporus
-
in 0.67 mM potassium phosphate buffer (pH 6.8), at 37°C
0.00496 - 0.0204
khonklonginol H
0.0074 - 0.68
kojic acid
0.88
kuraridinol
Agaricus bisporus
-
potent tyrosinase inhibitory activity
0.0001 - 8.6
kurarinol
0.0022
kurarinone
Agaricus bisporus
-
-
0.1318 - 0.2
kuwanon A
0.135
kuwanon C
Agaricus bisporus
-
for monophenolase activity
0.0475 - 0.2
kuwanon E
0.2
kuwanon U
0.00368
L-mimosine
2.73
L-Pro-L-Leu-Gly
Agaricus bisporus
-
in 0.67 mM potassium phosphate buffer (pH 6.8), at 37°C
2.24
lupeol
Agaricus bisporus
-
-
0.0112 - 0.0841
lupinifolin
0.0017
maslinic acid
Agaricus bisporus
-
-
0.04 - 0.047
Methimazole
0.349
methyl (Z)-2-((E)-2-(((E)-(5-bromothiophen-2-yl)methylene)hydrazono)-4-oxothiazolidin-5-ylidene)acetate
Agaricus bisporus
-
pH 6.8, 25°C, substrate L-DOPA
0.101
methyl (Z)-2-((E)-2-(((E)-4-(dimethylamino)benzylidene)hydrazono)-4-oxothiazolidin-5-ylidene)acetate
Agaricus bisporus
-
pH 6.8, 25°C, substrate L-DOPA
0.002345
methyl arjunolate
Agaricus bisporus
-
-
0.0074 - 0.0646
moracin M
0.1603 - 0.2
moracin N
0.0825 - 0.2
moracinoside M
2.32
morin
Agaricus bisporus
-
competitive, IC50: 2.320 mM
0.088
mormin
Agaricus bisporus
-
for monophenolase activity
0.25
morusin
Agaricus bisporus
-
for monophenolase activity
0.2
morusinol
0.027
N',N'''-benzene-1,4-diylbis(1-hydroxyurea)
Agaricus bisporus
-
-
0.1772
N'-(hydrazinylcarbonyl)-4-hydroxybenzohydrazide
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.996
N'-(hydrazinylcarbonyl)naphthalene-2-carbohydrazide
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 25°C
0.17 - 0.23
N,N-unsubstituted selenourea derivatives
Agaricus bisporus
-
55.5% inhibition at 0.2 mM, IC50: 0.17-0.23 mM
-
0.029
N-(2,4-dihydroxybenzyl)-2,4-dihydroxybenzamide
Agaricus bisporus
-
IC50: 0.029 mM
0.017
N-(2,4-dihydroxybenzyl)-3,4,5-trihydroxybenzamide
Agaricus bisporus
-
IC50: 0.017 mM
0.011
N-(2,4-dihydroxybenzyl)-3,4-dihydroxybenzamide
Agaricus bisporus
-
IC50: 0.011 mM
0.0022
N-(2,4-dihydroxybenzyl)-3,5-dihydroxybenzamide
Agaricus bisporus
-
IC50: 0.0022 mM
1.66
N-benzyl-2,4-dihydroxybenzamide
Agaricus bisporus
-
IC50: 1.660 mM
0.78
N-benzyl-3,4,5-trihydroxybenzamide
Agaricus bisporus
-
IC50: 0.780 mM
2
N-benzyl-3,4-dihydroxybenzamide
Agaricus bisporus
-
IC50: 2.0 mM
0.7
N-benzyl-3,5-dihydroxybenzamide
Agaricus bisporus
-
IC50: 0.700 mM
1.99
N-benzylamide
Agaricus bisporus
-
IC50: 1.990 mM
0.17
N-hydroxy-N-(phenylcarbamoyl)acetamide
Agaricus bisporus
-
-
0.0018
N-phenylthiourea
Agaricus bisporus
-
-
0.1274 - 0.2
neocyclomorusin
1.49
nobiletin
Agaricus bisporus
-
-
0.0012 - 0.4647
norartocarpetin
2.15 - 3.06
octanoic acid
0.4
octyl (2E)-3-(5-hydroxy-4-oxo-4H-pyran-2-yl)prop-2-enoate
Agaricus bisporus
-
in 0.1 M phosphate buffer (pH 6.8), at 37°C
0.001 - 0.0012
oxyresveratrol
0.2 - 3.65
p-coumaric acid
0.3506
p-hydroxybenzyl alcohol
Agaricus bisporus
-
-
0.17
Phenylthiourea
Agaricus bisporus
-
IC50: 0.17 mM
0.346
procyanidin B1
Agaricus bisporus
-
-
0.07
quercetin
Agaricus bisporus
-
competitive, IC50: 0.070 mM
0.123
RADSRADC
Agaricus bisporus
-
in 0.67 mM potassium phosphate buffer (pH 6.8), at 37°C
0.652 - 1.125
resorcinol
0.0008 - 0.0012
Salicylhydroxamic acid
0.35
serotonin
Agaricus bisporus
-
IC50 above 0.35 mM, in 0.1 M phosphate buffer (pH 7.0), at 37°C
8
SFLLRN
Agaricus bisporus
-
in 0.67 mM potassium phosphate buffer (pH 6.8), at 37°C
1
Sinapic acid
Agaricus bisporus
-
IC50 above 1.0 mM in 0.1 M phosphate buffer (pH 7.0), at 37°C
0.0047
sophoraflavanone G
Agaricus bisporus
-
-
1.13
soyacerebroside I
Agaricus bisporus
-
-
0.0005733 - 0.0265
steppogenin
0.00239
stigmast-5-ene-3beta,26-diol
Agaricus bisporus
-
isolated from Trifolium balansae, NMR structure identification, IC50: 0.00239 mM
0.00525
stigmast-5-ene-3beta-ol
Agaricus bisporus
-
isolated from Trifolium balansae, NMR structure identification, IC50: 0.00525 mM
2
Thiosemicarbazide
0.358
tianmushanol
Agaricus bisporus
-
in 50 mM Na-phosphate buffer (pH 6.8), at 37°C
0.85
trans-cinnamaldehyde
Agaricus bisporus
-
-
0.14 - 2.3
trans-geranic acid
506.8
trifolirhizin
Agaricus bisporus
-
moderate inhibitory activity
0.0004 - 0.0017
tropolone
0.42
umbelliferone
Agaricus bisporus
-
in 0.067 M phosphoric acid buffer (pH 6.8), at 25°C
0.04
YRSRKYSSWY
Agaricus bisporus
-
in 0.67 mM potassium phosphate buffer (pH 6.8), at 37°C
0.00697
[1,1''-biphenyl]-3-carboxylic acid
Agaricus bisporus
-
pH 6.5, 30°C
0.1
[1,1'-biphenyl]-2-carboxylic acid
Agaricus bisporus
-
above, pH 6.5, 30°C
0.06324
[1,1'-biphenyl]-4-carboxylic acid
Agaricus bisporus
-
pH 6.5, 30°C
0.0753
[2-(furan-2-ylmethylene-hydrazono)-4-oxo-thiazolidin-5-ylidene]-acetic acid methyl ester
Agaricus bisporus
-
pH 6.8, 25°C, substrate L-DOPA
0.142
[2-[(4-benzyloxy-benzylidene)-hydrazono]-4-oxo-thiazolidin-5-ylidene]-acetic acid methyl ester
Agaricus bisporus
-
pH 6.8, 25°C, substrate L-DOPA
0.0032
[4-oxo-2-(pyridin-4-ylmethylene-hydrazono)-thiazolidin-5-ylidene]-acetic acid methyl ester
Agaricus bisporus
-
pH 6.8, 25°C, substrate L-DOPA
additional information
additional information
-
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
1.22
purified recombinant enzyme, substrate L-tyrosine, pH 6.8, 25°C
1700
Sigma mushroom tyrosinase (SMT, crude powder, lot 105k7026) (units/mg of powder), WMT and SMT show different levels of tyrosinase activity per milligram of powder
3000
-
mushroom tyrosinase 3000/mg
498
Worthington mushroom tyrosinase (WMT, crude powder, lot 33H6588Q) (units/mg of powder), WMT and SMT show different levels of tyrosinase activity per milligram of powder
52.19
-
purified native enzyme, pH 7.0, 35°C
64.2
-
tyrosine hydroxylation
8300
-
mushroom tyrosinase 8300 U/mg
additional information
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5.3
-
PPO activity shows two pH optima, at 5.3 and 7.0 at 25°C when pyrogallol is used as the substrate
6 - 7
pH-optimum
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
4 - 10
-
activity range, profile overview
4.5 - 7
-
assay at pH 4.5.and 7.0
4.5 - 9
-
the activity of mushrom tyrosinase is studied in this pH range
5 - 10
the proteolytically activated mushroom tyrosinase shows over 50% of its maximal activity in the range of pH 5-10 and accepts a wide range of substrates including mono- and diphenols, flavonols and chalcones
5.5 - 8
-
inhibition of the diphenolase activity of mushroom tyrosinase over the pH range of 5.5-8.0 is studied. The observed inhibitory activity at pH 6.8. and 5.8 is approximately 10times and 100times greater than at pH 7.8
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
30 - 40
-
cross-linked enzyme aggregate
37
-
enzyme assay at
45
-
optimal reaction temperature for the enzyme in aqueous solution
50
-
optimal reaction temperature of the enzyme in 1-butyl-3-methylimidazolium hexafluorophosphate should be higher than 50°C, which is higher than the one for the enzyme in chloroform (20°C) and in aqueous solution (45°C)
55
-
soluble enzyme
TEMPERATURE RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
25 - 70
-
determination of the temperature stability of mushroom PPO
30 - 65
-
activity range, profile overview
pI VALUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
membrane-bound
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
evolution
-
tyrosinases are widespread in nature and act on a range of substrates
malfunction
-
excessive accumulation of melanin, due to the overexpression of the enzyme, leads to skin disorders such as age spots, freckles and malignant melanoma
metabolism
physiological function
additional information
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
PPO1_AGABI
568
0
63898
Swiss-Prot
other Location (Reliability: 4)
PPO2_AGABI
556
0
63927
Swiss-Prot
other Location (Reliability: 5)
PPO3_AGABI
576
0
66267
Swiss-Prot
other Location (Reliability: 2)
PPO4_AGABI
611
0
68318
Swiss-Prot
other Location (Reliability: 3)
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
110000
dynamic light scattering
118600 - 119500
-
beta-tyrosinase, sedimentation equilibrium
118800
-
gamma-tyrosinase, sedimentation equilibrium
120000
13400
134000
-
2 * 134000 + 2 * 43000, alpha2beta2 subunit composition
14000
2 * 45000 + 2 * 14000, SDS-PAGE
30000
-
4 * 30000, SDS-PAGE
43000
45000
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
heterotetramer
tetramer
additional information
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
proteolytic modification
the latent recombinant tyrosinase 4 enzyme can be activated by limited proteolysis with proteinase K, which cleaves the polypeptide chain after K382, only one The latent enzyme can amino acid before the main in-vivo activation site. Activation by proteinase K is more efficient compared to activation by trypsin
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
crystal structure analysis
-
hanging drop vapor diffusion method, using 10% (w/v) PEG 4000, 100 mM sodium acetate buffer pH 4.6 and 5 mM HoCl3
purified recombinant detagged latent tyrosinase, X-ray diffraction structure determination and analysis. In contrast to the crystals obtained with the enzyme isolated from the natural source which contains two different chains in the asymmetric unit (one latent and one active protein) and does only form in the presence of sodium hexatungstotellurate(VI) (Na6[TeW6O24] x 22 H2O), the recombinant enzyme forms crystals containing exclusively the latent tyrosinase. The latent chain of AbPPO4 isolated from Agaricus bisporu, PDB ID 4OUA, chain B, is aligned with the heterologously produced protein, PDB ID 5M6B, chain B
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5 - 10
in the pH-range from pH 5-10 the enzyme retains more than 50% of its activity
746472
5 - 8
-
the soluble enzyme shows half-lives of about 11 min, 35 min, and 3 min at pH 5.0-5.5, pH 6.0, and pH 6.5-8.0, respectively. The cross-linked enzyme aggregates show half-lives of about 11 min, 35 min, and 1 min at pH 5.0-5.5, pH 6.0, and pH 6.5-8.0, respectively
712534
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
30 - 65
-
purified native enzyme, about 35% of tyrosinase activity is still present at 55°C, but activity is lost at 65°C
35
-
the enzyme is not very heat stable, and its activity decreases when incubated at the temperatures higher than 35°C
40 - 60
-
the soluble enzyme shows half-lives of about 120 min, 30 min, and 10 min at 40, 50, and 60°C, respectively. The cross-linked enzyme aggregates show half-lives of about 320 min, 120 min, and 30 min at 40, 50, and 60°C, respectively
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
4°C, purified recombinant detagged enzyme, after 1 year of storage in 10 mM HEPES, pH 7.5, the enzyme is still active
PPO is relatively stable at -15°C for 44 days.
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
a 2fold purification in monophenolase and diphenolase activities is achieved by ammonium sulfate fractionation
-
alpha-, beta-, gamma- and delta tyrosinase, ammonium sulfate, hydroxylapatite
-
ammonium sulfate, DEAE-Sepharose, Phenyl-Sepharose, hydroxyapatite
-
by Duckworth and Coleman's procedure, but with two additional chromatographic steps
-
enzyme is extracted into 100 ml phosphate buffer (50 mM, pH 6.0) and crudely purified from fresh mushrooms (50 g) and then adsorbed onto celite (2 g) and dried in a vacuum oven
-
native enzyme 16.36fold by ammonium sulfate fractionation, dialysis, gel filtration, and anion exchange chromatography
-
partial purification of tyrosinase
recombinant GST-tagged enzyme from Escherichia coli by glutathione affinity chromatography, followed by tag cleavage through specific protease HRV 3 C
Superdex S-200 filtration
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
Agaricus bisporus possesses genes coding for six different tyrosinases (AbPPO1-AbPPO6), full-length gene AbPPO4 (1-565) DNA and amino acid sequence determination and analysis, recombinant expression of N-terminally GST-tagged tyrosinase 4 from gene AbPPO4 containing 23 mutations in Escherichia coli as latent enzyme
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
biotechnology
-
prepared CSG1.0 possesses macropores which permit fluid to pass through, and micropores in the skeleton of macropores which increase the specific surface area for ligands to immobilize on. These hybrid membranes could be used to immobilize ligands for affinity sorption. Advanced application of the hybrid membranes can be developed for application in tissue engineering, enzyme immobilization, catalysts support, fuel cells, etc.
drug development
environmental protection
-
the integration of cyanide hydratase and tyrosinase open up new possibilities for the bioremediation of wastewaters with complex pollution. Almost full degradation of free cyanide in the model and the real coking wastewaters is achieved by using a recombinant cyanide hydratase in the first step. The removal of cyanide, a strong inhibitor of tyrosinase, enables an effective degradation of phenols by this enzyme in the second step. Phenol is completely removed from a real coking wastewater within 20 h and cresols are removed by 66% under the same conditions
food industry
-
inhibitors have good potential as antibrowning agents to be applied in real food systems
medicine
-
tyrosinase purified from Agaricus bisporus is a potential source for medical applications
pharmacology
additional information
-
tyrosinase is an important enzyme in the food industry because during the processing of fruits and vegetables any wounding may cause cell disruption and lead to quinone formation, the enzymatic browning implies a considerable economic loss in the commercial production of fruits and vegetables, the appearance of food and beverages may be affected, as may the taste and its nutritional value, often decreasing the quality of the final product
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Nelson, R.M.; Mason, H.S.
Tyrosinase (mushroom)
Methods Enzymol.
17A
626-632
1970
Agaricus bisporus
-
Manually annotated by BRENDA team
Vanneste, W.H.; Zuberb hler, A.
Copper-containing oxygenases
Mol. Mech. Oxygen Activ. (Hayaishi, O., ed.) Academic Press, New York
New York
371-404
1974
Agaricus bisporus, Mammalia, Mushroom
-
Manually annotated by BRENDA team
Strothkamp, K.; Jolly, R.; Mason, H.S.
Quaternary structure of mushroom tyrosinase
Biochem. Biophys. Res. Commun.
70
519-524
1976
Agaricus bisporus
Manually annotated by BRENDA team
Naish-Byfield, S.; Cooksey, C.J.; Riley, P.A.
Oxidation of monohydric phenol substrates by tyrosinase: effect of dithiothreitol on kinetics
Biochem. J.
304
155-162
1994
Agaricus bisporus
-
Manually annotated by BRENDA team
Rescigno, A.; Sanjust, E.; Soddu, G.; Rinaldi, A.C.; Sollai, F.; Curreli, N.; Rinaldi, A.
Effect of 3-hydroxyanthranilic acid on mushroom tyrosinase activity
Biochim. Biophys. Acta
1384
268-276
1998
Agaricus bisporus
Manually annotated by BRENDA team
Espin, J.C.; Jolivet, S.; Wichers, H.J.
Kinetic Study of the Oxidation of g-L-Glutaminyl-4-hydroxybenzene Catalyzed by Mushroom (Agaricus bisporus) Tyrosinase
J. Agric. Food Chem.
47
3495-3502
1999
Agaricus bisporus
Manually annotated by BRENDA team
Espin, J.C.; Varon, R.; Fenoll, L.G.; Gilabert, M.A.; Garcia-Ruiz, P.A.; Tudela, J.; Garcia-Canovas, F.
Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase
Eur. J. Biochem.
267
1270-1279
2000
BRENDA: Agaricus bisporus
Textmining: Electron
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Shi, Y.L.; Benzie, I.F.F.; Buswell, J.A.
Role of tyrosinase in the genoprotective effect of the edible mushroom, Agaricus bisporus
Life Sci.
70
1595-1608
2002
BRENDA: Agaricus bisporus
Textmining: Homo sapiens
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Ha, S.K.; Koketsu, M.; Lee, K.; Choi, S.Y.; Park, J.H.; Ishihara, H.; Kim, S.Y.
Inhibition of tyrosinase activity by N,N-unsubstituted selenourea derivatives
Biol. Pharm. Bull.
28
838840
2005
Agaricus bisporus
Manually annotated by BRENDA team
Cho, S.J.; Roh, J.S.; Sun, W.S.; Kim, S.H.; Park, K.D.
N-Benzylbenzamides: A new class of potent tyrosinase inhibitors
Bioorg. Med. Chem. Lett.
16
2682-2684
2006
Agaricus bisporus
Manually annotated by BRENDA team
Kim, Y.J.; Uyama, H.
Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future
Cell. Mol. Life Sci.
62
1707-1723
2005
BRENDA: Agaricus bisporus, Beta vulgaris, Homo sapiens, Neurospora crassa, Streptomyces glaucescens
Textmining: Melasma
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Gandia-Herrero, F.; Escribano, J.; Garcia-Carmona, F.
Characterization of the activity of tyrosinase on betaxanthins derived from (R)-amino acids
J. Agric. Food Chem.
53
9207-9212
2005
Agaricus bisporus
Manually annotated by BRENDA team
Garcia-Molina, F.; Penalver, M.J.; Fenoll, L.G.; Rodriguez-Lopez, J.N.; Varon, R.; Gracia-Canovas, F.; Tudela, J.
Kinetic study of monophenol and o-diphenol binding to oxytyrosinase
J. Mol. Catal. B
32
185-192
2005
Agaricus bisporus, Neurospora crassa, Streptomyces antibioticus, Streptomyces glaucescens
-
Manually annotated by BRENDA team
Sabudak, T.; Khan, M.T.H.; Choudhury, M.I.; Oksuz, S.
Potent tyrosinase inhibitors from Trifolium balansae
Nat. Prod. Res.
20
665-670
2006
BRENDA: Agaricus bisporus
Textmining: Trifolium balansae
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Saboury, A.A.; Alijanianzadeh, M.; Mansoori-Torshizi, H.
The role of alkyl chain length in the inhibitory effect n-alkyl xanthates on mushroom tyrosinase activities
Acta Biochim. Pol.
54
183-191
2007
Agaricus bisporus
Manually annotated by BRENDA team
Munoz-Munoz, J.L.; Garcia-Molina, F.; Garcia-Ruiz, P.A.; Molina-Alarcon, M.; Tudela, J.; Garcia-Canovas, F.; Rodriguez-Lopez, J.N.
Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism
Biochem. J.
416
431-440
2008
Agaricus bisporus
Manually annotated by BRENDA team
Liu, S.H.; Pan, I.H.; Chu, I.M.
Inhibitory effect of p-hydroxybenzyl alcohol on tyrosinase activity and melanogenesis
Biol. Pharm. Bull.
30
1135-1139
2007
Agaricus bisporus, Mus musculus
Manually annotated by BRENDA team
Miyazawa, M.; Tamura, N.
Inhibitory compound of tyrosinase activity from the sprout of Polygonum hydropiper L. (Benitade)
Biol. Pharm. Bull.
30
595-597
2007
BRENDA: Agaricus bisporus
Textmining: Persicaria hydropiper
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Hyun, S.K.; Lee, W.H.; Jeong, d.a..M.; Kim, Y.; Choi, J.S.
Inhibitory effects of kurarinol, kuraridinol, and trifolirhizin from Sophora flavescens on tyrosinase and melanin synthesis
Biol. Pharm. Bull.
31
154-158
2008
BRENDA: Agaricus bisporus
Textmining: Sophora flavescens, Sophora
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Tsuchiya, T.; Yamada, K.; Minoura, K.; Miyamoto, K.; Usami, Y.; Kobayashi, T.; Hamada-Sato, N.; Imada, C.; Tsujibo, H.
Purification and determination of the chemical structure of the tyrosinase inhibitor produced by Trichoderma viride strain H1-7 from a marine environment
Biol. Pharm. Bull.
31
1618-1620
2008
BRENDA: Agaricus bisporus
Textmining: Trichoderma viride, Homo sapiens, Metazoa, Trichoderma koningii
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Karioti, A.; Protopappa, A.; Megoulas, N.; Skaltsa, H.
Identification of tyrosinase inhibitors from Marrubium velutinum and Marrubium cylleneum
Bioorg. Med. Chem.
15
2708-2714
2007
BRENDA: Agaricus bisporus
Textmining: Marrubium cylleneum, Marrubium velutinum, Metazoa
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Liu, J.; Yi, W.; Wan, Y.; Ma, L.; Song, H.
1-(1-Arylethylidene)thiosemicarbazide derivatives: a new class of tyrosinase inhibitors
Bioorg. Med. Chem.
16
1096-1102
2008
Agaricus bisporus
Manually annotated by BRENDA team
Criton, M.; Le Mellay-Hamon, V.
Analogues of N-hydroxy-N-phenylthiourea and N-hydroxy-N-phenylurea as inhibitors of tyrosinase and melanin formation
Bioorg. Med. Chem. Lett.
18
3607-3610
2008
Agaricus bisporus
Manually annotated by BRENDA team
Oozeki, H.; Tajima, R.; Nihei, K.I.
Molecular design of potent tyrosinase inhibitors having the bibenzyl skeleton
Bioorg. Med. Chem. Lett.
18
5252-5254
2008
BRENDA: Agaricus bisporus
Textmining: Chlorophytum arundinaceum
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Morimura, K.; Yamazaki, C.; Hattori, Y.; Makabe, H.; Kamo, T.; Hirota, M.
A tyrosinase inhibitor, Daedalin A, from mycelial culture of Daedalea dickinsii
Biosci. Biotechnol. Biochem.
71
2837-2840
2007
BRENDA: Agaricus bisporus
Textmining: Daedalea dickinsii
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Munoz-Munoz, J.L.; Garcia-Molina, F.; Varon, R.; Rodriguez-Lopez, J.N.; Garcia-Canovas, F.; Tudela, J.
Kinetic characterization of the oxidation of esculetin by polyphenol oxidase and peroxidase
Biosci. Biotechnol. Biochem.
71
390-396
2007
BRENDA: Agaricus bisporus
Textmining: Armoracia rusticana
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Yang, Z.; Yue, Y.J.; Xing, M.
Tyrosinase activity in ionic liquids
Biotechnol. Lett.
30
153-158
2008
Agaricus bisporus
Manually annotated by BRENDA team
Nesterov, A.; Zhao, J.; Minter, D.; Hertel, C.; Ma, W.; Abeysinghe, P.; Hong, M.; Jia, Q.
1-(2,4-dihydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)propane, a novel tyrosinase inhibitor with strong depigmenting effects
Chem. Pharm. Bull.
56
1292-1296
2008
BRENDA: Agaricus bisporus, Mus musculus
Textmining: Homo sapiens, Dianella ensifolia, plant
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Liu, J.; Cao, R.; Yi, W.; Ma, C.; Wan, Y.; Zhou, B.; Ma, L.; Song, H.
A class of potent tyrosinase inhibitors: Alkylidenethiosemicarbazide compounds
Eur. J. Med. Chem.
44
1773-1778
2009
Agaricus bisporus
Manually annotated by BRENDA team
Gouzi, H.; Benmansour, A.
Partial purification and characterization of polyphenol oxidase extracted from Agaricus bisporus (J.E.Lange) Imbach
Int. J. Chem. React. Eng.
5
A76
2007
Agaricus bisporus
-
Manually annotated by BRENDA team
Flurkey, A.; Cooksey, J.; Reddy, A.; Spoonmore, K.; Rescigno, A.; Inlow, J.; Flurkey, W.H.
Enzyme, protein, carbohydrate, and phenolic contaminants in commercial tyrosinase preparations: potential problems affecting tyrosinase activity and inhibition studies
J. Agric. Food Chem.
56
4760-4768
2008
Agaricus bisporus (O42713), Agaricus bisporus
Manually annotated by BRENDA team
Masuda, T.; Odaka, Y.; Ogawa, N.; Nakamoto, K.; Kuninaga, H.
Identification of geranic acid, a tyrosinase inhibitor in lemongrass (Cymbopogon citratus)
J. Agric. Food Chem.
56
597-601
2008
Agaricus bisporus
Manually annotated by BRENDA team
Selinheimo, E.; NiEidhin, D.; Steffensen, C.; Nielsen, J.; Lomascolo, A.; Halaouli, S.; Record, E.; OBeirne, D.; Buchert, J.; Kruus, K.
Comparison of the characteristics of fungal and plant tyrosinases
J. Biotechnol.
130
471-480
2007
Malus domestica, Trametes sanguinea, Trichoderma reesei, Agaricus bisporus (O42713), Solanum tuberosum (Q41428)
Manually annotated by BRENDA team
Okunji, C.; Komarnytsky, S.; Fear, G.; Poulev, A.; Ribnicky, D.M.; Awachie, P.I.; Ito, Y.; Raskin, I.
Preparative isolation and identification of tyrosinase inhibitors from the seeds of Garcinia kola by high-speed counter-current chromatography
J. Chromatogr. A
1151
45-50
2007
BRENDA: Agaricus bisporus
Textmining: Garcinia kola
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Chang, T.S.; Tseng, M.; Ding, H.Y.; Shou-Ku Tai, S.
Isolation and characterization of Streptomyces hiroshimensis strain TI-C3 with anti-tyrosinase activity
J. Cosmet. Sci.
59
33-40
2008
Agaricus bisporus
Manually annotated by BRENDA team
Alijanianzadeh, M.; Saboury, A.A.; Mansuri-Torshizi, H.; Haghbeen, K.; Moosavi-Movahedi, A.A.
The inhibitory effect of some new synthesized xanthates on mushroom tyrosinase activities
J. Enzyme Inhib. Med. Chem.
22
239-246
2007
Agaricus bisporus
Manually annotated by BRENDA team
Garcia Molina, F.; Munoz, J.L.; Varon, R.; Rodriguez Lopez, J.N.; Garcia Canovas, F.; Tudela, J.
Effect of tetrahydropteridines on the monophenolase and diphenolase activities of tyrosinase
J. Enzyme Inhib. Med. Chem.
22
383-394
2007
Agaricus bisporus
Manually annotated by BRENDA team
Lu, Y.H.; Lin-Tao, Y.H.; Wang, Z.T.; Wei, D.Z.; Xiang, H.B.
Mechanism and inhibitory effect of galangin and its flavonoid mixture from Alpinia officinarum on mushroom tyrosinase and B16 murine melanoma cells
J. Enzyme Inhib. Med. Chem.
22
433-438
2007
BRENDA: Agaricus bisporus
Textmining: Mus musculus, Alpinia officinarum
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Zhang, C.; Lu, Y.; Tao, L.; Tao, X.; Su, X.; Wei, D.
Tyrosinase inhibitory effects and inhibition mechanisms of nobiletin and hesperidin from citrus peel crude extracts
J. Enzyme Inhib. Med. Chem.
22
91-98
2007
BRENDA: Agaricus bisporus
Textmining: Citrus, Mus musculus
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Shiino, M.; Watanabe, Y.; Umezawa, K.
pH-dependent inhibition of mushroom tyrosinase by N-substituted N-nitrosohydroxylamines
J. Enzyme Inhib. Med. Chem.
23
16-20
2008
Agaricus bisporus
Manually annotated by BRENDA team
Guan, S.; Su, W.; Wang, N.; Li, P.; Wang, Y.
Effects of radix polygoni multiflori components on tyrosinase activity and melanogenesis
J. Enzyme Inhib. Med. Chem.
23
252-255
2008
BRENDA: Agaricus bisporus, Mus musculus
Textmining: Radix
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Ryu, Y.B.; Ha, T.J.; Curtis-Long, M.J.; Ryu, H.W.; Gal, S.W.; Park, K.H.
Inhibitory effects on mushroom tyrosinase by flavones from the stem barks of Morus lhou (S.) Koidz
J. Enzyme Inhib. Med. Chem.
23
922-930
2008
BRENDA: Agaricus bisporus
Textmining: Morus lhou, plant
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Momtaz, S.; Mapunya, B.M.; Houghton, P.J.; Edgerly, C.; Hussein, A.; Naidoo, S.; Lall, N.
Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening
J. Ethnopharmacol.
119
507-512
2008
BRENDA: Agaricus bisporus
Textmining: Sideroxylon inerme, Sideroxylon
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Chao, A.
Preparation of porous chitosan/GPTMS hybrid membrane and its application in affinity sorption for tyrosinase purification with Agaricus bisporus
J. Membr. Sci.
311
306-318
2008
Agaricus bisporus
-
Manually annotated by BRENDA team
Kim, D.S.; Lee, S.; Lee, H.K.; Park, S.H.; Ryoo, I.J.; Yoo, I.D.; Kwon, S.B.; Baek, K.J.; Na, J.I.; Park, K.C.
The hypopigmentary action of KI-063 (a new tyrosinase inhibitor) combined with terrein
J. Pharm. Pharmacol.
60
343-348
2008
Agaricus bisporus, Mus musculus
Manually annotated by BRENDA team
Zheng, Z.P.; Cheng, K.W.; To, J.T.; Li, H.; Wang, M.
Isolation of tyrosinase inhibitors from Artocarpus heterophyllus and use of its extract as antibrowning agent
Mol. Nutr. Food Res.
52
1530-1538
2008
BRENDA: Agaricus bisporus
Textmining: Artocarpus heterophyllus, Malus domestica
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Gao, H.; Nishida, J.; Saito, S.; Kawabata, J.
Inhibitory effects of 5,6,7-trihydroxyflavones on tyrosinase
Molecules
12
86-97
2007
Agaricus bisporus
Manually annotated by BRENDA team
Chien, C.C.; Tsai, M.L.; Chen, C.C.; Chang, S.J.; Tseng, C.H.
Effects on tyrosinase activity by the extracts of Ganoderma lucidum and related mushrooms
Mycopathologia
166
117-120
2008
BRENDA: Agaricus bisporus
Textmining: Ganoderma lucidum, Basidiomycota, Ganoderma, Cordyceps, Agaricus brasiliensis, Taiwanofungus camphoratus
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Thangasamy, T.; Sittadjody, S.; Lanza-Jacoby, S.; Wachsberger, P.R.; Limesand, K.H.; Burd, R.
Quercetin selectively inhibits bioreduction and enhances apoptosis in melanoma cells that overexpress tyrosinase
Nutr. Cancer
59
258-268
2007
Agaricus bisporus
Manually annotated by BRENDA team
Abdel-Halim, O.B.; Marzouk, A.M.; Mothana, R.; Awadh, N.
A new tyrosinase inhibitor from Crinum yemense as potential treatment for hyperpigmentation
Pharmazie
63
405-407
2008
BRENDA: Agaricus bisporus
Textmining: Crinum yemense
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Lin, Y.P.; Hsu, F.L.; Chen, C.S.; Chern, J.W.; Lee, M.H.
Constituents from the Formosan apple reduce tyrosinase activity in human epidermal melanocytes
Phytochemistry
68
1189-1199
2007
BRENDA: Agaricus bisporus, Homo sapiens
Textmining: Malus domestica, plant
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Ryu, Y.B.; Westwood, I.M.; Kang, N.S.; Kim, H.Y.; Kim, J.H.; Moon, Y.H.; Park, K.H.
Kurarinol, tyrosinase inhibitor isolated from the root of Sophora flavescens
Phytomedicine
15
612-618
2008
BRENDA: Agaricus bisporus
Textmining: Sophora flavescens, Firmicutes, Streptomyces bikiniensis
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Ullah, F.; Hussain, H.; Hussain, J.; Bukhari, I.A.; Khan, M.T.; Choudhary, M.I.; Gilani, A.H.; Ahmad, V.U.
Tyrosinase inhibitory pentacyclic triterpenes and analgesic and spasmolytic activities of methanol extracts of Rhododendron collettianum
Phytother. Res.
21
1076-1081
2007
BRENDA: Agaricus bisporus
Textmining: Rhododendron
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Parvez, S.; Kang, M.; Chung, H.S.; Bae, H.
Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries
Phytother. Res.
21
805-816
2007
BRENDA: Agaricus bisporus, Beta vulgaris, Neurospora crassa, Streptomyces glaucescens
Textmining: Metazoa
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Leu, Y.L.; Hwang, T.L.; Hu, J.W.; Fang, J.Y.
Anthraquinones from Polygonum cuspidatum as tyrosinase inhibitors for dermal use
Phytother. Res.
22
552-556
2008
BRENDA: Agaricus bisporus
Textmining: Polygonum cuspidatum
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Guan, S.; Su, W.; Wang, N.; Li, P.; Wang, Y.
A potent tyrosinase activator from Radix Polygoni multiflori and its melanogenesis stimulatory effect in B16 melanoma cells
Phytother. Res.
22
660-663
2008
BRENDA: Agaricus bisporus, Mus musculus
Textmining: Radix
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Magid, A.A.; Voutquenne-Nazabadioko, L.; Bontemps, G.; Litaudon, M.; Lavaud, C.
Tyrosinase inhibitors and sesquiterpene diglycosides from Guioa villosa
Planta Med.
74
55-60
2008
BRENDA: Agaricus bisporus
Textmining: Guioa villosa
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Jirawattanapong, W.; Saifah, E.; Patarapanich, C.
Synthesis of glabridin derivatives as tyrosinase inhibitors
Arch. Pharm. Res.
32
647-654
2009
BRENDA: Agaricus bisporus
Textmining: Sus scrofa
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Munoz-Munoz, J.L.; Garcia-Molina, F.; Garcia-Ruiz, P.A.; Varon, R.; Tudela, J.; Garcia-Canovas, F.; Rodriguez-Lopez, J.N.
Stereospecific inactivation of tyrosinase by L- and D-ascorbic acid
Biochim. Biophys. Acta
1794
244-253
2009
Agaricus bisporus
Manually annotated by BRENDA team
Le Mellay-Hamon, V.; Criton, M.
Phenylethylamide and phenylmethylamide derivatives as new tyrosinase inhibitors
Biol. Pharm. Bull.
32
301-303
2009
Agaricus bisporus
Manually annotated by BRENDA team
Yi, W.; Cao, R.; Wen, H.; Yan, Q.; Zhou, B.; Wan, Y.; Ma, L.; Song, H.
Synthesis and biological evaluation of helicid analogues as mushroom tyrosinase inhibitors
Bioorg. Med. Chem. Lett.
18
6490-6493
2008
Agaricus bisporus
Manually annotated by BRENDA team
Kang, S.S.; Kim, H.J.; Jin, C.; Lee, Y.S.
Synthesis of tyrosinase inhibitory (4-oxo-4H-pyran-2-yl)acrylic acid ester derivatives
Bioorg. Med. Chem. Lett.
19
188-191
2009
BRENDA: Agaricus bisporus
Textmining: Melasma
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Yi, W.; Cao, R.; Wen, H.; Yan, Q.; Zhou, B.; Ma, L.; Song, H.
Discovery of 4-functionalized phenyl-O-beta-D-glycosides as a new class of mushroom tyrosinase inhibitors
Bioorg. Med. Chem. Lett.
19
6157-6160
2009
Agaricus bisporus
Manually annotated by BRENDA team
Baek, Y.S.; Ryu, Y.B.; Curtis-Long, M.J.; Ha, T.J.; Rengasamy, R.; Yang, M.S.; Park, K.H.
Tyrosinase inhibitory effects of 1,3-diphenylpropanes from Broussonetia kazinoki
Bioorg. Med. Chem.
17
35-41
2009
BRENDA: Agaricus bisporus
Textmining: Broussonetia kazinoki
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Ng, L.T.; Ko, H.H.; Lu, T.M.
Potential antioxidants and tyrosinase inhibitors from synthetic polyphenolic deoxybenzoins
Bioorg. Med. Chem.
17
4360-4366
2009
Agaricus bisporus
Manually annotated by BRENDA team
Chiku, K.; Dohi, H.; Saito, A.; Ebise, H.; Kouzai, Y.; Shinoyama, H.; Nishida, Y.; Ando, A.
Enzymatic synthesis of 4-hydroxyphenyl beta-D-oligoxylosides and their notable tyrosinase inhibitory activity
Biosci. Biotechnol. Biochem.
73
1123-1128
2009
BRENDA: Agaricus bisporus
Textmining: Escherichia coli, Bacillus sp. (in: Bacteria)
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Yi, W.; Cao, R.H.; Chen, Z.Y.; Yu, L.; Ma, L.; Song, H.C.
Design, synthesis and biological evaluation of hydroxy- or methoxy-substituted phenylmethylenethiosemicarbazones as tyrosinase inhibitors
Chem. Pharm. Bull.
57
1273-1277
2009
Agaricus bisporus
Manually annotated by BRENDA team
Selinheimo, E.; Gasparetti, C.; Mattinen, M.; Steffensen, C.; Buchert, J.; Kruus, K.
Comparison of substrate specificity of tyrosinases from Trichoderma reesei and Agaricus bisporus
Enzyme Microb. Technol.
44
1-10
2009
Agaricus bisporus, Trichoderma reesei
-
Manually annotated by BRENDA team
Lee, K.H.; Ab Aziz, F.H.; Syahida, A.; Abas, F.; Shaari, K.; Israf, D.A.; Lajis, N.H.
Synthesis and biological evaluation of curcumin-like diarylpentanoid analogues for anti-inflammatory, antioxidant and anti-tyrosinase activities
Eur. J. Med. Chem.
44
3195-3200
2009
Agaricus bisporus
Manually annotated by BRENDA team
Perry, M.J.; Mendes, E.; Simplicio, A.L.; Coelho, A.; Soares, R.V.; Iley, J.; Moreira, R.; Francisco, A.P.
Dopamine- and tyramine-based derivatives of triazenes: activation by tyrosinase and implications for prodrug design
Eur. J. Med. Chem.
44
3228-3234
2009
BRENDA: Agaricus bisporus
Textmining: Homo sapiens
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Yan, Q.; Cao, R.; Yi, W.; Chen, Z.; Wen, H.; Ma, L.; Song, H.
Inhibitory effects of 5-benzylidene barbiturate derivatives on mushroom tyrosinase and their antibacterial activities
Eur. J. Med. Chem.
44
4235-4243
2009
BRENDA: Agaricus bisporus
Textmining: Staphylococcus aureus
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Yi, W.; Wu, X.; Cao, R.; Song, H.; Ma, L.
Biological evaluations of novel vitamin C esters as mushroom tyrosinase inhibitors and antioxidants
Food Chem.
117
381-386
2009
Agaricus bisporus
Manually annotated by BRENDA team
Munoz-Munoz, J.L.; Garcia-Molina, F.; Garcia-Molina, M.; Tudela, J.; Garcia-Canovas, F.; Rodriguez-Lopez, J.N.
Ellagic acid: characterization as substrate of polyphenol oxidase
IUBMB Life
61
171-177
2009
Agaricus bisporus
Manually annotated by BRENDA team
Jeong, S.H.; Ryu, Y.B.; Curtis-Long, M.J.; Ryu, H.W.; Baek, Y.S.; Kang, J.E.; Lee, W.S.; Park, K.H.
Tyrosinase inhibitory polyphenols from roots of Morus lhou
J. Agric. Food Chem.
57
1195-1203
2009
BRENDA: Agaricus bisporus
Textmining: Morus lhou
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Bandyopadhyay, P.; Jha, S.; Imran Ali, S.K.
Picolyl alkyl amines as novel tyrosinase inhibitors: Influence of hydrophobicity and substitution
J. Agric. Food Chem.
57
9780-9786
2009
Agaricus bisporus
Manually annotated by BRENDA team
Gou, L.; Lu, Z.R.; Park, D.; Sang, H.; Shi, L.; Seong, J.; Bhak, J.; Park, Y.; Ren, Z.; Zou, F.
The effect of histidine residue modification on tyrosinase activity and conformation: Inhibition kinetics and computational prediction
J. Biomol. Struct. Dyn.
26
395-401
2008
Agaricus bisporus
Manually annotated by BRENDA team
Xue, C.B.; Luo, W.C.; Ding, Q.; Liu, S.Z.; Gao, X.X.
Quantitative structure-activity relationship studies of mushroom tyrosinase inhibitors
J. Comput. Aided Mol. Des.
22
299-309
2008
BRENDA: Agaricus bisporus
Textmining: Hexapoda, Metazoa, Indicator
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Zhuang, J.X.; Li, W.G.; Qiu, L.; Zhong, X.; Zhou, J.J.; Chen, Q.X.
Inhibitory effects of Cefazolin and Cefodizime on the activity of mushroom tyrosinase
J. Enzyme Inhib. Med. Chem.
24
251-256
2009
Agaricus bisporus
Manually annotated by BRENDA team
Abu Ubeid, A.; Zhao, L.; Wang, Y.; Hantash, B.M.
Short-sequence oligopeptides with inhibitory activity against mushroom and human tyrosinase
J. Invest. Dermatol.
129
2242-2249
2009
Agaricus bisporus, Homo sapiens
Manually annotated by BRENDA team
Wu, B.; Chen, J.; Qu, H.; Cheng, Y.
Complex sesquiterpenoids with tyrosinase inhibitory activity from the leaves of Chloranthus tianmushanensis
J. Nat. Prod.
71
877-880
2008
BRENDA: Agaricus bisporus
Textmining: Chloranthus
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Antonella Fai, A.F.; Corda, M.; Era, B.; Fadda, M.; Matos, M.; Quezada, E.; Santana, L.; Picciau, C.; Podda, G.; Delogu, G.
Tyrosinase inhibitor activity of coumarin-resveratrol hybrids
Molecules
14
2514-2520
2009
Agaricus bisporus
Manually annotated by BRENDA team
Nithitanakool, S.; Pithayanukul, P.; Bavovada, R.; Saparpakorn, P.
Molecular docking studies and anti-tyrosinase activity of Thai mango seed kernel extract
Molecules
14
257-265
2009
BRENDA: Agaricus bisporus
Textmining: Mangifera indica
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Nugroho, A.; Choi, J.K.; Park, J.H.; Lee, K.T.; Cha, B.C.; Park, H.J.
Two new flavonol glycosides from Lamium amplexicaule L. and their in vitro free radical scavenging and tyrosinase inhibitory activities
Planta Med.
75
364-366
2009
BRENDA: Agaricus bisporus
Textmining: Lamium amplexicaule
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Ismaya, W.T.; Rozeboom, H.J.; Schurink, M.; Boeriu, C.G.; Wichers, H.; Dijkstra, B.W.
Crystallization and preliminary X-ray crystallographic analysis of tyrosinase from the mushroom Agaricus bisporus
Acta Crystallogr. Sect. F
67
575-578
2011
Agaricus bisporus (O42713), Agaricus bisporus
Manually annotated by BRENDA team
Guo, Y.J.; Pan, Z.Z.; Chen, C.Q.; Hu, Y.H.; Liu, F.J.; Shi, Y.; Yan, J.H.; Chen, Q.X.
Inhibitory effects of fatty acids on the activity of mushroom tyrosinase
Appl. Biochem. Biotechnol.
162
1564-1573
2010
Agaricus bisporus
Manually annotated by BRENDA team
Takahashi, T.; Miyazawa, M.
Synthesis and structure-activity relationships of phenylpropanoid amides of serotonin on tyrosinase inhibition
Bioorg. Med. Chem. Lett.
21
1983-1986
2011
Agaricus bisporus
Manually annotated by BRENDA team
Ghani, U.; Ullah, N.
New potent inhibitors of tyrosinase: novel clues to binding of 1,3,4-thiadiazole-2(3H)-thiones, 1,3,4-oxadiazole-2(3H)-thiones, 4-amino-1,2,4-triazole-5(4H)-thiones, and substituted hydrazides to the dicopper active site
Bioorg. Med. Chem.
18
4042-4048
2010
BRENDA: Agaricus bisporus
Textmining: Solanum tuberosum
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Chiari, M.E.; Vera, D.M.; Palacios, S.M.; Carpinella, M.C.
Tyrosinase inhibitory activity of a 6-isoprenoid-substituted flavanone isolated from Dalea elegans
Bioorg. Med. Chem.
19
3474-3482
2011
BRENDA: Agaricus bisporus
Textmining: Dalea, Developayella elegans, plant
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Li, Z.C.; Chen, L.H.; Yu, X.J.; Hu, Y.H.; Song, K.K.; Zhou, X.W.; Chen, Q.X.
Inhibition kinetics of chlorobenzaldehyde thiosemicarbazones on mushroom tyrosinase
J. Agric. Food Chem.
58
12537-12540
2010
Agaricus bisporus
Manually annotated by BRENDA team
Xu, D.Y.; Yang, Y.; Yang, Z.
Activity and stability of cross-linked tyrosinase aggregates in aqueous and nonaqueous media
J. Biotechnol.
152
30-36
2011
Agaricus bisporus
Manually annotated by BRENDA team
Amin, E.; Saboury, A.; Mansuri-Torshizi, H.; Moosavi-Movahedi, A.
Potent inhibitory effects of benzyl and p-xylidine-bis dithiocarbamate sodium salts on activities of mushroom tyrosinase
J. Enzyme Inhib. Med. Chem.
25
272-281
2010
Agaricus bisporus
Manually annotated by BRENDA team
Takahashi, T.; Miyazawa, M.
Tyrosinase inhibitory activities of cinnamic acid analogues
Pharmazie
65
913-918
2010
Agaricus bisporus
Manually annotated by BRENDA team
Munoz-Munoz, J.L.; Berna, J.; Garcia-Molina, M.d.e.l..M.; Garcia-Molina, F.; Garcia-Ruiz, P.A.; Varon, R.; Rodriguez-Lopez, J.N.; Garcia-Canovas, F.
Hydroxylation of p-substituted phenols by tyrosinase: further insight into the mechanism of tyrosinase activity
Biochem. Biophys. Res. Commun.
424
228-233
2012
BRENDA: Agaricus bisporus
Textmining: Transformation
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Wang, Y.; Curtis-Long, M.; Lee, B.; Yuk, H.; Kim, D.; Tan, X.; Park, K.
Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots
Bioorg. Med. Chem.
22
1115-1120
2014
BRENDA: Agaricus bisporus
Textmining: Flemingia philippinensis, plant
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Lai, X.; Soler-Lopez, M.; Ismaya, W.; Wichers, H.; Dijkstra, B.
Crystal structure of recombinant tyrosinase-binding protein MtaL at 1.35% resolution
Acta Crystallogr. Sect. F
72
244-250
2016
Agaricus bisporus (C7FF04), Agaricus bisporus
Manually annotated by BRENDA team
Liu, D.M.; Yang, J.L.; Ha, W.; Chen, J.; Shi, Y.P.
Kinetics and inhibition study of tyrosinase by pressure mediated microanalysis
Anal. Biochem.
525
54-59
2017
Agaricus bisporus
Manually annotated by BRENDA team
Hu, J.J.; Bai, X.L.; Liu, Y.M.; Liao, X.
Functionalized carbon quantum dots with dopamine for tyrosinase activity analysis
Anal. Chim. Acta
995
99-105
2017
BRENDA: Agaricus bisporus
Textmining: Electron
Manually annotated by BRENDA teamFull Reference ENzyme DAta
Jantakee, K.; Tragoolpua, Y.
Activities of different types of Thai honey on pathogenic bacteria causing skin diseases, tyrosinase enzyme and generating free radicals
Biol. Res.
48
4-4
2015
BRENDA: Agaricus bisporus
Textmining: Bacteria, Apoidea
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Ramsden, C.A.; Riley, P.A.
Tyrosinase the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation
Bioorg. Med. Chem.
22
2388-2395
2014
Agaricus bisporus
Manually annotated by BRENDA team
Ortiz-Ruiz, C.V.; Berna, J.; Garcia-Molina, M.d.e.l. .M.; Tudela, J.; Tomas, V.; Garcia-Canovas, F.
Identification of p-hydroxybenzyl alcohol, tyrosol, phloretin and its derivate phloridzin as tyrosinase substrates
Bioorg. Med. Chem.
23
3738-3746
2015
Agaricus bisporus
Manually annotated by BRENDA team
Ashraf, Z.; Rafiq, M.; Seo, S.Y.; Babar, M.M.; Zaidi, N.U.
Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase
Bioorg. Med. Chem.
23
5870-5880
2015
BRENDA: Agaricus bisporus
Textmining: Transformation
Manually annotated by BRENDA teamFull Reference ENzyme DAta
Garcia-Jimenez, A.; Teruel-Puche, J.A.; Berna, J.; Rodriguez-Lopez, J.N.; Tudela, J.; Garcia-Ruiz, P.A.; Garcia-Canovas, F.
Characterization of the action of tyrosinase on resorcinols
Bioorg. Med. Chem.
24
4434-4443
2016
Agaricus bisporus
Manually annotated by BRENDA team
Wang, R.; Chai, W.M.; Yang, Q.; Wei, M.K.; Peng, Y.
2-(4-Fluorophenyl)-quinazolin-4(3H)-one as a novel tyrosinase inhibitor Synthesis, inhibitory activity, and mechanism
Bioorg. Med. Chem.
24
4620-4625
2016
Agaricus bisporus
Manually annotated by BRENDA team
Channar, P.A.; Saeed, A.; Larik, F.A.; Rafiq, M.; Ashraf, Z.; Jabeen, F.; Fattah, T.A.
Synthesis, computational studies and enzyme inhibitory kinetics of substituted methyl[(2-(4-dimethylamino-benzylidene)-hydrazono)-4-oxo-thiazolidin-5-ylidene]acetates as mushroom tyrosinase inhibitors
Bioorg. Med. Chem.
25
5929-5938
2017
Agaricus bisporus
Manually annotated by BRENDA team
Oyama, T.; Yoshimori, A.; Takahashi, S.; Yamamoto, T.; Sato, A.; Kamiya, T.; Abe, H.; Abe, T.; Tanuma, S.I.
Structural insight into the active site of mushroom tyrosinase using phenylbenzoic acid derivatives
Bioorg. Med. Chem. Lett.
27
2868-2872
2017
Agaricus bisporus
Manually annotated by BRENDA team
Radhakrishnan, S.K.; Shimmon, R.G.; Conn, C.; Baker, A.T.
Inhibitory kinetics of azachalcones and their oximes on mushroom tyrosinase a facile solid-state synthesis
Chem. Biodivers.
13
531-538
2016
Agaricus bisporus
Manually annotated by BRENDA team
Abbas, Q.; Raza, H.; Hassan, M.; Phull, A.R.; Kim, S.J.; Seo, S.Y.
Acetazolamide inhibits the level of tyrosinase and melanin an enzyme kinetic, in vitro, in vivo, and in silico studies
Chem. Biodivers.
14
e1700117
2017
Agaricus bisporus, Danio rerio, Homo sapiens
Manually annotated by BRENDA team
Brasil, E.M.; Canavieira, L.M.; Cardoso, E.T.C.; Silva, E.O.; Lameira, J.; Nascimento, J.L.M.; Eifler-Lima, V.L.; Macchi, B.M.; Sriram, D.; Bernhardt, P.V.; Silva, J.R.A.; Williams, C.M.; Alves, C.N.
Inhibition of tyrosinase by 4H-chromene analogs Synthesis, kinetic studies, and computational analysis
Chem. Biol. Drug Des.
90
804-810
2017
Agaricus bisporus
Manually annotated by BRENDA team
Zaidi, K.U.; Ali, A.S.; Ali, S.A.
Purification and characterization of melanogenic enzyme tyrosinase from button mushroom
Enzyme Res.
2014
120739
2014
BRENDA: Agaricus bisporus
Textmining: Homo sapiens, Dialysis
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Nokinsee, D.; Shank, L.; Lee, V.S.; Nimmanpipug, P.
Estimation of inhibitory effect against tyrosinase activity through homology modeling and molecular docking
Enzyme Res.
2015
262364
2015
Agaricus bisporus, Homo sapiens (P14679), Homo sapiens
Manually annotated by BRENDA team
Larik, F.A.; Saeed, A.; Channar, P.A.; Muqadar, U.; Abbas, Q.; Hassan, M.; Seo, S.Y.; Bolte, M.
Design, synthesis, kinetic mechanism and molecular docking studies of novel 1-pentanoyl-3-arylthioureas as inhibitors of mushroom tyrosinase and free radical scavengers
Eur. J. Med. Chem.
141
273-281
2017
Agaricus bisporus
Manually annotated by BRENDA team
Gou, L.; Lee, J.; Hao, H.; Park, Y.D.; Zhan, Y.; Lue, Z.R.
The effect of oxaloacetic acid on tyrosinase activity and structure Integration of inhibition kinetics with docking simulation
Int. J. Biol. Macromol.
101
59-66
2017
Agaricus bisporus
Manually annotated by BRENDA team
Hu, Y.H.; Chen, Q.X.; Cui, Y.; Gao, H.J.; Xu, L.; Yu, X.Y.; Wang, Y.; Yan, C.L.; Wang, Q.
4-Hydroxy cinnamic acid as mushroom preservation anti-tyrosinase activity kinetics and application
Int. J. Biol. Macromol.
86
489-495
2016
Agaricus bisporus
Manually annotated by BRENDA team
del Mar Garcia-Molina, M.; Munoz-Munoz, J.L.; Berna, J.; Garcia-Ruiz, P.A.; Rodriguez-Lopez, J.N.; Garcia-Canovas, F.
Catalysis and inactivation of tyrosinase in its action on hydroxyhydroquinone
IUBMB Life
66
122-127
2014
Agaricus bisporus
Manually annotated by BRENDA team
Ortiz-Ruiz, C.V.; Maria-Solano, M.A.; Garcia-Molina, M.d.e.l. .M.; Varon, R.; Tudela, J.; Tomas, V.; Garcia-Canovas, F.
Kinetic characterization of substrate-analogous inhibitors of tyrosinase
IUBMB Life
67
757-767
2015
Agaricus bisporus
Manually annotated by BRENDA team
Ortiz-Ruiz, C.V.; Ballesta de Los Santos, M.; Berna, J.; Fenoll, J.; Garcia-Ruiz, P.A.; Tudela, J.; Garcia-Canovas, F.
Kinetic characterization of oxyresveratrol as a tyrosinase substrate
IUBMB Life
67
828-836
2015
Agaricus bisporus
Manually annotated by BRENDA team
Patil, S.; Sistla, S.; Jadhav, J.
Screening of inhibitors for mushroom tyrosinase using surface plasmon resonance
J. Agric. Food Chem.
62
11594-11601
2014
Agaricus bisporus
Manually annotated by BRENDA team
Asthana, S.; Zucca, P.; Vargiu, A.V.; Sanjust, E.; Ruggerone, P.; Rescigno, A.
Structure-activity relationship study of hydroxycoumarins and mushroom tyrosinase
J. Agric. Food Chem.
63
7236-7244
2015
Agaricus bisporus
Manually annotated by BRENDA team
Chai, W.M.; Wei, M.K.; Wang, R.; Deng, R.G.; Zou, Z.R.; Peng, Y.Y.
Avocado proanthocyanidins as a source of tyrosinase inhibitors structure characterization, inhibitory activity, and mechanism
J. Agric. Food Chem.
63
7381-7387
2015
BRENDA: Agaricus bisporus
Textmining: Persea americana
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Liu, X.; Jia, Y.L.; Chen, J.W.; Liang, G.; Guo, H.Y.; Hu, Y.H.; Shi, Y.; Zhou, H.T.; Chen, Q.X.
Inhibition effects of benzylideneacetone, benzylacetone, and 4-phenyl-2-butanol on the activity of mushroom tyrosinase
J. Biosci. Bioeng.
119
275-279
2015
Agaricus bisporus
Manually annotated by BRENDA team
Lima, C.R.; Silva, J.R.; de Tassia Carvalho Cardoso, E.; Silva, E.O.; Lameira, J.; do Nascimento, J.L.; do Socorro Barros Brasil, D.; Alves, C.N.
Combined kinetic studies and computational analysis on kojic acid analogous as tyrosinase inhibitors
Molecules
19
9591-9605
2014
BRENDA: Agaricus bisporus
Textmining: Metazoa, Mammalia
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Chai, W.M.; Wang, R.; Wei, M.K.; Zou, Z.R.; Deng, R.G.; Liu, W.S.; Peng, Y.Y.
Proanthocyanidins extracted from Rhododendron pulchrum leaves as source of tyrosinase inhibitors structure, activity, and mechanism
PLoS ONE
10
e0145483
2015
BRENDA: Agaricus bisporus
Textmining: Rhododendron x pulchrum, Rhaponticum pulchrum
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Garcia-Jimenez, A.; Teruel-Puche, J.A.; Berna, J.; Rodriguez-Lopez, J.N.; Tudela, J.; Garcia-Canovas, F.
Action of tyrosinase on alpha and beta-arbutin A kinetic study
PLoS ONE
12
e0177330
2017
Agaricus bisporus
Manually annotated by BRENDA team
Ashraf, Z.; Rafiq, M.; Nadeem, H.; Hassan, M.; Afzal, S.; Waseem, M.; Afzal, K.; Latip, J.
Carvacrol derivatives as mushroom tyrosinase inhibitors; synthesis, kinetics mechanism and molecular docking studies
PLoS ONE
12
e0178069
2017
Agaricus bisporus (C7FF04)
Manually annotated by BRENDA team
Garcia-Jimenez, A.; Teruel-Puche, J.A.; Garcia-Ruiz, P.A.; Saura-Sanmartin, A.; Berna, J.; Garcia-Canovas, F.; Rodriguez-Lopez, J.N.
Structural and kinetic considerations on the catalysis of deoxyarbutin by tyrosinase
PLoS ONE
12
e0187845
2017
Agaricus bisporus (C7FF04)
Manually annotated by BRENDA team
Zheng, J.; Zhang, R.; Chen, Y.; Ye, X.; Chen, Q.; Shen, D.; Wang, Q.
Synthesis of caffeic acid ester morpholines and their activation effects on tyrosinase
Process Biochem.
62
91-98
2017
Agaricus bisporus, Homo sapiens (P14679)
-
Manually annotated by BRENDA team
Pretzler, M.; Bijelic, A.; Rompel, A.
Heterologous expression and characterization of functional mushroom tyrosinase (AbPPO4)
Sci. Rep.
7
1810
2017
BRENDA: Agaricus bisporus (C7FF05), Agaricus bisporus
Textmining: Escherichia coli
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Lien, C.Y.; Chen, C.Y.; Lai, S.T.; Chan, C.F.
Kinetics of mushroom tyrosinase and melanogenesis inhibition by N-acetyl-pentapeptides
ScientificWorldJournal
2014
409783
2014
Agaricus bisporus
Manually annotated by BRENDA team
Martinkova, L.; Chmatal, M.
The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters
Water Res.
102
90-95
2016
Agaricus bisporus
Manually annotated by BRENDA team
Ismaya, WT; Rozeboom, HJ; Weijn, A; Mes, JJ; Fusetti, F; Wichers, HJ; Dijkstra, BW
Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone.
Biochemistry
50
5477-86
2011
Agaricus bisporus
Automatic Mining of ENzyme DAta
Kampmann, M; Boll, S; Kossuch, J; Bielecki, J; Uhl, S; Kleiner, B; Wichmann, R
Efficient immobilization of mushroom tyrosinase utilizing whole cells from Agaricus bisporus and its application for degradation of bisphenol A.
Water Res
57C
295-303
2014
Agaricus bisporus
Automatic Mining of ENzyme DAta
Ismaya, WT; Efthyani, A; Retnoningrum, DS; Lai, X; Dijkstra, BW; Tjandrawinata, RR; Rachmawati, H
Study of response of Swiss Webster mice to light subunit of mushroom tyrosinase.
Biotech Histochem
1-6
2017
Mus sp., Clostridium botulinum, Agaricus bisporus
Automatic Mining of ENzyme DAta
Largeteau, ML; Latapy, C; Minvielle, N; Regnault-Roger, C; Savoie, JM
Expression of phenol oxidase and heat-shock genes during the development of Agaricus bisporus fruiting bodies, healthy and infected by Lecanicillium fungicola.
Appl Microbiol Biotechnol
2009
Agaricus bisporus, Lecanicillium fungicola, Verticillium
Automatic Mining of ENzyme DAta
Herter, S; Schmidt, M; Thompson, ML; Mikolasch, A; Schauer, F
Study of enzymatic properties of phenol oxidase from nitrogen-fixing Azotobacter chroococcum.
AMB Express
1
14
2011
Azotobacter chroococcum, Azotobacter, Agaricus bisporus, Trametes cinnabarina, bacterium
Automatic Mining of ENzyme DAta
Hildn, K; Mkel, MR; Lankinen, P; Lundell, T
Agaricus bisporus and related Agaricus species on lignocellulose: Production of manganese peroxidase and multicopper oxidases.
Fungal Genet Biol
2013
Agaricus, Agaricus bisporus, Taxonomy, Betula, Secale cereale, Triticum aestivum, Ankistrodesmus bernardii
Automatic Mining of ENzyme DAta
Boekelheide, K; Graham, DG; Mize, PD; Anderson, CW; Jeffs, PW
Synthesis of gamma-L-glutaminyl-[3,5-3H]4-hydroxybenzene and the study of reactions catalyzed by the tyrosinase of Agaricus bisporus.
J Biol Chem
254
12185-91
1979
Agaricus bisporus, Electron
Automatic Mining of ENzyme DAta
Menon, S; Fleck, RW; Yong, G; Strothkamp, KG
Benzoic acid inhibition of the alpha, beta, and gamma isozymes of Agaricus bisporus tyrosinase.
Arch Biochem Biophys
280
27-32
1990
Agaricus bisporus, Dialysis
Automatic Mining of ENzyme DAta
Khan, IA; Ali, R
Antigenicity, catalytic activity and conformation of Agaricus bisporus tyrosinase: interaction of conformation-directed antibodies with the native and irradiated enzyme.
J Biochem (Tokyo)
99
445-52
1986
Agaricus bisporus, Oryctolagus cuniculus
Automatic Mining of ENzyme DAta
Shah, MA; Khan, IA; Ali, R
Active site and conformation-directed photoinactivation of copper-dependent oxidoreductases: studies of pig kidney diamine oxidase and Agaricus bisporus tyrosinase.
J Radiat Res (Tokyo)
28
233-42
1987
Agaricus bisporus, Sus scrofa
Automatic Mining of ENzyme DAta
Boekelheide, K; Graham, DG; Mize, PD; Jeffs, PW
The metabolic pathway catalyzed by the tyrosinase of Agaricus bisporus.
J Biol Chem
255
4766-71
1980
Agaricus bisporus
Automatic Mining of ENzyme DAta
Fry, DC; Strothkamp, KG
Photoinactivation of agaricus bisporus tyrosinase: modification of the binuclear copper site.
Biochemistry
22
4949-53
1983
Agaricus bisporus, Neurospora, Electron
Automatic Mining of ENzyme DAta
Longa, SD; Ascone, I; Bianconi, A; Bonfigli, A; Castellano, AC; Zarivi, O; Miranda, M
The dinuclear copper site structure of Agaricus bisporus tyrosinase in solution probed by X-ray absorption spectroscopy.
J Biol Chem
271
21025-30
1996
Agaricus bisporus
Automatic Mining of ENzyme DAta
Wichers, HJ; Recourt, K; Hendriks, M; Ebbelaar, CE; Biancone, G; Hoeberichts, FA; Mooibroek, H; Soler-Rivas, C
Cloning, expression and characterisation of two tyrosinase cDNAs from Agaricus bisporus.
Appl Microbiol Biotechnol
61
336-41
2003
Agaricus bisporus, Agaricus bisporus U1, animal, plant
Automatic Mining of ENzyme DAta
LINDEBERG, G
Phenol oxidases of the cultivated mushroom Psalliota bispora f. albida.
Nature
166
739
1950
Agaricus bisporus, Bispora
Automatic Mining of ENzyme DAta
Kameda, E; Langone, MA; Coelho, MA
Tyrosinase extract from Agaricus bisporus mushroom and its in natura tissue for specific phenol removal.
Environ Technol
27
1209-15
2006
Agaricus bisporus, Fungi, Homo sapiens
Automatic Mining of ENzyme DAta
Silva, LM; Salgado, AM; Coelho, MA
Agaricus bisporus as a source of tyrosinase for phenol detection for future biosensor development.
Environ Technol
31
611-6
2010
Agaricus bisporus, Fungi
Automatic Mining of ENzyme DAta
Yin, SJ; Si, YX; Chen, YF; Qian, GY; L, ZR; Oh, S; Lee, J; Lee, S; Yang, JM; Lee, DY; Park, YD
Mixed-type inhibition of tyrosinase from Agaricus bisporus by terephthalic acid: computational simulations and kinetics.
Protein J
30
273-80
2011
Agaricus bisporus
Automatic Mining of ENzyme DAta
Gasparetti, C; Nordlund, E; Jnis, J; Buchert, J; Kruus, K
Extracellular tyrosinase from the fungus Trichoderma reesei shows product inhibition and different inhibition mechanism from the intracellular tyrosinase from Agaricus bisporus.
Biochim Biophys Acta
1824
598-607
2012
Agaricus bisporus, Trichoderma reesei
Automatic Mining of ENzyme DAta
Lezzi, C; Bleve, G; Spagnolo, S; Perrotta, C; Grieco, F
Production of recombinant Agaricus bisporus tyrosinase in Saccharomyces cerevisiae cells.
J Ind Microbiol Biotechnol
39
1875-80
2012
Saccharomyces cerevisiae, Agaricus bisporus
Automatic Mining of ENzyme DAta
Kuijpers, TF; Gruppen, H; Sforza, S; van Berkel, WJ; Vincken, JP
The antibrowning agent sulfite inactivates Agaricus bisporus tyrosinase through covalent modification of the copper-B site.
FEBS J
280
6184-95
2013
Agaricus bisporus
Automatic Mining of ENzyme DAta
Ioni??, E; St?nciuc, N; Aprodu, I; Rpeanu, G; Bahrim, G
pH-induced Structural Changes Of Tyrosinase From Agaricus Bisporus Using Fluorescence And In Silico Methods.
J Sci Food Agric
2014
Agaricus bisporus
Automatic Mining of ENzyme DAta
Ioni??, E; Aprodu, I; St?nciuc, N; Rpeanu, G; Bahrim, G
Advances in structure-function relationships of tyrosinase from Agaricus bisporus - Investigation on heat-induced conformational changes.
Food Chem
156
129-36
2014
Agaricus bisporus
Automatic Mining of ENzyme DAta
Martnkov, L; Kotik, M; Markov, E; Homolka, L
Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: A review.
Chemosphere
149
373-82
2016
Basidiomycota, Fungi, Aspergillus, Trametes versicolor, Agaricus bisporus, yeasts
Automatic Mining of ENzyme DAta
Markov, E; Kotik, M; K?enkov, A; Man, P; Haudecoeur, R; Boumendjel, A; Hardr, R; Mekmouche, Y; Courvoisier-Dezord, E; Rglier, M; Martnkov, L
Recombinant Tyrosinase from Polyporus arcularius: Overproduction in Escherichia coli, Characterization, and Use in a Study of Aurones as Tyrosinase Effectors.
J Agric Food Chem
2016
Escherichia coli, Polyporus arcularius, Camellia sinensis, Agaricus bisporus
Automatic Mining of ENzyme DAta
Maack, A; Pegard, A
Populus nigra (Salicaceae) absolute rich in phenolic acids, phenylpropanods and flavonoids as a new potent tyrosinase inhibitor.
Fitoterapia
111
95-101
2016
Populus nigra, Agaricus bisporus, Homo sapiens, Mus musculus
Automatic Mining of ENzyme DAta
Ismaya, WT; Tandrasasmita, OM; Sundari, S; Diana, ; Lai, X; Retnoningrum, DS; Dijkstra, BW; Tjandrawinata, RR; Rachmawati, H
The light subunit of mushroom Agaricus bisporus tyrosinase: Its biological characteristics and implications.
Int J Biol Macromol
102
308-314
2017
Agaricus bisporus, Clostridium botulinum, Clitocybe nebularis
Automatic Mining of ENzyme DAta
Lopez-Tejedor, D; Palomo, JM
Efficient purification of a highly active H-subunit of tyrosinase from Agaricus bisporus.
Protein Expr Purif
145
64-70
2018
Agaricus bisporus
Automatic Mining of ENzyme DAta
Tan, D; Zhao, JP; Ran, GQ; Zhu, XL; Ding, Y; Lu, XY
Highly efficient biocatalytic synthesis of L-DOPA using in situ immobilized Verrucomicrobium spinosum tyrosinase on polyhydroxyalkanoate nano-granules.
Appl Microbiol Biotechnol
103
5663-5678
2019
Verrucomicrobium spinosum, Agaricus bisporus
Automatic Mining of ENzyme DAta
Ishihara, A; Sugai, N; Bito, T; Ube, N; Ueno, K; Okuda, Y; Fukushima-Sakuno, E
Isolation of 6-hydroxy-L-tryptophan from the fruiting body of Lyophyllum decastes for use as a tyrosinase inhibitor.
Biosci Biotechnol Biochem
83
1800-1806
2019
Lyophyllum decastes, Agaricus bisporus
Automatic Mining of ENzyme DAta
Kaya, ED; Trkhan, A; Gr, F; Gr, B
A novel method for explaining the product inhibition mechanisms via molecular docking: inhibition studies for tyrosinase from Agaricus bisporus.
J Biomol Struct Dyn
1-14
2021
Agaricus bisporus, Homo sapiens, Indicator
Automatic Mining of ENzyme DAta
Lopez-Tejedor, D; Claveria-Gimeno, R; Velazquez-Campoy, A; Abian, O; Palomo, JM
In Vitro Antiviral Activity of Tyrosinase from Mushroom Agaricus bisporus against Hepatitis C Virus.
Pharmaceuticals (Basel)
14
2021
Agaricus bisporus, Hepacivirus C
Automatic Mining of ENzyme DAta
Ercili Cura D;Lille M;Partanen R;Kruus K;Buchert J;Lantto R
Effect of Trichoderma reesei tyrosinase on rheology and microstructure of acidified milk gels
International dairy journal
20
830-837
2010
Trichoderma reesei, Agaricus bisporus, Electron
Automatic Mining of ENzyme DAta
Falguera Vi?ctor;Gatius Ferran;Paga?n Jordi;Ibarz Albert
Kinetic analysis of melanogenesis by means of Agaricus bisporus tyrosinase
Food research international (Ottawa, Ont.)
43
1174-1179
2010
Agaricus bisporus
Automatic Mining of ENzyme DAta
Kanda S;Aimi T;Masumoto S;Nakano K;Kitamoto Y;Morinaga T
Photoregulated tyrosinase gene in Polyporus arcularius
Mycoscience
48
34-41
2007
Polyporus arcularius, Zea mays, Agaricus bisporus, Lentinula edodes
Automatic Mining of ENzyme DAta
Soler-Rivas C;Moller AC;Arpin N;Olivier JM;Wichers HJ
Induction of a tyrosinase mRNA in Agaricus bisporus upon treatment with a tolaasin preparation from Pseudomonas tolaasii.
Physiological and molecular plant pathology
58
95-99
2001
Agaricus bisporus, Pseudomonas tolaasii
Automatic Mining of ENzyme DAta
Soler-Rivas C;Arpin N;Olivier JM;Wichers HJ
Dicoloration and tyrosinase activity in Agaricus bisporus fruit bodies infected with various pathogens.
Mycological research
104
351-356
2000
Agaricus bisporus
Automatic Mining of ENzyme DAta
Soler-Rivas C;Jolivet S;Yuksel D;Arpin N;Oliver JM;Wichers HJ
Analysis of Agaricus bisporus tyrosinase activation and phenolics utilization during Pseudomonas tolaasii or tolaasin-induced discolouration.
Mycological research
102
1497-1502
1998
Agaricus bisporus, Pseudomonas tolaasii
Automatic Mining of ENzyme DAta
Soler-Rivas C;Arpin N;Olivier JM;Wichers HJ
Activation of tyrosinase in Agaricus bisporus strains following infection by Pseudomonas tolaasii or treatment with a tolaasin-containing preparation.
Mycological research
101
375-382
1997
Agaricus bisporus, Pseudomonas tolaasii
Automatic Mining of ENzyme DAta
Leeuwen Jvan;Wichers HJ
Tyrosinase activity and isoform composition in separate tissues during development of Agaricus bisporus fruit bodies.
Mycological research
103
413-418
1999
Agaricus bisporus
Automatic Mining of ENzyme DAta
Soler-Rivas C;Arpin N;Olivier JM;Wichers HJ
The effects of tolaasin, the toxin produced by Pseudomonas tolaasii on tyrosinase activities and the induction of browning in Agaricus bisporus fruiting bodies.
Physiological and molecular plant pathology
55
21-28
1999
Agaricus bisporus, Pseudomonas tolaasii
Automatic Mining of ENzyme DAta
Ismaya, WT; Tjandrawinata, RR; Dijkstra, BW; Beintema, JJ; Nabila, N; Rachmawati, H
Relationship of Agaricus bisporus mannose-binding protein to lectins with ?-trefoil fold.
Biochem Biophys Res Commun
527
1027-1032
2020
Agaricus bisporus, Actinomycetia, Clitocybe nebularis
Automatic Mining of ENzyme DAta
Mamoun, M; Moquet, F; Savoie, JM; Devesse, C; Ramos-Guedes-Lafargue, M; Olivier, JM; Arpin, N
Agaricus bisporus susceptibility to bacterial blotch in relation to environment: biochemical studies.
FEMS Microbiol Lett
181
131-6
1999
Agaricus bisporus
Automatic Mining of ENzyme DAta
García-Gil De Muñoz, F; Lanz-Mendoza, H; Hernández-Hernández, FC
Free radical generation during the activation of hemolymph prepared from the homopteran Dactylopius coccus.
Arch Insect Biochem Physiol
65
20-8
2007
Dactylopius coccus, Bacteria, Serratia marcescens, Micrococcus luteus, Agaricus bisporus, Coccus
Automatic Mining of ENzyme DAta
Inlow, JK
Homology models of four Agaricus bisporus tyrosinases.
Int J Biol Macromol
50
283-93
2012
Agaricus bisporus
Automatic Mining of ENzyme DAta
Radosavljevic, J; Nordlund, E; Mihajlovic, L; Krstic, M; Bohn, T; Buchert, J; Velickovic, TC; Smit, J
Sensitizing potential of enzymatically cross-linked peanut proteins in a mouse model of peanut allergy.
Mol Nutr Food Res
58
635-46
2014
Arachis hypogaea, Mus musculus, Agaricus bisporus, Trichoderma reesei
Automatic Mining of ENzyme DAta
Rachmawati, H; Sundari, S; Nabila, N; Tandrasasmita, OM; Amalia, R; Siahaan, TJ; Tjandrawinata, RR; Ismaya, WT
Orf239342 from the mushroom Agaricus bisporus is a mannose binding protein.
Biochem Biophys Res Commun
515
99-103
2019
Agaricus bisporus
Full Reference ENzyme DAta
Morosanova, MA; Fedorova, TV; Polyakova, AS; Morosanova, EI
Agaricus bisporus Crude Extract: Characterization and Analytical Application.
Molecules
25
2020
Agaricus bisporus, plant
Automatic Mining of ENzyme DAta
Verloop, AJ; Gruppen, H; Bisschop, R; Vincken, JP
Altering the phenolics profile of a green tea leaves extract using exogenous oxidases.
Food Chem
196
1197-206
2016
Camellia sinensis, Agaricus bisporus, Transformation
Automatic Mining of ENzyme DAta
Papaparaskeva-Petrides, C; Ioannides, C; Walker, R
Contribution of phenolic and quinonoid structures in the mutagenicity of the edible mushroom Agaricus bisporus.
Food Chem Toxicol
31
561-7
1993
Agaricus bisporus, Rattus, Salmonella enterica subsp. enterica serovar Typhimurium
Full Reference ENzyme DAta
Yong, G; Leone, C; Strothkamp, KG
Agaricus bisporus metapotyrosinase: preparation, characterization, and conversion to mixed-metal derivatives of the binuclear site.
Biochemistry
29
9684-90
1990
Agaricus bisporus, Dialysis
Automatic Mining of ENzyme DAta
Berna?, E; Jaworska, G
Onion juice and extracts for the inhibition of enzymatic browning mechanisms in frozen Agaricus bisporus mushrooms.
J Sci Food Agric
101
4099-4107
2021
Allium cepa, Agaricus bisporus, Indicator
Full Reference ENzyme DAta
Vogel, FS; Kemper, LA; Jeffs, PW; Cass, MW; Graham, DG
gamma-L-Glutaminyl-4-hydroxybenzene, an inducer of cryptobiosis in Agaricus bisporus and a source of specific metabolic inhibitors for melanogenic cells.
Cancer Res
37
1133-6
1977
Agaricus bisporus, Mus musculus, Mus sp.
Automatic Mining of ENzyme DAta
Moquet, F; Desmerger, C; Mamoun, M; Ramos-Guedes-Lafargue, M; Olivier, JM
A quantitative trait locus of Agaricus bisporus resistance to Pseudomonas tolaasii is closely linked to natural cap color.
Fungal Genet Biol
28
34-42
1999
Agaricus bisporus, Pseudomonas tolaasii, Bacteria
Full Reference ENzyme DAta
Ospina-Giraldo, MD; Collopy, PD; Romaine, CP; Royse, DJ
Classification of sequences expressed during the primordial and basidiome stages of the cultivated mushroom Agaricus bisporus.
Fungal Genet Biol
29
81-94
2000
Agaricus bisporus
Automatic Mining of ENzyme DAta
Mattinen, ML; Lantto, R; Selinheimo, E; Kruus, K; Buchert, J
Oxidation of peptides and proteins by Trichoderma reesei and Agaricus bisporus tyrosinases.
J Biotechnol
133
395-402
2008
Agaricus bisporus, Trichoderma reesei, Bos taurus
Automatic Mining of ENzyme DAta
Miyake, M; Yamamoto, S; Sano, O; Fujii, M; Kohno, K; Ushio, S; Iwaki, K; Fukuda, S
Inhibitory effects of 2-amino-3H-phenoxazin-3-one on the melanogenesis of murine B16 melanoma cell line.
Biosci Biotechnol Biochem
74
753-8
2010
Mus musculus, Agaricus bisporus
Automatic Mining of ENzyme DAta
Marín-Zamora, ME; Rojas-Melgarejo, F; García-Cánovas, F; García-Ruiz, PA
Production of o-diphenols by immobilized mushroom tyrosinase.
J Biotechnol
139
163-8
2009
Agaricus bisporus
Automatic Mining of ENzyme DAta
De Luca, L; German, MP; Fais, A; Pintus, F; Buemi, MR; Vittorio, S; Mirabile, S; Rapisarda, A; Gitto, R
Discovery of a new potent inhibitor of mushroom tyrosinase (Agaricus bisporus) containing 4-(4-hydroxyphenyl)piperazin-1-yl moiety.
Bioorg Med Chem
28
115497
2020
Agaricus bisporus
Automatic Mining of ENzyme DAta
Vittorio, S; Ielo, L; Mirabile, S; Gitto, R; Fais, A; Floris, S; Rapisarda, A; German, MP; De Luca, L
4-Fluorobenzylpiperazine-Containing Derivatives as Efficient Inhibitors of Mushroom Tyrosinase.
ChemMedChem
15
1757-1764
2020
Agaricus bisporus
Automatic Mining of ENzyme DAta
Espín, JC; Wichers, HJ
Kinetics of activation of latent mushroom (Agaricus bisporus) tyrosinase by benzyl alcohol.
J Agric Food Chem
47
3503-8
1999
Agaricus bisporus
Automatic Mining of ENzyme DAta
Zhang, X; van Leeuwen, J; Wichers, HJ; Flurkey, WH
Characterization of tyrosinase from the cap flesh of portabella mushrooms.
J Agric Food Chem
47
374-8
1999
Agaricus bisporus
Automatic Mining of ENzyme DAta
de Oliveira, KB; Mischiatti, KL; Fontana, JD; de Oliveira, BH
Tyrosinase immobilized enzyme reactor: development and evaluation.
J Chromatogr B Analyt Technol Biomed Life Sci
945-946
10-6
2014
Agaricus bisporus
Automatic Mining of ENzyme DAta
Mauracher, SG; Molitor, C; Al-Oweini, R; Kortz, U; Rompel, A
Crystallization and preliminary X-ray crystallographic analysis of latent isoform PPO4 mushroom (Agaricus bisporus) tyrosinase.
Acta Crystallogr F Struct Biol Commun
70
263-6
2014
Agaricus bisporus
Automatic Mining of ENzyme DAta
Ielo, L; Deri, B; German, MP; Vittorio, S; Mirabile, S; Gitto, R; Rapisarda, A; Ronsisvalle, S; Floris, S; Pazy, Y; Fais, A; Fishman, A; De Luca, L
Exploiting the 1-(4-fluorobenzyl)piperazine fragment for the development of novel tyrosinase inhibitors as anti-melanogenic agents: Design, synthesis, structural insights and biological profile.
Eur J Med Chem
178
380-389
2019
Agaricus bisporus
Full Reference ENzyme DAta
Chen, R; Shi, Y; Liu, G; Tao, Y; Fan, Y; Wang, X; Li, L
Spectroscopic studies and molecular docking on the interaction of delphinidin-3-O-galactoside with tyrosinase.
Biotechnol Appl Biochem
2021
Agaricus bisporus
Automatic Mining of ENzyme DAta
Mirabile, S; Vittorio, S; Paola German, M; Adornato, I; Ielo, L; Rapisarda, A; Gitto, R; Pintus, F; Fais, A; De Luca, L
Evaluation of 4-(4-Fluorobenzyl)piperazin-1-yl]-Based Compounds as Competitive Tyrosinase Inhibitors Endowed with Antimelanogenic Effects.
ChemMedChem
2021
Agaricus bisporus, Homo sapiens
Automatic Mining of ENzyme DAta
Moulishankar, A; Lakshmanan, K
Data on molecular docking of naturally occurring flavonoids with biologically important targets.
Data Brief
29
105243
2020
Pseudomonas aeruginosa, Streptococcus pneumoniae, Saccharomyces cerevisiae, Agaricus bisporus, Candida albicans, Homo sapiens
Automatic Mining of ENzyme DAta
Annunziata, F; Contente, ML; Pinna, C; Tamborini, L; Pinto, A
Biocatalyzed Flow Oxidation of Tyrosol to Hydroxytyrosol and Efficient Production of Their Acetate Esters.
Antioxidants (Basel)
10
2021
Mycolicibacterium smegmatis, Agaricus bisporus
Automatic Mining of ENzyme DAta
Walton, K; Coombs, MM; Walker, R; Ioannides, C
Bioactivation of mushroom hydrazines to mutagenic products by mammalian and fungal enzymes.
Mutat Res
381
131-9
1997
Agaricus bisporus, Rattus, Salmonella enterica subsp. enterica serovar Typhimurium
Automatic Mining of ENzyme DAta
Stadlmair, LF; Letzel, T; Gramann, J
Monitoring enzymatic degradation of emerging contaminants using a chip-based robotic nano-ESI-MS tool.
Anal Bioanal Chem
410
27-32
2018
Armoracia rusticana, Trametes versicolor, Agaricus bisporus
Automatic Mining of ENzyme DAta
Boekelheide, K; Graham, DG; Mize, PD; Koo, EH
Melanocytotoxicity and the mechanism of activation of gamma-L-glutaminyl-4-hydroxybenzene.
J Invest Dermatol
75
322-7
1980
Agaricus bisporus, Transformation
Automatic Mining of ENzyme DAta
Negishi, O; Negishi, Y; Aoyagi, Y; Sugahara, T; Ozawa, T
Mercaptan-capturing properties of mushrooms.
J Agric Food Chem
49
5509-14
2001
Agaricus bisporus, Suillus grevillei, Morchella esculenta, Agaricus campestris, Hypholoma sublateritium, Gyrodon lividus, Lyophyllum sykosporum, Leccinum scabrum, Russula nigricans, Boletus fraternus
Full Reference ENzyme DAta
Anghileri, A; Lantto, R; Kruus, K; Arosio, C; Freddi, G
Tyrosinase-catalyzed grafting of sericin peptides onto chitosan and production of protein-polysaccharide bioconjugates.
J Biotechnol
127
508-19
2007
Agaricus bisporus
Automatic Mining of ENzyme DAta
Partanen, R; Torkkeli, M; Hellman, M; Permi, P; Serimaa, R; Buchert, J; Mattinen, ML
Loosening of globular structure under alkaline pH affects accessibility of ?-lactoglobulin to tyrosinase-induced oxidation and subsequent cross-linking.
Enzyme Microb Technol
49
131-8
2011
Agaricus bisporus, Trichoderma reesei
Automatic Mining of ENzyme DAta
Riley, PA; Stratford, MR
Oxidative calcium release from catechol.
Bioorg Med Chem Lett
2015
Agaricus bisporus
Automatic Mining of ENzyme DAta
Saad, HM; Sim, KS; Tan, YS
Antimelanogenesis and Anti-Inflammatory Activity of Selected Culinary-Medicinal Mushrooms.
Int J Med Mushrooms
20
141-153
2018
Ganoderma lucidum, Agaricus bisporus, Hypsizygus marmoreus, Pleurotus floridanus
Full Reference ENzyme DAta
Maza, JC; Bader, DLV; Xiao, L; Marmelstein, AM; Brauer, DD; ElSohly, AM; Smith, MJ; Krska, SW; Parish, CA; Francis, MB
Enzymatic Modification of N-Terminal Proline Residues Using Phenol Derivatives.
J Am Chem Soc
2019
Saccharomyces cerevisiae, Agaricus bisporus
Automatic Mining of ENzyme DAta