Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 1.14.14.3 - bacterial luciferase and Organism(s) Aliivibrio fischeri and UniProt Accession P19908

for references in articles please use BRENDA:EC1.14.14.3
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
IUBMB Comments
The reaction sequence starts with the incorporation of a molecule of oxygen into reduced FMN bound to the enzyme, forming luciferase peroxyflavin. The peroxyflavin interacts with an aliphatic long-chain aldehyde, producing a highly fluorescent species believed to be luciferase hydroxyflavin. The enzyme is highly specific for reduced FMN and for long-chain aliphatic aldehydes with eight carbons or more. The highest efficiency is achieved with tetradecanal. cf. EC 1.13.12.18, dinoflagellate luciferase.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Aliivibrio fischeri
UNIPROT: P19908 not found.
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Aliivibrio fischeri
The expected taxonomic range for this enzyme is: Bacteria, Archaea, Eukaryota
Synonyms
luciferase, bacterial luciferase, luxab, luxcdabe, vibrio harveyi luciferase, vibrio fischeri luciferase, aldehyde monooxygenase, gluc luciferase, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
aldehyde monooxygenase
-
-
-
-
alkanal monooxygenase (FMN)
-
-
-
-
bacterial luciferase
luciferase
Vibrio fischeri luciferase
-
-
-
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
oxidation
-
-
-
-
redox reaction
-
-
-
-
reduction
-
-
-
-
PATHWAY SOURCE
PATHWAYS
-
-
SYSTEMATIC NAME
IUBMB Comments
long-chain-aldehyde,FMNH2:oxygen oxidoreductase (1-hydroxylating, luminescing)
The reaction sequence starts with the incorporation of a molecule of oxygen into reduced FMN bound to the enzyme, forming luciferase peroxyflavin. The peroxyflavin interacts with an aliphatic long-chain aldehyde, producing a highly fluorescent species believed to be luciferase hydroxyflavin. The enzyme is highly specific for reduced FMN and for long-chain aliphatic aldehydes with eight carbons or more. The highest efficiency is achieved with tetradecanal. cf. EC 1.13.12.18, dinoflagellate luciferase.
CAS REGISTRY NUMBER
COMMENTARY hide
9014-00-0
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
(E)-dec-2-enal + FMNH2 + O2
(E)-dec-2-enoate + FMN + H2O + hn
show the reaction diagram
-
-
-
-
?
(E)-dodec-2-enal + FMNH2 + O2
(E)-dodec-2-enoate + FMN + H2O + hn
show the reaction diagram
-
-
-
-
?
(E)-oct-2-enal + FMNH2 + O2
(2E)-oct-2-enoate + FMN + H2O + hn
show the reaction diagram
-
-
-
-
?
(E)-tetradec-2-enal + FMNH2 + O2
(E)-tetradec-2-enoate + FMN + H2O + hn
show the reaction diagram
-
-
-
-
?
an aldehyde + FMNH2 + O2
a carboxylate + FMN + H2O + hnu
show the reaction diagram
-
-
-
-
?
beetle luciferin + FMNH2 + O2
?
show the reaction diagram
-
-
-
-
ir
decanal + FMNH + O2
decanoic acid + FMN + H2O + light
show the reaction diagram
-
-
-
-
ir
decanal + FMNH2 + O2
decanoate + FMN + H2O + hn
show the reaction diagram
-
-
-
-
?
decanal + FMNH2 + O2
decanoic acid + FMN + H2O + hnu
show the reaction diagram
-
-
-
-
?
decanal + FMNH2 + O2
decanoic acid + FMN + H2O + hv
show the reaction diagram
dodecanal + FMNH + O2
dodecanoic acid + FMN + H2O + light
show the reaction diagram
-
-
-
-
ir
dodecanal + FMNH2 + O2
dodecanoate + FMN + H2O + hn
show the reaction diagram
-
-
-
-
?
dodecanal + FMNH2 + O2
dodecanoic acid + FMN + H2O + hv
show the reaction diagram
-
-
-
-
?
dodecyl aldehyde + FMNH + O2
?
show the reaction diagram
-
-
-
-
?
FMNH + O2
FMN + H2O2
show the reaction diagram
-
-
-
-
?
n-caprinaldehyde + FMNH2 + O2
n-caprinoate + FMN + H2O + hv
show the reaction diagram
-
-
-
-
ir
n-decanal + FMNH2 + O2
n-decanoate + FMN + H2O + hn
show the reaction diagram
-
3-step process via H2O2 as intermediate
generation of blue-green light of wavelength 490 nm
-
ir
octanal + FMNH + O2
octanoic acid + FMN + H2O + light
show the reaction diagram
-
-
-
-
ir
RCHO + FMNH2 + O2
RCOOH + FMN + H2O + hn
show the reaction diagram
-
3-step process via H2O2 as intermediate
generation of blue-green light of wavelength 490 nm
-
ir
RCHO + FMNH2 + O2
RCOOH + FMN + H2O + hnu
show the reaction diagram
RCHO + FMNH2 + O2
RCOOH + FMN + H2O + hv
show the reaction diagram
-
-
-
-
?
tetradecanal + FMNH2 + O2
tetradecanoate + FMN + H2O + hn
show the reaction diagram
-
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
an aldehyde + FMNH2 + O2
a carboxylate + FMN + H2O + hnu
show the reaction diagram
-
-
-
-
?
beetle luciferin + FMNH2 + O2
?
show the reaction diagram
-
-
-
-
ir
decanal + FMNH + O2
decanoic acid + FMN + H2O + light
show the reaction diagram
-
-
-
-
ir
n-caprinaldehyde + FMNH2 + O2
n-caprinoate + FMN + H2O + hv
show the reaction diagram
-
-
-
-
ir
RCHO + FMNH2 + O2
RCOOH + FMN + H2O + hn
show the reaction diagram
-
3-step process via H2O2 as intermediate
generation of blue-green light of wavelength 490 nm
-
ir
RCHO + FMNH2 + O2
RCOOH + FMN + H2O + hnu
show the reaction diagram
-
reduced FMN, i.e. FMNH2, generated by several species of flavin reductases, is utilized along with a long-chain aliphatic aldehyde and molecular oxygen by luciferase as substrates for the bioluminescence reaction, direct transfer of reduced flavin cofactor and reduced flavin product of reductase to luciferase, NADPH-specific FMN reductase and luciferase form a complex in vivo, reduction of reductase-bound FMN cofactor by NADPH is reversible, allowing the cellular contents of NADP+ and NADPH as a factor for the regulation of the production of FMNH2 by FRPVh for luciferase bioluminescence, overview
-
-
?
RCHO + FMNH2 + O2
RCOOH + FMN + H2O + hv
show the reaction diagram
-
-
-
-
?
COFACTOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
FMN
-
the luminescence reaction is initiated by the reduction of FMN
FMNH2
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1-aminodecanal
-
-
1-aminododecanal
-
-
1-Decanol
-
-
1-Dodecanol
-
-
1-Heptanol
-
-
1-nonanol
-
-
1-Octanol
-
-
1-undecanol
-
-
2,3-Dichloro-(6-phenylphenoxy)ethylamine
-
-
2-diethylaminoethyl-2,2-diphenylvalerate
-
-
8-Anilino-1-naphthalenesulfonate
-
-
amino group reagents
-
-
-
Decanoic acid
-
-
dodecanamide
-
inhibits bacterial luciferase luminescence reaction. By injecting the dodecaneamide into the bacterial luciferase system, the luminescence intensity decreases to about half of the initial intensity
dodecanoic acid
-
-
Dodecanol
-
-
ethoxyformic anhydride
-
-
imidazole reagents
-
-
-
methanol
-
bacterial luciferase luminescence intensity decreases to the steady state depending on the methanol concentration
sulfhydryl reagents
-
-
additional information
-
1-hexanol does not inhibit the enzyme luminescence
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
methanol
-
bacterial luciferase luminescence intensity slightly increases during the initial stage of the methanol injection
additional information
-
the enzyme shows enhanced affinity for chaperone DnaK
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
additional information
additional information
-
slow turnover rate
-
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
LUXA_ALIFS
354
0
40343
Swiss-Prot
-
LUXB_ALIFS
326
0
37357
Swiss-Prot
-
Q9S3Z1_ALIFS
354
0
40310
TrEMBL
-
C5I964_ALIFS
326
0
37449
TrEMBL
-
A5GXR5_ALIFS
355
0
40510
TrEMBL
-
Q6VFQ4_ALIFS
354
0
40282
TrEMBL
-
C5I9P8_ALIFS
326
0
37316
TrEMBL
-
A0A844NY19_ALIFS
355
0
40472
TrEMBL
-
A5GXR6_ALIFS
342
0
39030
TrEMBL
-
C5I956_ALIFS
326
0
37434
TrEMBL
-
C5I9I0_ALIFS
326
0
37373
TrEMBL
-
C5I980_ALIFS
326
0
37272
TrEMBL
-
C5I9I6_ALIFS
326
0
37317
TrEMBL
-
C5I988_ALIFS
326
0
37306
TrEMBL
-
A5GXR1_ALIFS
353
0
40182
TrEMBL
-
Q6VFQ3_ALIFS
326
0
37310
TrEMBL
-
A5GXQ9_ALIFS
342
0
38986
TrEMBL
-
C5I966_ALIFS
326
0
37337
TrEMBL
-
C5I984_ALIFS
326
0
37357
TrEMBL
-
C5I9J0_ALIFS
326
0
37463
TrEMBL
-
C5H072_ALIFS
326
0
36989
TrEMBL
-
C5H037_ALIFS
326
0
37308
TrEMBL
-
C5I976_ALIFS
326
0
37348
TrEMBL
-
C5H040_ALIFS
326
0
37390
TrEMBL
-
C5I9B0_ALIFS
326
0
37356
TrEMBL
-
C5I9B4_ALIFS
326
0
37237
TrEMBL
-
C5I9J4_ALIFS
326
0
37430
TrEMBL
-
C5I9D8_ALIFS
326
0
37384
TrEMBL
-
C5I9B8_ALIFS
326
0
37354
TrEMBL
-
C5I9L0_ALIFS
326
0
37315
TrEMBL
-
C5I978_ALIFS
326
0
37286
TrEMBL
-
A5GXR3_ALIFS
353
0
40154
TrEMBL
-
A0A844PHI5_ALIFS
354
0
40325
TrEMBL
-
C5I9G6_ALIFS
327
0
37458
TrEMBL
-
C5H043_ALIFS
326
0
37330
TrEMBL
-
A5GXR4_ALIFS
353
0
40246
TrEMBL
-
A5GXQ8_ALIFS
350
0
39906
TrEMBL
-
C5I9C8_ALIFS
327
0
37430
TrEMBL
-
C5I982_ALIFS
326
0
37334
TrEMBL
-
A0A510UH56_ALIFS
326
0
37397
TrEMBL
-
C5I9C6_ALIFS
326
0
37406
TrEMBL
-
A0A510UCL3_ALIFS
353
0
40332
TrEMBL
-
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
6 - 8.5
-
-
348582
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
35
-
stable below
43.5
-
inactivation, temperature-labile enzyme
46
-
the enzyme is inactivated in 5 min at 46°C
additional information
-
the recombinant enzyme shows unaffected thermal stability after expression in an Escherichia coli clpA-mutant strain lacking chaperone Hsp100, carbonyl cyanide 3-chlorophenylhydrazone highly decreases the thermal stability of the enzyme in vivo to in vitro level, lack of chaperone ClpB decreases the thermal stability of the recombinant enzyme in vivo
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
citrate stabilizes against inactivation by proteases, heat, urea
-
diphosphate stabilizes against inactivation by proteases, heat, urea
-
inactivation by lyophilization
-
labile to proteases
-
longchain alkylresorcinol homologues exhibit a protective effect at micromolar concentrations only, while their millimolar concentrations increase the sensitivity of the model proteins to thermal treatment
-
no inactivation by repeated freezing/thawing
-
phosphate stabilizes against inactivation by proteases, heat, urea
-
sulfate stabilizes against inactivation by proteases, heat, urea
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
affinity methods
-
recombinant enzyme from Escherichia coli
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expressed in NIH-3T3 cells
-
expressed in Pseudomonas putida mt-2
-
expression in different Escherichia coli strains, which are wild-type, or deficient in gene clpA, clpB, and clpX encoding Hsp chaperones, respectively
-
genes luxA and luxB, expression under the control of a consensus-type promoter, lacUV5, in Escherichia coli, activity declines abruptly upon entry into the stationary growth phase, while the levels of luciferase proteins remian constant, the phenomenon, termed ADLA, i.e. abrupt decline of luciferase activity, is caused by a decrease in the availability of flavin mononucleotide
-
luxCDABE operon, genetic organization, overview
-
RENATURED/Commentary
ORGANISM
UNIPROT
LITERATURE
heterodimeric bacterial luciferase thermally inactivated in the presence of ATPindependent trigger factor is able to refold. In the presence of the DnaKJE chaperone system thermally inactivated heterodimeric bacterial luciferase also refolds
quick refolding within several min at room temperature or 25°C of thermoinactivated enzyme requires ATP and the DnaK-DnaJ-GrpE-system encoding the Hsp70 chaperone but is independent of chaperone ClpA, 80% activity after reactivation, refolding depends on the Escherichia coli strain used for recombinant expression of the luciferase, overview
-
the functional activity of heat-inactivated enzyme is restored by micromolar concentrations of shortchain alkylresorcinols, while longchain homologues inhibit refolding over a wide concentration range. The preincubation of bacterial cells with longchain alkylresorcinols leads to the dose-dependent stimulation of heat shock protein synthesis
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
analysis
-
the enzyme is used as a reporter system tool for analysis of promoter and gene expression activity, overview
biotechnology
-
the enzyme and cyanine fluorescent protein are useful dual reporters for the quantitative analysis of the effects of n-dodecyltrimethylammonium bromide on whole cells and intracellular proteins of Pseudomonas putida
molecular biology
-
the enzyme is used as a reporter system tool for analysis of promoter and gene expression activity, overview
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Angell, P.; Langley, D.; Chamberlain, A.H.L.
Localization of luciferase in luminous marine bacteria by gold immunocytochemical labelling
FEMS Microbiol. Lett.
65
177-182
1989
Aliivibrio fischeri, Vibrio harveyi
-
Manually annotated by BRENDA team
Baldwin, T.O.; Holzman, T.F.; Holzman, R.B.; Riddle, V.A.
Purification of bacterial luciferase by affinity methods
Methods Enzymol.
133
98-108
1986
Aliivibrio fischeri, Photobacterium phosphoreum, Vibrio harveyi
Manually annotated by BRENDA team
Viswanathan, T.S.; Campling, M.R.; Cushley, R.J.
Interactions of long-chain aldehydes with luciferase. A carbon-13 nuclear magnetic resonance study
Biochemistry
18
2504-2508
1979
Aliivibrio fischeri
Manually annotated by BRENDA team
Hastings, J.W.; Baldwin, T.O.; Nicoli, M.Z.
Bacterial luciferase: Assay, purification, and properties
Methods Enzymol.
57
135-152
1978
Aliivibrio fischeri, Photobacterium phosphoreum, Vibrio harveyi
-
Manually annotated by BRENDA team
Hastings, J.W.
Bacterial bioluminescence light emission in the mixed function oxidation of reduced flavin and fatty aldehyde
CRC Crit. Rev. Biochem.
5
163-184
1978
Aliivibrio fischeri, Photobacterium leiognathi, Vibrio harveyi
Manually annotated by BRENDA team
Becvar, J.E.; Tu, S.C.; Hastings, J.W.
Activity and stability of the luciferase-flavin intermediate
Biochemistry
17
1807-1812
1978
Aliivibrio fischeri, Vibrio harveyi
Manually annotated by BRENDA team
Friedland, J.; Hastings, J.W.
The reversibility of the denaturation of bacterial luciferase
Biochemistry
6
2893-2900
1967
Aliivibrio fischeri
Manually annotated by BRENDA team
Zavilgelsky, G.B.; Kotova, V.Y.; Mazhul, M.M.; Manukhov, I.V.
Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells
Biochemistry (Moscow)
67
986-992
2002
Aliivibrio fischeri, Photorhabdus luminescens
Manually annotated by BRENDA team
Koga, K.; Harada, T.; Shimizu, H.; Tanaka, K.
Bacterial luciferase activity and the intracellular redox pool in Escherichia coli
Mol. Genet. Genomics
274
180-188
2005
Aliivibrio fischeri
Manually annotated by BRENDA team
Tu, S.C.
Activity coupling and complex formation between bacterial luciferase and flavin reductases
Photochem. Photobiol. Sci.
7
183-188
2008
Aliivibrio fischeri, Vibrio harveyi
Manually annotated by BRENDA team
Yamasaki, S.; Nakashima, S.; Yamada, S.; Takehara, K.
Steady-state bioluminescence of bacterial luciferase using electrochemical regeneration of flavin substrate and its application to inhibitory analysis
Bioelectrochemistry
75
67-70
2009
Aliivibrio fischeri
Manually annotated by BRENDA team
Waidmann, M.; Bleichrodt, F.; Laslo, T.; Riedel, C.
Bacterial luciferase reporters: the swiss army knife of molecular biology
Bioeng. Bugs
2
8-16
2011
Aliivibrio fischeri, Photobacterium leiognathi, Photobacterium phosphoreum, Vibrio harveyi, Photorhabdus laumondii subsp. laumondii, Photorhabdus laumondii subsp. laumondii TT01, Photobacterium phosphoreum ATCC 11040, Photobacterium leiognathi ATCC 25521, Vibrio harveyi ATCC BAA1116
Manually annotated by BRENDA team
Yamasaki, S.; Yamada, S.; Takehara, K.
Inhibition of electrochemically controlled bioluminescence of bacterial luciferase by n-alkyl alcohols
Anal. Sci.
27
357
2011
Aliivibrio fischeri
Manually annotated by BRENDA team
Kawanami, Y.; Yamasaki, S.; Yamada, S.; Takehara, K.
Immobilization of bacterial luciferase into poly(N-isopropylacrylamide) film for electrochemical control of a bioluminescence reaction
Anal. Sci.
28
1013-1015
2012
Aliivibrio fischeri
Manually annotated by BRENDA team
Yamasaki, S.; Yamada, S.; Takehara, K.
Bioluminescence inhibition of bacterial luciferase by aliphatic alcohol, amine and carboxylic acid: inhibition potency and mechanism
Anal. Sci.
29
41-46
2013
Aliivibrio fischeri
Manually annotated by BRENDA team
Zhang, C.; Su, F.Y.; Zhang, J.F.; Yan, S.T.; Xing, X.H.
Luciferase and fluorescent protein as dual reporters analyzing the effect of n-dodecyltrimethylammonium bromide on the physiology of Pseudomonas putida
Appl. Microbiol. Biotechnol.
93
393-400
2012
Aliivibrio fischeri
Manually annotated by BRENDA team
Tehrani, G.A.; Mirzaahmadi, S.; Bandehpour, M.; Kazemi, B.
Coexpression of luxA and luxB genes of Vibrio fischeri in NIH3T3 mammalian cells and evaluation of its bioluminescence activities
Luminescence
29
13-19
2014
Aliivibrio fischeri
Manually annotated by BRENDA team
Melkina, O.; Goryanin, I.; Manukhov, I.; Zavilgelskii, G.
Trigger factor-dependent refolding of bacterial luciferases in Escherichia coli: Kinetics, efficiency, and effect of bichaperone system
Mol. Biol.
47
435-439
2013
Aliivibrio fischeri, Photobacterium leiognathi, Photorhabdus luminescens, Vibrio harveyi
-
Manually annotated by BRENDA team
Melkina, O.E.; Goryanin, I.I.; Manukhov, I.V.; Baranova, A.V.; Kolb, V.A.; Svetlov, M.S.; Zavilgelsky, G.B.
Trigger factor assists the refolding of heterodimeric but not monomeric luciferases
Biochemistry (Moscow)
79
62-68
2014
Photobacterium leiognathi, Photobacterium leiognathi (P07740 and P07739), Vibrio harveyi (P07740 and P07739), Aliivibrio fischeri (P19907 and P19908), Aliivibrio fischeri MJ-1 (P19907 and P19908)
Manually annotated by BRENDA team
Brodl, E.; Ivkovic, J.; Tabib, C.R.; Breinbauer, R.; Macheroux, P.
Synthesis of alpha,beta-unsaturated aldehydes as potential substrates for bacterial luciferases
Bioorg. Med. Chem.
25
1487-1495
2017
Aliivibrio fischeri, Photobacterium leiognathi, Vibrio harveyi, Vibrio harveyi ATCC 14126, Aliivibrio fischeri ATCC 7744
Manually annotated by BRENDA team
Deryabin, D.; Gryazeva, I.; Davydova, O.; El-Registan, G.
Effect of alkylresorcinols on thermal denaturation and refolding of bacterial luciferase and synthesis of heat shock proteins revealed in the luminescent molecular and cellular test systems
Mikrobiologiia
83
640-652
2014
Aliivibrio fischeri, Photobacterium leiognathi
Manually annotated by BRENDA team