Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

Reference on EC 1.14.15.3 - alkane 1-monooxygenase

Please use the Reference Search for a specific query.
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Peterson, J.A.; Kusunose, M.; Kusunose, E.; Coon, M.J.
Enzymatic omega-oxidation. II. Function of rubredoxin as the electron carrier in omega-hydroxylation
J. Biol. Chem.
242
4334-4340
1967
Pseudomonas oleovorans
Manually annotated by BRENDA team
Cardini, G.; Jurtshuk, P.
The enzymatic hydroxylation of n-octane by Corybacterium sp. strain 7E1C
J. Biol. Chem.
245
2789-2796
1970
Corynebacterium sp., Corynebacterium sp. 7E1C
Manually annotated by BRENDA team
McKenna, E.J.; Coon, M.J.
Enzymatic omega-oxidation. IV. Purification and properties of the omega-hydroxylase of Pseudomonas oleovorans
J. Biol. Chem.
245
3882-3889
1970
Pseudomonas oleovorans
Manually annotated by BRENDA team
Ruettiger, R.T.; Olson, S.T.; Boyer, R.F.; Coon, M.J.
Identification of the omega-hydroxylase of Pseudomonas oleovorans as a nonheme iron protein requiring phospholipid for catalytic activity
Biochem. Biophys. Res. Commun.
57
1011-1017
1974
Pseudomonas oleovorans
Manually annotated by BRENDA team
Ruettinger, R.T.; Griffith, G.R.; Coon, M.J.
Characterization of the omega-hydroxylase of Pseudomonas oleovorans as a nonheme iron protein
Arch. Biochem. Biophys.
183
528-537
1977
Pseudomonas oleovorans
Manually annotated by BRENDA team
Griffith, G.R.; Ruettinger, R.T.; McKenna, E.J.; Coon, M.J.
Fatty acid omega-hydroxylase (alkane hydroxylase) from Pseudomonas oleovorans
Methods Enzymol.
53
356-360
1978
Pseudomonas oleovorans
Manually annotated by BRENDA team
Matsuyama, H.; Nakahara, T.; Minoda, Y.
A new n-alkane oxidation system from Pseudomonas aeruginosa S7B1
Agric. Biol. Chem.
45
9-14
1981
Pseudomonas aeruginosa, Pseudomonas aeruginosa S7B1
-
Manually annotated by BRENDA team
Honeck, H.; Schunck, W.H.; Riege, P.; Muller, H.G.
The cytochrome P-450 alkane monooxygenase system of the yeast Lodderomyces elongisporus: purification and some properties of the NADPH-cytochrome P-450 reductase
Biochem. Biophys. Res. Commun.
106
1318-1324
1982
Lodderomyces elongisporus, Lodderomyces elongisporus EH15D
Manually annotated by BRENDA team
Schnuck, W.H.; Riege, P.; Honeck, H.; Muller, H.G.
Isolierung und Rekonstitution des Alkan-Monooxygenase-Systems der Hefe Lodderomyces elongisporus
Z. Allg. Mikrobiol.
23
653-660
1983
Lodderomyces elongisporus, Lodderomyces elongisporus EH15D
-
Manually annotated by BRENDA team
May, S.W.; Katopodis, A.G.
Hydrocarbon monooxygenase system of Pseudomonas oleovorans
Methods Enzymol.
188
3-9
1990
Pseudomonas oleovorans
Manually annotated by BRENDA team
Sawamura, A.; Kusunose, E.; Satouchi, K.; Kusunose, M.
Catalytic properties of rabbit kidney fatty acid omega-hydroxylase cytochrome P-450ka2 (CYP4A7)
Biochim. Biophys. Acta
1168
30-36
1993
Oryctolagus cuniculus
Manually annotated by BRENDA team
Palmer, C.N.A.; Richardson, T.H.; Griffin, K.J.; Hsu, M.H.; Muerhoff, A.S.; Clark, J.E.; Johnson, E.F.
Characterization of a cDNA encoding a human kidney cytochrome P-450 4A fatty acid omega-hydroxylase and the cognate enzyme expressed in Escherichia coli
Biochim. Biophys. Acta
1172
161-166
1993
Homo sapiens
Manually annotated by BRENDA team
Nakayama, N.; Shoun, H.
Fatty acid hydroxylase of the fungus Fusarium oxysporum is possibly a fused protein of cytochrome P-450 and its reductase
Biochem. Biophys. Res. Commun.
202
586-590
1994
Fusarium oxysporum
Manually annotated by BRENDA team
Scheller, U.; Zimmer, T.; Kaergel, E.; Schunck, W.H.
Characterization of the n-alkane and fatty acid hydroxylating cytochrome P450 forms 52A3 and 52A4
Arch. Biochem. Biophys.
328
245-254
1996
Candida maltosa, Candida maltosa EH15
Manually annotated by BRENDA team
Nakayama, N.; Takemae, A.; Shoun, H.
Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum
J. Biochem.
119
435-440
1996
Fusarium oxysporum, Fusarium oxysporum MT-811
Manually annotated by BRENDA team
Helvig, C.; Alayrac, C.; Mioskowski, C.; Koop, D.; Poullain, D.; Durst, F.; Salaun, J.P.
Suicide inactivation of cytochrome P450 by midchain and terminal acetylenes. A mechanistic study of inactivation of a plant lauric acid omega-hydroxylase
J. Biol. Chem.
272
414-421
1997
Oryctolagus cuniculus, Vicia sativa
Manually annotated by BRENDA team
Koike, K.; Kusunose, E.; Nishikawa, Y.; Ichihara, K.; Inagaki, S.; Takagi, H.; Kikuta, Y.; Kusunose, M.
Purification and characterization of rabbit small intestinal cytochromes P450 belonging to CYP2J and CYP4A subfamilies
Biochem. Biophys. Res. Commun.
232
643-647
1997
Oryctolagus cuniculus
Manually annotated by BRENDA team
Zimmer, T.; Iida, T.; Schunck, W.H.; Yoshida, Y.; Ohta, A.; Takagi, M.
Relation between evolutionary distance and enzymic properties among the members of the CYP52A subfamily of Candida maltosa
Biochem. Biophys. Res. Commun.
251
244-247
1998
Candida maltosa
Manually annotated by BRENDA team
Dierks, E.A.; Davis, S.C.; Ortiz de Montellano, P.R.
Glu-325 and Asp-328 are determinants of the cyp4A1 hydroxylation regiospecificity and resistance to inactivation by 1-aminobenzotriazole
Biochemistry
37
1839-1847
1998
Homo sapiens
Manually annotated by BRENDA team
Goswami, P.; Cooney, J.J.
Subcellular location of enzymes involved in oxidation of n-alkane by Cladosporium resinae
Appl. Microbiol. Biotechnol.
51
860-864
1999
Amorphotheca resinae, Amorphotheca resinae ATCC 22711
-
Manually annotated by BRENDA team
Chang, Y.T.; Loew, G.H.
Homology modeling and substrate binding study of human CYP4A11 enzyme
Proteins
34
403-415
1999
Homo sapiens
Manually annotated by BRENDA team
Hoch, U.; Zhang, Z.; Kroetz, D.L.; Ortiz de Montellano, P.R.
Structural determination of the substrate specificities and regioselectivities of the rat and human fatty acid omega-hydroxylases
Arch. Biochem. Biophys.
373
63-71
2000
Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Kawashima, H.; Naganuma, T.; Kusunose, E.; Kono, T.; Yasumoto, R.; Sugimura, K.; Kishimoto, T.
Human fatty acid omega-hydroxylase, CYP4A11: determination of complete genomic sequence and characterization of purified recombinant protein
Arch. Biochem. Biophys.
378
333-339
2000
Homo sapiens
Manually annotated by BRENDA team
Loughran, P.A.; Roman, L.J.; Aitken, A.E.; Miller, R.T.; Masters, B.S.
Identification of unique amino acids that modulate CYP4A7 activity
Biochemistry
39
15110-15120
2000
Oryctolagus cuniculus
Manually annotated by BRENDA team
Hamamura, N.; Yeager, C.M.; Arp, D.J.
Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8
Appl. Environ. Microbiol.
67
4992-4998
2001
Nocardioides sp., Nocardioides sp. CF8
Manually annotated by BRENDA team
Whyte, L.G.; Smits, T.H.; Labbe, D.; Witholt, B.; Greer, C.W.; van Beilen, J.B.
Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531
Appl. Environ. Microbiol.
68
5933-5942
2002
Rhodococcus sp. (Q93DM7), Rhodococcus sp. (Q93DN3), Rhodococcus sp. (Q93DN4), Rhodococcus sp. (Q93DN5)
Manually annotated by BRENDA team
Smith, C.A.; Hyman, M.R.
Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1
Appl. Environ. Microbiol.
70
4544-4550
2004
Pseudomonas putida, Pseudomonas putida GPo1 / ATCC29347
Manually annotated by BRENDA team
Fujii, T.; Narikawa, T.; Takeda, K.; Kato, J.
Biotransformation of various alkanes using the Escherichia coli expressing an alkane hydroxylase system from Gordonia sp. TF6
Biosci. Biotechnol. Biochem.
68
2171-2177
2004
Gordonia sp., Gordonia sp. TF6
Manually annotated by BRENDA team
Shanklin, J.; Whittle, E.
Evidence linking the Pseudomonas oleovorans alkane omega-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family
FEBS Lett.
545
188-192
2003
Pseudomonas oleovorans
Manually annotated by BRENDA team
Marin, M.M.; Yuste, L.; Rojo, F.
Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa
J. Bacteriol.
185
3232-3237
2003
Pseudomonas aeruginosa
Manually annotated by BRENDA team
Rojo, F.
Specificity at the end of the tunnel: Understanding substrate length discrimination by the AlkB alkane hydroxylase
J. Bacteriol.
187
19-22
2005
Pseudomonas putida, Pseudomonas putida GPo1 / ATCC29347
Manually annotated by BRENDA team
van Beilen, J.B.; Smits, T.H.; Roos, F.F.; Brunner, T.; Balada, S.B.; Rothlisberger, M.; Witholt, B.
Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases
J. Bacteriol.
187
85-91
2005
Mycobacterium tuberculosis, Pseudomonas putida, Alcanivorax borkumensis, Pseudomonas putida GPo1 / ATCC29347, Mycobacterium tuberculosis H37Rv, Alcanivorax borkumensis AP1
Manually annotated by BRENDA team
Nieder, M.; Shapiro, J.
Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids
J. Bacteriol.
122
93-98
1975
Pseudomonas putida
Manually annotated by BRENDA team
Smits, T.H.; Balada, S.B.; Witholt, B.; van Beilen, J.B.
Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria
J. Bacteriol.
184
1733-1742
2002
Alcanivorax borkumensis, Mycobacterium tuberculosis, Prauserella rugosa, Pseudomonas aeruginosa, Pseudomonas fluorescens
Manually annotated by BRENDA team
Nithipatikom, K.; Endsley, M.P.; Moore, J.M.; Isbell, M.A.; Falck, J.R.; Campbell, W.B.; Gross, G.J.
Effects of selective inhibition of cytochrome P-450 w-hydroxylases and ischemic preconditioning in myocardial protection
Am. J. Physiol.
290
H500-H505
2006
Canis lupus familiaris
Manually annotated by BRENDA team
Doughty, D.M.; Sayavedra-Soto, L.A.; Arp, D.J.; Bottomley, P.J.
Effects of dichloroethene isomers on the induction and activity of butane monooxygenase in the alkane-oxidizing bacterium "Pseudomonas butanovora"
Appl. Environ. Microbiol.
71
6054-6059
2005
Thauera butanivorans
Manually annotated by BRENDA team
van Beilen, J.B.; Funhoff, E.G.; van Loon, A.; Just, A.; Kaysser, L.; Bouza, M.; Holtackers, R.; Roethlisberger, M.; Li, Z.; Witholt, B.
Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases
Appl. Environ. Microbiol.
72
59-65
2006
Acinetobacter sp., Sphingopyxis macrogoltabida (Q5F4D3), Sphingopyxis macrogoltabida (Q5F4D6), Sphingopyxis macrogoltabida (Q5F4D9), Alcanivorax borkumensis (Q5K133), Alcanivorax borkumensis (Q5K134), Mycobacterium paraffinicum (Q5K1Y1), Gordonia rubripertincta (Q5K1Y2), Rhodococcus erythropolis (Q5K1Y3), Mycolicibacterium septicum (Q5K1Y6), Oleomonas sagaranensis (Q5K1Y7), Mycobacteroides abscessus (Q5K1Y9), Mycolicibacterium peregrinum (Q5K1Z0), Mycolicibacterium rhodesiae (Q5K1Z2), Oleomonas sagaranensis HXN-1400 (Q5K1Y7), Acinetobacter sp. EB104, Mycolicibacterium peregrinum HXN-600 (Q5K1Z0), Mycolicibacterium septicum HXN-1900 (Q5K1Y6), Sphingopyxis macrogoltabida HXN-200 (Q5F4D3), Sphingopyxis macrogoltabida HXN-200 (Q5F4D6), Sphingopyxis macrogoltabida HXN-200 (Q5F4D9), Mycolicibacterium septicum HXN-500 (Q5K1Y6), Alcanivorax borkumensis AP1 (Q5K133), Alcanivorax borkumensis AP1 (Q5K134), Rhodococcus erythropolis NRRL B-16531 (Q5K1Y3), Mycolicibacterium rhodesiae HXN-100 (Q5K1Z2), Mycobacteroides abscessus HXN-1000 (Q5K1Y9)
Manually annotated by BRENDA team
Johnson, E.L.; Hyman, M.R.
Propane and n-butane oxidation by Pseudomonas putida GPo1
Appl. Environ. Microbiol.
72
950-952
2006
Pseudomonas putida, Pseudomonas putida GPo1 / ATCC29347
Manually annotated by BRENDA team
Throne-Holst, M.; Markussen, S.; Winnberg, A.; Ellingsen, T.E.; Kotlar, H.K.; Zotchev, S.B.
Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases
Appl. Microbiol. Biotechnol.
72
353-360
2006
Acinetobacter venetianus (Q4ZHQ0), Acinetobacter venetianus (Q4ZHQ1), Acinetobacter venetianus, Acinetobacter venetianus 6A2 (Q4ZHQ0), Acinetobacter venetianus 6A2 (Q4ZHQ1)
Manually annotated by BRENDA team
Coon, M.J.
Omega oxygenases: Nonheme-iron enzymes and P450 cytochromes
Biochem. Biophys. Res. Commun.
338
378-385
2005
Arabidopsis thaliana, Candida tropicalis, Homo sapiens, Nicotiana tabacum, Pseudomonas sp., Rattus norvegicus, Vicia sativa, Zea mays
Manually annotated by BRENDA team
Meintanis, C.; Chalkou, K.I.; Kormas, K.A.; Karagouni, A.D.
Biodegradation of crude oil by thermophilic bacteria isolated from a volcano island
Biodegradation
17
105-111
2006
Geobacillus anatolicus, Geobacillus stearothermophilus, Geobacillus thermoleovorans
Manually annotated by BRENDA team
van Beilen, J.B.; Funhoff, E.G.
Expanding the alkane oxygenase toolbox: new enzymes and applications
Curr. Opin. Biotechnol.
16
308-314
2005
Methylococcus capsulatus, Methylosinus trichosporium, Gordonia sp., Thauera butanivorans
Manually annotated by BRENDA team
Antoun, J.; Amet, Y.; Simon, B.; Dreano, Y.; Corlu, A.; Corcos, L.; Salaun, J.P.; Plee-Gautier, E.
CYP4A11 is repressed by retinoic acid in human liver cells
FEBS Lett.
580
3361-3367
2006
Homo sapiens
Manually annotated by BRENDA team
Marchant, R.; Sharkey, F.H.; Banat, I.M.; Rahman, T.J.; Perfumo, A.
The degradation of n-hexadecane in soil by thermophilic geobacilli
FEMS Microbiol. Ecol.
56
44-54
2006
Geobacillus thermoleovorans, Geobacillus thermoleovorans T70
Manually annotated by BRENDA team
Sayavedra-Soto, L.A.; Doughty, D.M.; Kurth, E.G.; Bottomley, P.J.; Arp, D.J.
Product and product-independent induction of butane oxidation in Pseudomonas butanovora
FEMS Microbiol. Lett.
250
111-116
2005
Thauera butanivorans
Manually annotated by BRENDA team
Doughty, D.M.; Sayavedra-Soto, L.A.; Arp, D.J.; Bottomley, P.J.
Product repression of alkane monooxygenase expression in Pseudomonas butanovora
J. Bacteriol.
188
2586-2592
2006
Thauera butanivorans
Manually annotated by BRENDA team
Bertrand, E.; Sakai, R.; Rozhkova-Novosad, E.; Moe, L.; Fox, B.G.; Groves, J.T.; Austin, R.N.
Reaction mechanisms of non-heme diiron hydroxylases characterized in whole cells
J. Inorg. Biochem.
99
1998-2006
2005
Pseudomonas putida, Pseudomonas putida GPo1 / ATCC29347
Manually annotated by BRENDA team
Benveniste, I.; Saito, T.; Wang, Y.; Kandel, S.; Huang, H.; Pinot, F.; Kahn, R.A.; Salauen, J.; Shimoji, M.
Evolutionary relationship and substrate specificity of Arabidopsis thaliana fatty acid omega-hydroxylase
Plant Sci.
170
326-338
2006
Arabidopsis thaliana
Manually annotated by BRENDA team
Benveniste, I.; Bronner, R.; Wang, Y.; Compagnon, V.; Michler, P.; Schreiber, L.; Salauen, J.P.; Durst, F.; Pinot, F.
CYP94A1, a plant cytochrome P450-catalyzing fatty acid omega-hydroxylase, is selectively induced by chemical stress in Vicia sativa seedlings
Planta
221
881-890
2005
Vicia sativa
Manually annotated by BRENDA team
Morin, C.; Guibert, C.; Sirois, M.; Echave, V.; Gomes, M.M.; Rousseau, E.
Effects of omega-hydroxylase product on distal human pulmonary arteries
Am. J. Physiol. Heart Circ. Physiol.
294
H1435-H1443
2008
Homo sapiens
Manually annotated by BRENDA team
Hardwick, J.P.
Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases
Biochem. Pharmacol.
75
2263-2275
2008
Homo sapiens, Mus musculus
Manually annotated by BRENDA team
Inoue, R.; Jensen, L.J.; Jian, Z.; Shi, J.; Hai, L.; Lurie, A.I.; Henriksen, F.H.; Salomonsson, M.; Morita, H.; Kawarabayashi, Y.; Mori, M.; Mori, Y.; Ito, Y.
Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/omega-hydroxylase/20-HETE pathways
Circ. Res.
104
1399-1409
2009
Homo sapiens, Rattus norvegicus
Manually annotated by BRENDA team
Lv, X.; Wan, J.; Yang, J.; Cheng, H.; Li, Y.; Ao, Y.; Peng, R.
Cytochrome P450 omega-hydroxylase inhibition reduces cardiomyocyte apoptosis via activation of ERK1/2 signaling in rat myocardial ischemia-reperfusion
Eur. J. Pharmacol.
596
118-126
2008
Rattus norvegicus
Manually annotated by BRENDA team
Fujii, S.; Toyama, A.; Amrein, H.
A male-specific fatty acid omega-hydroxylase, SXE1, is necessary for efficient male mating in Drosophila melanogaster
Genetics
180
179-190
2008
Drosophila melanogaster
Manually annotated by BRENDA team
Hoefer, R.; Briesen, I.; Beck, M.; Pinot, F.; Schreiber, L.; Franke, R.
The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis
J. Exp. Bot.
59
2347-2360
2008
Arabidopsis thaliana (P48422)
Manually annotated by BRENDA team
Fer, M.; Corcos, L.; Dreano, Y.; Plee-Gautier, E.; Salan, J.; Berthou, F.; Amet, Y.
Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism
J. Lipid Res.
49
2379-2389
2008
Homo sapiens
Manually annotated by BRENDA team
Compagnon, V.; Diehl, P.; Benveniste, I.; Meyer, D.; Schaller, H.; Schreiber, L.; Franke, R.; Pinot, F.
CYP86B1 is required for very long chain omega-hydroxyacid and alpha, omega -dicarboxylic acid synthesis in root and seed suberin polyester
Plant Physiol.
150
1831-1843
2009
Arabidopsis thaliana (Q9FMY1)
Manually annotated by BRENDA team
Ramu, R.; Chang, C.; Chou, H.; Wu, L.; Chiang, C.; Yu, S.
Regio-selective hydroxylation of gem-difluorinated octanes by alkane hydroxylase (AlkB)
Tetrahedron Lett.
52
2950-2953
2011
Pseudomonas putida, Pseudomonas putida GPo1 / ATCC29347
-
Manually annotated by BRENDA team
Xie, M.; Alonso, H.; Roujeinikova, A.
An improved procedure for the purification of catalytically active alkane hydroxylase from Pseudomonas putida GPo1
Appl. Biochem. Biotechnol.
165
823-831
2011
Pseudomonas putida (Q9WWW6), Pseudomonas putida GPo1 / ATCC29347 (Q9WWW6)
Manually annotated by BRENDA team
Nie, Y.; Liang, J.; Fang, H.; Tang, Y.Q.; Wu, X.L.
Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation
Appl. Environ. Microbiol.
77
7279-7288
2011
Dietzia sp. DQ12-45-1b (G3EIL3), Dietzia sp. DQ12-45-1b (G3EIL7)
Manually annotated by BRENDA team
Alonso, H.; Roujeinikova, A.
Characterization and two-dimensional crystallization of membrane component AlkB of the medium-chain alkane hydroxylase system from Pseudomonas putida GPo1
Appl. Environ. Microbiol.
78
7946-7953
2012
Pseudomonas putida, Pseudomonas putida GPo1 / ATCC29347
Manually annotated by BRENDA team
Liu, C.; Wang, W.; Wu, Y.; Zhou, Z.; Lai, Q.; Shao, Z.
Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5
Environ. Microbiol.
13
1168-1178
2011
Alcanivorax dieselolei, Alcanivorax dieselolei B-5
Manually annotated by BRENDA team
Li, P.; Wang, L.; Feng, L.
Characterization of a novel Rieske-type alkane monooxygenase system in Pusillimonas sp. strain T7-7
J. Bacteriol.
195
1892-1901
2013
Pusillimonas sp. T7-7
Manually annotated by BRENDA team
Naing, S.H.; Parvez, S.; Pender-Cudlip, M.; Groves, J.T.; Austin, R.N.
Substrate specificity and reaction mechanism of purified alkane hydroxylase from the hydrocarbonoclastic bacterium Alcanivorax borkumensis (AbAlkB)
J. Inorg. Biochem.
121
46-52
2013
Alcanivorax borkumensis
Manually annotated by BRENDA team
Kotani, T.; Kawashima, Y.; Yurimoto, H.; Kato, N.; Sakai, Y.
Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7
J. Biosci. Bioeng.
102
184-192
2006
Pseudonocardia sp. TY-7 (Q08KD8 and Q08KD7 and Q08KD6 and Q08KD5), Pseudonocardia sp. TY-7 (Q08KE2 and Q08KE1 and Q08KE0 and Q08KD9)
Manually annotated by BRENDA team
Xu, Y.; Peng, Y.; Li, S.; Zhao, Q.; Zhang, S.; Li, J.; Ni, Y.
Cloning and expression analysis of alkane hydroxylase gene MAH1 from Brassica napus
Acta Agron. Sinica
43
640-647
2017
Brassica napus (A0A1D8DFV4), Brassica napus (A0A1I7PIH9)
-
Manually annotated by BRENDA team
Zampolli, J.; Collina, E.; Lasagni, M.; Di Gennaro, P.
Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism
AMB Express
4
73
2014
Rhodococcus opacus (A0A059WEN7), Rhodococcus opacus, Rhodococcus opacus R7 (A0A059WEN7), Rhodococcus opacus R7
Manually annotated by BRENDA team
Wang, Y.; Nie, M.; Wan, Y.; Tian, X.; Nie, H.; Zi, J.; Ma, X.
Functional characterization of two alkane hydroxylases in a versatile Pseudomonas aeruginosa strain NY3
Ann. Microbiol.
67
459-468
2017
Pseudomonas aeruginosa (A0A097BPW7), Pseudomonas aeruginosa (A0A097BPZ8), Pseudomonas aeruginosa NY3 (A0A097BPW7), Pseudomonas aeruginosa NY3 (A0A097BPZ8)
-
Manually annotated by BRENDA team
Liang, J.L.; JiangYang, J.H.; Nie, Y.; Wu, X.L.
Regulation of the alkane hydroxylase CYP153 gene in a Gram-positive alkane-degrading bacterium, Dietzia sp. strain DQ12-45-1b
Appl. Environ. Microbiol.
82
608-619
2015
Dietzia sp. DQ12-45-1b (L7QFU8)
Manually annotated by BRENDA team
Alonso, H.; Kleifeld, O.; Yeheskel, A.; Ong, P.C.; Liu, Y.C.; Stok, J.E.; De Voss, J.J.; Roujeinikova, A.
Structural and mechanistic insight into alkane hydroxylation by Pseudomonas putida AlkB
Biochem. J.
460
283-293
2014
Pseudomonas putida
Manually annotated by BRENDA team
Bravo, A.L.; Sigala, J.C.; Le Borgne, S.; Morales, M.
Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis
Biotechnol. Lett.
37
807-814
2015
Pseudomonas citronellolis (A0A024A3Z2), Pseudomonas citronellolis
Manually annotated by BRENDA team
Ma, D.; Nie, Y.; Wu, X.; Liu, L.
Identification of two alkane hydroxylases involved in long-chain n-alkane degradation by Dietzia sp. DQ12-45-1b
Chin. J. Appl. Environ. Biol.
21
813-818
2015
Dietzia sp. DQ12-45-1b (L7QFU8)
-
Manually annotated by BRENDA team
Lee, C.; Yu, S.; Lee, J.; Park, S.; Park, H.; Oh, T.; Lee, J.
Crystal structure of a putative cytochrome P450 alkane hydroxylase (CYP153D17) from Sphingomonas sp. PAMC 26605 and its conformational substrate binding
Int. J. Mol. Sci.
17
e2067
2016
Sphingomonas sp. PAMC 26605 (A0A1S4NYE0)
Manually annotated by BRENDA team
de Sousa, B.G.; Oliveira, J.I.N.; Albuquerque, E.L.; Fulco, U.L.; Amaro, V.E.; Blaha, C.A.G.
Molecular modelling and quantum biochemistry computations of a naturally occurring bioremediation enzyme Alkane hydroxylase from Pseudomonas putida P1
J. Mol. Graph. Model.
77
232-239
2017
Pseudomonas putida (Q9WWW6), Pseudomonas putida P1 (Q9WWW6), Pseudomonas putida P1
Manually annotated by BRENDA team
Viggor, S.; Joesaar, M.; Vedler, E.; Kiiker, R.; Paernpuu, L.; Heinaru, A.
Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water
Mar. Pollut. Bull.
101
507-516
2015
uncultured bacterium
Manually annotated by BRENDA team
Liu, H.; Xu, J.; Liang, R.; Liu, J.
Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes
PLoS ONE
9
e105506
2014
Pseudomonas aeruginosa, Pseudomonas aeruginosa SJTD-1
Manually annotated by BRENDA team
Tsai, Y.F.; Luo, W.I.; Chang, J.L.; Chang, C.W.; Chuang, H.C.; Ramu, R.; Wei, G.T.; Zen, J.M.; Yu, S.S.
Electrochemical hydroxylation of C3-C12 n-alkanes by recombinant alkane hydroxylase (AlkB) and rubredoxin-2 (AlkG) from Pseudomonas putida GPo1
Sci. Rep.
7
8369
2017
Pseudomonas putida, Pseudomonas putida GPo1
Manually annotated by BRENDA team
Tancsics, A.; Benedek, T.; Szoboszlay, S.; Veres, P.G.; Farkas, M.; Mathe, I.; Marialigeti, K.; Kukolya, J.; Lanyi, S.; Kriszt, B.
The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus
Syst. Appl. Microbiol.
38
1-7
2015
Rhodococcus sp.
Manually annotated by BRENDA team