Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 1.14.12.11 - toluene dioxygenase and Organism(s) Pseudomonas putida and UniProt Accession A5W4F2

for references in articles please use BRENDA:EC1.14.12.11
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
IUBMB Comments
A system, containing a reductase which is an iron-sulfur flavoprotein (FAD), an iron-sulfur oxygenase, and a ferredoxin. Some other aromatic compounds, including ethylbenzene, 4-xylene and some halogenated toluenes, are converted into the corresponding cis-dihydrodiols.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Pseudomonas putida
UNIPROT: A5W4F2
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Pseudomonas putida
The enzyme appears in selected viruses and cellular organisms
Synonyms
toluene dioxygenase, todc1c2ba, isptol, toluene 2,3-dioxygenase, oxygenasetol, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
ISPTOL
-
oxygenase component of the toluene dioxygenase multienzyme system
oxygenase, toluene 2,3-di-
-
-
-
-
oxygenaseTOL
-
-
todC1C2BA
-
-
toluene 2,3-dioxygenase
-
-
additional information
-
part of a multiple enzyme complex: reductase, ferredoxin, dioxygenase
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
toluene + NADH + H+ + O2 = (1S,2R)-3-methylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
redox reaction
oxidation
-
-
-
-
reduction
-
-
-
-
SYSTEMATIC NAME
IUBMB Comments
toluene,NADH:oxygen oxidoreductase (1,2-hydroxylating)
A system, containing a reductase which is an iron-sulfur flavoprotein (FAD), an iron-sulfur oxygenase, and a ferredoxin. Some other aromatic compounds, including ethylbenzene, 4-xylene and some halogenated toluenes, are converted into the corresponding cis-dihydrodiols.
CAS REGISTRY NUMBER
COMMENTARY hide
120038-36-0
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
toluene + NADH + H+ + O2
(1S,2R)-3-methylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
?
(+)-(S)-indan-1-ol + O2 + NADH
(-)-(R)-indan-1-ol + indan-1-one + (+)-trans-(1S,3S)-1,3-dihydroxyindane + (-)-(3R)-3-hydroxyindan-1-one + NAD+
show the reaction diagram
-
biotransformation with intact cells
-
?
(+/-)-trans-2-phenyl-1-cyclohexanol + NADH + O2
3-(2-hydroxycyclohexanyl)-3,5-cyclohexadiene-1,2-diol + ?
show the reaction diagram
-
-
-
?
(-)-(R)-indan-1-ol + NADH + O2
trans-(1R,3R)-1,3-dihydroxyindane + (-)-(1R,4R,5S)-1,4,5-trihydroxy-4,5-dihydroindane + NAD+
show the reaction diagram
-
biotransformation with intact cell
-
?
(1R,2S)-(-)-trans-2-phenyl-1-cyclohexanol + NADH + O2
3-(2-hydroxycyclohexanyl)-3,5-cyclohexadiene-1,2-diol + ?
show the reaction diagram
-
-
-
?
(4S,5S,6S)-4,5-dihydroxy-6-methoxycyclohex-2-enone + NADH + H+ + O2
(2S,3S,4S)-3,4-dihydroxy-2-methoxycyclohexanone + NAD+
show the reaction diagram
-
-
-
-
?
(cis)-2-chloro-2-butene + NADH + O2
2-chloro-2-butene-1-ol + NAD+
show the reaction diagram
-
12% of the activity with toluene
-
?
(R)-1-phenyl-1-ethanol + NADH + O2
3-[1(R)-hydroxyethyl]cyclohexa-3,5-diene-1(S),2(R)-diol + ?
show the reaction diagram
-
-
-
?
(R)-2-phenylcyclohexanone + NADH + O2
(4S,4aR,9aR)-4,6,7,8,9,9a-hexahydro-4aH-dibenzofuran-4,5a-diol + ?
show the reaction diagram
-
-
-
?
(S)-1-phenyl-1-ethanol + O2 + NADH + O2
3-[1(S)-hydroxyethyl]cyclohexa-3,5-diene-1(S),2(R)-diol + ?
show the reaction diagram
-
-
-
?
(S)-2-phenylcyclohexanone + NADH + O2
(1S,5'S,6'R)-5',6'-dihydroxybicyclohexyl-1',3'-diene-2-one + ?
show the reaction diagram
-
-
-
?
(trans)-2-chloro-2-butene + NADH + O2
?
show the reaction diagram
-
4% of the activity with toluene
-
-
?
1,1-dichloro-1-propene + NADH + O2
3,3-dichloro-2-propene-1-ol + NAD+
show the reaction diagram
-
6% of the activity with toluene
-
?
1,1-dichloro-1-propene + NADH + O2
?
show the reaction diagram
-
18% of the activity with toluene
-
-
?
1,3-dinitrobenzene + NADH + H+ + O2
?
show the reaction diagram
-
-
-
-
?
1-bromo-2-ethylbenzene + NADH + H+ + O2
(1S,2R)-4-bromo-3-ethylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-bromo-3-ethylbenzene + NADH + H+ + O2
(1S,2R)-5-bromo-3-ethylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-bromo-4-ethylbenzene + NADH + H+ + O2
(1R,2R)-3-bromo-6-ethylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-bromo-4-propylbenzene + NADH + H+ + O2
(1R,2R)-3-bromo-6-propylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-chloro-2-ethylbenzene + NADH + H+ + O2
(1S,2R)-4-chloro-3-ethylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-chloro-2-methyl-1-propene + NADH + O2
2-chloro-2-butene-1-ol + NAD+
show the reaction diagram
-
13% of the activity with toluene
-
?
1-chloro-3-ethylbenzene + NADH + H+ + O2
(1S,2R)-5-chloro-3-ethylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-chloro-3-propylbenzene + NADH + H+ + O2
(1S,2R)-5-chloro-3-propylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-chloro-4-ethylbenzene + NADH + H+ + O2
(1R,2R)-3-chloro-6-ethylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-chloro-4-propylbenzene + NADH + H+ + O2
(1R,2R)-3-chloro-6-propylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-ethyl-2-fluorobenzene + NADH + H+ + O2
(1S,2R)-3-ethyl-4-fluorocyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-ethyl-2-iodobenzene + NADH + H+ + O2
(1S,2R)-3-ethyl-4-iodocyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-ethyl-3-fluorobenzene + NADH + H+ + O2
(1S,2R)-3-ethyl-5-fluorocyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-ethyl-4-fluorobenzene + NADH + H+ + O2
(1R,2R)-3-ethyl-6-fluorocyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-ethyl-4-iodobenzene + NADH + H+ + O2
(1R,2R)-3-ethyl-6-iodocyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-fluoro-2-propylbenzene + NADH + H+ + O2
(1S,2R)-4-fluoro-3-propylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-fluoro-4-propylbenzene + NADH + H+ + O2
(1R,2R)-3-fluoro-6-propylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
1-indanone + NADH + O2
(S)-2-hydroxy-1-indanone + NAD+
show the reaction diagram
-
-
-
-
?
1-phenylcyclohexene + NADH + O2
(1S,2R)-3-(1-cyclohexenyl)-3,5-cyclohexadiene-1,2-diol + ?
show the reaction diagram
-
-
-
?
2,3-dichloro-1-propene + NADH + O2
2,3-dichloro-2-propene-1-ol + NAD+
show the reaction diagram
-
19% of the activity with toluene
-
?
2-acetoxyindane + O2 + NADH
indan-2-ol + (-)-cis-(1S,2R)-1,2-dihydroxyindane + (-)-trans-(1R,2R)-1,2-dihydroxyindane + (-)-(2R)-2-hydroxyindan-1-one + NAD+
show the reaction diagram
-
biotransformation with intact cells
-
?
2-bromoindane + O2 + NADH
(-)-cis-(1S,2R)-2-bromoindan-1-ol + (+)-trans-(1S,3S)-1,3-dihydroxy-2-bromoindane + NAD+
show the reaction diagram
-
biotransformation with intact cells
-
?
2-carbamoylindane + O2 + NADH
(-)-cis-(1S,2R)-2-azoindan-1-ol + NAD+
show the reaction diagram
-
biotransformation with intact cells
-
?
2-chloroaniline + NADH + H+ + O2
?
show the reaction diagram
-
-
-
-
?
2-chloroaniline + NADH + H+ + O2
? + NAD+
show the reaction diagram
-
degradation rates in decreasing order: 4-chloroaniline, 3-chloroaniline, 2-chloroaniline, 3,4-dichloroaniline
-
-
?
2-chloroindane + O2 + NADH
(-)-cis-(1S,2R)-2-chloroindan-1-ol + (+)-trans-(1R,2R)-2-chloroindan-1-ol + NAD+
show the reaction diagram
-
biotransformation with intact cells
-
?
2-chloroindane + O2 + NADH
(-)-trans-(1S,3S)-1,3-dihydroxy-2-chloroindane + NAD+
show the reaction diagram
-
biotransformation with intact cells
-
?
2-chlorothiophene + NADH
?
show the reaction diagram
-
-
-
-
?
2-cresol + NADH + H+ + O2
(1S,2R)-3-methylcyclohexa-3,5-diene-1,2,4-triol + (2R)-6-methylcyclohexa-3,5-diene-1,1,2-triol + NAD+
show the reaction diagram
-
poor substrate
-
-
?
2-cresol + NADH + H+ + O2
?
show the reaction diagram
-
activity in strain UV4
-
-
?
2-ethylthiophene + NADH
?
show the reaction diagram
-
-
-
-
?
2-hexene + NADH + O2
hexane-2,3-diol + NAD+
show the reaction diagram
-
-
-
?
2-indanone + NADH + O2
(S)-2-hydroxy-1-indanone + NAD+
show the reaction diagram
-
no reaction with 1-indanone
95% S-enantiomer, product is formed by incorporation of a single atom of molecular oxygen rather than by dioxygenation of enol tautomers of the ketone substrate
?
2-iodoindane + O2 + NADH
(-)-cis-(1S,2R)-1,2-dihydroxyindane + (-)-(1R)-1-hydroxyindene + (+)-(1S,3S)-1,3-dihydroxy-2-iodoindane + NAD+
show the reaction diagram
-
biotransformation with intact cells
-
-
?
2-methoxyindane + O2 + NADH
(-)-cis-(1S,2R)-2-methoxyindan-1-ol + (-)-trans-(1R,2R)-2-methoxyindan-1-ol + NAD+
show the reaction diagram
-
biotransformation with intact cells
-
?
2-methoxyphenol + NADH + H+ + O2
(4S,5S)-4,5-dihydroxy-2-methoxycyclohex-2-enone + NAD+
show the reaction diagram
-
-
-
-
?
2-methylindan + O2 + NADH
(-)-trans-(1R,3R)-1,3-dihydroxy-2-methylindane + (-)-cis-(2S,3R)-3-hydroxy-2-methylindan-1-one + (-)-cis-(1R,2R)-1-hydroxy-2-methylindane + (-)-(2R)-2-methyindan-1-one + NAD+
show the reaction diagram
-
biotransformation with intact cells
-
?
2-methylthiophene + NADH
?
show the reaction diagram
-
-
-
-
?
3,4-dichloro-1-butene + NADH + O2
3,4-dichlorobutane-1,2-diol + NAD+
show the reaction diagram
-
23% of the activity with toluene
-
?
3,4-dichloroaniline + NADH + H+ + O2
?
show the reaction diagram
-
-
-
-
?
3,4-dichloroaniline + NADH + H+ + O2
? + NAD+
show the reaction diagram
-
degradation rates in decreasing order: 4-chloroaniline, 3-chloroaniline, 2-chloroaniline, 3,4-dichloroaniline
-
-
?
3-(propan-2-yl)benzene-1,2-diol + NADH + H+ + O2
(4R,5S)-4,5-dihydroxy-3-(propan-2-yl)cyclohex-2-en-1-one + NAD+
show the reaction diagram
-
-
alkyl-substituted cyclohexenone cis-diols are formed as the most significant metabolites prior to extraction. In addition to the cyclohexenone cis-diols, (4R,5S)-4,5-dihydroxy-3-(propan-2-yl)cyclohex-2-en-1-one, and triols, (1R,2S,4R)-6-(propan-2-yl)cyclohex-5-ene-1,2,4-triol, are obtained from biotransformation of the phenol parent compound in strain UV4 cultures
-
?
3-(trifluoromethyl)benzene-1,2-diol + NADH + H+ + O2
(4R,5S)-4,5-dihydroxy-3-(trifluoromethyl)cyclohex-2-en-1-one + NAD+
show the reaction diagram
-
-
alkyl-substituted cyclohexenone cis-diols are formed as the most significant metabolites prior to extraction. In addition to the cyclohexenone cis-diols, (4R,5S)-4,5-dihydroxy-3-(trifluoromethyl)cyclohex-2-en-1-one, and triols, (1R,2S,4R)-6-(trifluoromethyl)cyclohex-5-ene-1,2,4-triol, are obtained from biotransformation of the phenol parent compound in strain UV4 cultures
-
?
3-chloroaniline + NADH + H+ + O2
?
show the reaction diagram
-
-
-
-
?
3-chloroaniline + NADH + H+ + O2
? + NAD+
show the reaction diagram
-
degradation rates in decreasing order: 4-chloroaniline, 3-chloroaniline, 2-chloroaniline, 3,4-dichloroaniline
-
-
?
3-cresol + NADH + H+ + O2
(1R,2S)-6-methylcyclohexa-3,5-diene-1,2,4-triol + (2S)-3-methylcyclohexa-3,5-diene-1,1,2-triol + NAD+
show the reaction diagram
-
-
-
-
?
3-cresol + NADH + H+ + O2
?
show the reaction diagram
3-ethylbenzene-1,2-diol + NADH + H+ + O2
(4R,5S)-3-ethyl-4,5-dihydroxycyclohex-2-en-1-one + NAD+
show the reaction diagram
-
-
alkyl-substituted cyclohexenone cis-diols are formed as the most significant metabolites prior to extraction. In addition to the cyclohexenone cis-diols, (4R,5S)-3-ethyl-4,5-dihydroxycyclohex-2-en-1-one, and triols, (1R,2S,4R)-6-ethylcyclohex-5-ene-1,2,4-triol, are obtained from biotransformation of the phenol parent compound in strain UV4 cultures
-
?
3-iodobenzene-1,2-diol + NADH + H+ + O2
(4S,5S)-4,5-dihydroxy-3-iodocyclohex-2-en-1-one + NAD+
show the reaction diagram
-
-
alkyl-substituted cyclohexenone cis-diols are formed as the most significant metabolites prior to extraction
-
?
3-methoxyphenol + NADH + H+ + O2
(1S,2S)-6-methoxycyclohexa-3,5-diene-1,2,4-triol + (2S)-3-methoxycyclohexa-3,5-diene-1,1,2-triol + NAD+
show the reaction diagram
-
-
-
-
?
3-methoxyphenol + NADH + H+ + O2
(4S,5S)-4,5-dihydroxy-3-methoxycyclohex-2-enone + NAD+
show the reaction diagram
-
-
-
-
?
3-methylbenzene-1,2-diol + NADH + H+ + O2
(4R,5S)-4,5-dihydroxy-3-methylcyclohex-2-en-1-one + NAD+
show the reaction diagram
-
-
alkyl-substituted cyclohexenone cis-diols are formed as the most significant metabolites prior to extraction
-
?
3-phenylcyclohexene + NADH + O2
(1S,2R)-3-(cyclohexenyl)-3,5-cyclohexadiene-1,2-diol + ?
show the reaction diagram
-
-
-
?
3-phenylphenol + NADH + H+ + O2
(2R,3S)-2,3-dihydro[1,1'-biphenyl]-2,3,5-triol + (2S)-[1,1'-biphenyl]-2,3,3(2H)-triol + NAD+
show the reaction diagram
-
-
-
-
?
3-tert-butylbenzene-1,2-diol + NADH + H+ + O2
(4R,5S)-3-tert-butyl-4,5-dihydroxycyclohex-2-en-1-one + NAD+
show the reaction diagram
-
-
alkyl-substituted cyclohexenone cis-diols are formed as the most significant metabolites prior to extraction. In addition to the cyclohexenone cis-diols, (4R,5S)-3-tert-butyl-4,5-dihydroxycyclohex-2-en-1-one, and triols, (1R,2S,4R)-6-tert-butylcyclohex-5-ene-1,2,4-triol, are obtained from biotransformation of the phenol parent compound in strain UV4 cultures
-
?
4-chloroaniline + NADH + H+ + O2
4-chlorocatechol + 2-amino-5-chlorophenol + NAD+
show the reaction diagram
4-cresol + NADH + H+ + O2
(1R,2R)-6-methylcyclohexa-3,5-diene-1,2,3-triol + (2S)-4-methylcyclohexa-3,5-diene-1,1,2-triol + NAD+
show the reaction diagram
-
-
-
-
?
4-picoline + NADH + O2
3-hydroxy-4-picoline + ?
show the reaction diagram
-
E. coli expressed mutant enzyme TDO 2-B38, in which the wild-type stop codon is replaced with a codon encoding threonine, exhibits 5.6-times higher activity towards 4-picoline than the wild-type enzyme
-
?
4-xylene + NADH + H+ + O2
4-xylenol + NAD+ + H2O
show the reaction diagram
-
activity in strain 39/D
-
-
?
5-cyanoindole + NADH + O2
?
show the reaction diagram
-
-
-
-
?
5-nitroindole + NADH + O2
?
show the reaction diagram
-
-
-
-
?
6-bromoindene + NADH + O2
6-bromoinden-1-ol + NAD+
show the reaction diagram
-
-
-
-
?
6-chloroindole + NADH + O2
?
show the reaction diagram
-
-
-
-
?
6-methoxyindole + NADH + O2
?
show the reaction diagram
-
-
-
-
?
7-bromoindole + NADH + O2
?
show the reaction diagram
-
-
-
-
?
7-chloroindole + NADH + O2
?
show the reaction diagram
-
-
-
-
?
allyl 2-bromobenzoate + NADH + H+ + O2
prop-2-en-1-yl (3S,4S)-2-bromo-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylate + allyl (5S,6R)-5,6-dihydroxy-2-bromocyclohex-1,3-dienecarboxylate + NAD+
show the reaction diagram
-
-
-
-
?
allyl 2-chlorobenzoate + NADH + H+ + O2
prop-2-en-1-yl (3S,4S)-2-chloro-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylate + allyl (5S,6R)-5,6-dihydroxy-2-chlorocyclohex-1,3-dienecarboxylate + NAD+
show the reaction diagram
-
-
-
-
?
allyl 2-fluorobenzoate + NADH + H+ + O2
prop-2-en-1-yl (3S,4S)-2-fluoro-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylate + allyl (5S,6R)-5,6-dihydroxy-2-fluorocyclohex-1,3-dienecarboxylate + NAD+
show the reaction diagram
-
-
-
-
?
allyl 2-iodobenzoate + NADH + H+ + O2
prop-2-en-1-yl (3S,4S)-3,4-dihydroxy-2-iodocyclohexa-1,5-diene-1-carboxylate + allyl (5S,6R)-5,6-dihydroxy-2-iodocyclohex-1,3-dienecarboxylate + NAD+
show the reaction diagram
-
-
-
-
?
benzaldoxime + NADH + H+ + O2
?
show the reaction diagram
-
-
-
-
?
benzamide iminol + NADH + H+ + O2
?
show the reaction diagram
-
-
-
-
?
benzene + NADH + O2
benzene cis-dihydrodiol + NAD+
show the reaction diagram
-
-
-
-
?
benzene + NADH + O2
benzene dihydrodiol + NAD+
show the reaction diagram
benzyl azide + NADH + H+ + O2
benzonitrile + NAD+ + ?
show the reaction diagram
-
-
-
-
?
biphenyl-2,3-diol + NADH + H+ + O2
(4R,5S)-4,5-dihydroxy-3-phenylcyclohex-2-en-1-one + NAD+
show the reaction diagram
-
-
alkyl-substituted cyclohexenone cis-diols are formed as the most significant metabolites prior to extraction. In addition to the cyclohexenone cis-diols, (4R,5S)-4,5-dihydroxy-3-phenylcyclohex-2-en-1-one, and triols, (1R,2S,4R)-6-phenylcyclohex-5-ene-1,2,4-triol, are obtained from biotransformation of the phenol parent compound in strain UV4 cultures
-
?
bromobenzene + NADH + H+ + O2
(1S,2S)-3-bromocyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
bromobenzene + NADH + H+ + O2
cis-(1S,2S)-3-bromocyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
butyl phenyl sulfide + NADH + O2
(R)-butyl phenyl sulfoxide + ?
show the reaction diagram
-
-
more than 98% R-enantiomer
?
chlorobenzene + NADH + H+ + O2
(1S,2S)-3-chlorocyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
chromane + NADH + O2
chromane-4-ol + chromane-4-one + NAD+
show the reaction diagram
-
-
-
-
?
cis-1,2-dichloroethene + NADH + H+ + O2
? + NAD+
show the reaction diagram
-
-
-
-
?
cis-1,2-dichloroethene + NADH + O2
?
show the reaction diagram
-
12% of the activity with toluene
-
-
?
cis-1,4-dichloro-2-butene + NADH + O2
1,4-dichlorobutane-2,3-diol
show the reaction diagram
-
18% of the activity with toluene
-
?
cis-1-bromo-1-propene + NADH + O2
?
show the reaction diagram
-
11% of the activity with toluene
-
-
?
cis-1-chloro-1-propene + NADH + O2
?
show the reaction diagram
-
5% of the activity with toluene
-
-
?
cis-2-heptene + NADH + O2
heptane-2,3-diol + NAD+
show the reaction diagram
-
-
-
?
cis-2-octene + NADH + O2
octane-2,3-diol + NAD+
show the reaction diagram
-
-
-
?
cis-2-pentene + NADH + O2
pentane-2,3-diol + NAD+
show the reaction diagram
-
16% of the activity with toluene
-
?
cis-dibromoethene + NADH + O2
1,2-dibromoethane-1,2-diol + NAD+
show the reaction diagram
-
13% of the activity with toluene
-
?
cumene + NADH + O2
?
show the reaction diagram
-
-
-
-
?
diphenylmethane + NADH + O2
(1S,2R)-3-benzylcyclohexa-3,5-diene-1,2-diol + ?
show the reaction diagram
-
-
-
-
?
ethenyl phenyl sulfide + NADH + O2
(R)-ethenyl phenyl sulfoxide + ?
show the reaction diagram
-
-
more than 98% R-enantiomer
?
ethyl 2-bromobenzoate + NADH + H+ + O2
ethyl (3S,4S)-2-bromo-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylate + ethyl (5S,6R)-5,6-dihydroxy-2-bromocyclohex-1,3-dienecarboxylate + NAD+
show the reaction diagram
-
-
-
-
?
ethyl 2-chlorobenzoate + NADH + H+ + O2
ethyl (3S,4S)-2-chloro-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylate + ethyl (5S,6R)-5,6-dihydroxy-2-chlorocyclohex-1,3-dienecarboxylate + NAD+
show the reaction diagram
-
-
-
-
?
ethyl 2-fluorobenzoate + NADH + H+ + O2
ethyl (3S,4S)-2-fluoro-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylate + ethyl (5S,6R)-5,6-dihydroxy-2-fluorocyclohex-1,3-dienecarboxylate + NAD+
show the reaction diagram
-
-
-
-
?
ethyl 2-iodobenzoate + NADH + H+ + O2
ethyl (3S,4S)-3,4-dihydroxy-2-iodocyclohex-1,5-dienecarboxylate + ethyl (5S,6R)-5,6-dihydroxy-2-iodocyclohex-1,3-dienecarboxylate + NAD+
show the reaction diagram
-
-
-
-
?
ethyl phenyl sulfide + NADH + O2
(R)-ethyl phenyl sulfoxide
show the reaction diagram
-
-
more than 98% R-enantiomer
?
ethylbenzene + NADH + H+ + O2
cis-2,3-dihydroxy-2,3-dihydroethylbenzene + NAD+
show the reaction diagram
-
-
-
-
?
ethylbenzene + NADH + H+ + O2
ethylbenzene cis-dihydrodiol + NAD+
show the reaction diagram
-
-
-
-
?
ethylbenzene + NADH + O2
?
show the reaction diagram
indan-1-ol + O2 + NADH
(-)-cis-(1S,2R)-1,2-dihydroxyindane + (-)-trans-(1R,2R)-1,2-dihydroxyindane + (-)-(2R)-2-hydroxyindan-1-one + NAD+
show the reaction diagram
-
biotransformation with intact cells
-
?
indan-2-ol + O2 + NADH
(-)-cis-(1S,2R)-1,2-dihydroxyindane + (-)-trans-(1R,2R)-1,2-dihydroxyindane + NAD+
show the reaction diagram
-
biotransformation with intact cells
-
?
indan-2-one + O2 + NADH
indan-2-ol + (-)-cis-(1S,2R)-1,2-dihydroxy-indane + (-)-trans-(1R,2R)-1,2-dihydroxy-indane + NAD+
show the reaction diagram
-
biotransformation with intact cells
-
?
indane + NADH + O2
(-)-(1R)-indanol + NAD+
show the reaction diagram
indene + NADH + H+ + O2
cis-(1S, 2R)-indandiol + 1-indenol + 1-indanone + NAD+
show the reaction diagram
-
-
-
-
?
indene + NADH + H+ + O2
cis-(1S,2R)-indandiol + (1S)-indenol + NAD+
show the reaction diagram
-
-
-
-
?
indene + NADH + H+ + O2
cis-1,2-dihydoxyindane + NAD+
show the reaction diagram
-
-
-
-
?
indene + O2 + NADH
(-)-cis-(1S,2R)-dihydroxyindan + (+)-(1S)-indenol + ?
show the reaction diagram
-
monooxygenase reaction of toluene dioxygenase
in addition the enzyme catalyzes the dioxygen addition of the nonaromatic double bond of indene to form cis-1,2-indanediol. The oxygen atom in 1-indenol and cis,1,2-indanediol is derived from molecular oxygen
?
indole + NADH + O2
?
show the reaction diagram
-
-
-
-
?
indole + NADH + O2
indigo + NAD+
show the reaction diagram
-
-
-
-
?
iodobenzene + NADH + H+ + O2
(1S,2S)-3-iodocyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
isopropyl phenyl sulfide + NADH + O2
(R)-isopropyl phenyl sulfoxide + ?
show the reaction diagram
-
-
more than 98% R-enantiomer
?
methoxymethyl phenyl sulfide + NADH + O2
(R)-methoxymethyl phenyl sulfoxide + ?
show the reaction diagram
-
-
more than 98% R-enantiomer
?
methyl (2-pyridyl) sulfide + NADH + O2
(R)-methyl (2-pyridyl) sulfoxide + ?
show the reaction diagram
-
-
more than 98% R-enantiomer
?
methyl (2-thienyl) sulfide + NADH + O2
(R)-methyl (2-thienyl) sulfoxide + ?
show the reaction diagram
-
-
more than 98% R-enantiomer
?
methyl 2-bromobenzoate + NADH + H+ + O2
methyl (3S,4S)-2-bromo-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylate + methyl (5S,6R)-2-bromo-5,6-dihydroxycyclohexa-1,3-diene-1-carboxylate + NAD+
show the reaction diagram
-
-
-
-
?
methyl 2-chlorobenzoate + NADH + H+ + O2
methyl (3S,4S)-2-chloro-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylate + methyl (5S,6R)-2-chloro-5,6-dihydroxycyclohexa-1,3-diene-1-carboxylate + NAD+
show the reaction diagram
-
-
-
-
?
methyl 2-fluorobenzoate + NADH + H+ + O2
methyl (3S,4S)-2-fluoro-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylate + methyl (5S,6R)-5,6-dihydroxy-2-fluorocyclohexa-1,3-dienecarboxylate + NAD+
show the reaction diagram
-
-
-
-
?
methyl 2-iodobenzoate + NADH + H+ + O2
methyl (3S,4S)-3,4-dihydroxy-2-iodocyclohexa-1,5-diene-1-carboxylate + methyl (5S,6R)-5,6-dihydroxy-2-iodocyclohexa-1,3-diene-1-carboxylate + NAD+
show the reaction diagram
-
-
-
-
?
methyl p-nitrophenyl sulfide + O2
methyl p-nitrophenyl sulfoxide
show the reaction diagram
-
-
86% S-enantiomer
?
methyl p-tolyl sulfide + O2
cis-1,2-dihydroxy-3-methyl-6-methylthiocyclohexa-3,5-diene
show the reaction diagram
-
-
-
?
methyl phenyl sulfide + NADH + O2
(R)-methyl phenyl sulfoxide + ?
show the reaction diagram
n-propyl 2-bromobenzoate + NADH + H+ + O2
propyl (3S,4S)-2-bromo-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylate + propyl (5S,6R)-2-bromo-5,6-dihydroxycyclohexa-1,3-diene-1-carboxylate + NAD+
show the reaction diagram
-
-
-
-
?
n-propyl 2-chlorobenzoate + NADH + H+ + O2
propyl (3S,4S)-2-chloro-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylate + propyl (5S,6R)-2-chloro-5,6-dihydroxycyclohexa-1,3-diene-1-carboxylate + NAD+
show the reaction diagram
-
-
-
-
?
n-propyl 2-fluorobenzoate + NADH + H+ + O2
propyl (3S,4S)-2-fluoro-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylate + n-propyl (5S,6R)-5,6-dihydroxy-2-fluorocyclohex-1,3-dienecarboxylate + NAD+
show the reaction diagram
-
-
-
-
?
n-propyl 2-iodobenzoate + NADH + H+ + O2
propyl (3S,4S)-3,4-dihydroxy-2-iodocyclohexa-1,5-diene-1-carboxylate + propyl (5S,6R)-5,6-dihydroxy-2-iodocyclohexa-1,3-diene-1-carboxylate + NAD+
show the reaction diagram
-
-
-
-
?
p-methoxyphenyl methyl sulfide + O2
p-methoxyphenyl methyl sulfoxide
show the reaction diagram
-
-
32% S-enantiomer
?
phenol + NADH + H+ + O2
(1S,2R)-cyclohexa-3,5-diene-1,2,4-triol + (2S)-cyclohexa-3,5-diene-1,1,2-triol + NAD+
show the reaction diagram
-
-
-
-
?
phenylcyclohexane + NADH + O2
(1S,2R)-3-(1-cyclohexyl)-3,5-cyclohexadiene-1,2-diol + ?
show the reaction diagram
-
-
-
?
propargyl 2-bromobenzoate + NADH + H+ + O2
prop-2-yn-1-yl (3S,4S)-2-bromo-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylate + propargyl (5S,6R)-5,6-dihydroxy-2-bromocyclohex-1,3-dienecarboxylate + NAD+
show the reaction diagram
-
-
-
-
?
propargyl 2-chlorobenzoate + NADH + H+ + O2
prop-2-yn-1-yl (3S,4S)-2-chloro-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylate + propargyl (5S,6R)-5,6-dihydroxy-2-chlorocyclohex-1,3-dienecarboxylate + NAD+
show the reaction diagram
-
-
-
-
?
propargyl 2-fluorobenzoate + NADH + H+ + O2
prop-2-yn-1-yl (3S,4S)-2-fluoro-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylate + propargyl (5S,6R)-5,6-dihydroxy-2-fluorocyclohex-1,3-dienecarboxylate + NAD+
show the reaction diagram
-
-
-
-
?
propargyl 2-iodobenzoate + NADH + H+ + O2
prop-2-yn-1-yl (3S,4S)-3,4-dihydroxy-2-iodocyclohexa-1,5-diene-1-carboxylate + propargyl (5S,6R)-5,6-dihydroxy-2-iodocyclohex-1,3-dienecarboxylate + NAD+
show the reaction diagram
-
-
-
-
?
propyl phenyl sulfide + NADH + O2
(R)-propyl phenyl sulfoxide + ?
show the reaction diagram
-
-
more than 98% R-enantiomer
?
propylbenzene + NADH + H+ + O2
(1S,2R)-3-propylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
propylbenzene + NADH + H+ + O2
cis-(1S,2R)-3-propylcyclohexa-3,5-diene-1,2-diol + cis-(1S,2R)-3-[(1R)-1-hydroxypropyl]cyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
styrene + NADH + H+ + O2
cis-2,3-dihydroxy-1-vinylcyclohexa-4,6-diene + (R)1-phenyl-1,2-ethanediol + NAD+
show the reaction diagram
-
-
-
-
?
thiophene + NADH
?
show the reaction diagram
-
-
-
-
?
toluene + NADH + H+ + O2
(1S,2R)-3-methylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
toluene + NADH + O2
(1S,2R)-3-methylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
trans-1,4-dichloro-2-butene + NADH + O2
1,4-dichloro-2-butanone + NAD+
show the reaction diagram
-
18% of the activity with toluene
-
?
trans-1-bromo-1-propene + NADH + O2
?
show the reaction diagram
-
3% of the activity with toluene
-
-
?
trans-1-chloro-1-propene + NADH + O2
?
show the reaction diagram
-
4% of the activity with toluene
-
-
?
trans-dibromoethene + NADH + O2
?
show the reaction diagram
-
5% of the activity with toluene
-
-
?
trichloroethene + NADH + H+ + O2
? + NAD+
show the reaction diagram
-
-
-
-
?
trichloroethylene + NADH + O2
?
show the reaction diagram
-
trichloroethylene degradation is mediated by the former degradation of toluene, benzene or cumene
-
-
?
trichloroethylene + O2 + NADH
?
show the reaction diagram
trichloroethylene + O2 + NADPH
formate + glyoxylate + NADP+
show the reaction diagram
-
-
formate accounts for 47% of the trichloroethylene oxidized, glyoxylate accounts for 17% of the trichloroethylene oxidized. Both carbon atoms give rise to formic acid
?
trifluoromethylbenzene + NADH + H+ + O2
(1S,2R)-3-(trifluoromethyl)cyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
xylene + NADH + O2
?
show the reaction diagram
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
toluene + NADH + H+ + O2
(1S,2R)-3-methylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
?
2-cresol + NADH + H+ + O2
?
show the reaction diagram
-
activity in strain UV4
-
-
?
3-cresol + NADH + H+ + O2
?
show the reaction diagram
-
activity in strain UV4formation of the corresponding cis-diol and catechol
-
-
?
4-xylene + NADH + H+ + O2
4-xylenol + NAD+ + H2O
show the reaction diagram
-
activity in strain 39/D
-
-
?
benzene + NADH + O2
benzene dihydrodiol + NAD+
show the reaction diagram
-
involved in the conversion of aromatic compounds to their corresponding catechols
-
-
?
ethylbenzene + NADH + O2
?
show the reaction diagram
-
involved in the conversion of aromatic compounds to their corresponding catechols
-
-
?
toluene + NADH + H+ + O2
(1S,2R)-3-methylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
-
-
-
-
?
toluene + NADH + O2
(1S,2R)-3-methylcyclohexa-3,5-diene-1,2-diol + NAD+
show the reaction diagram
xylene + NADH + O2
?
show the reaction diagram
-
involved in the conversion of aromatic compounds to their corresponding catechols
-
-
?
additional information
?
-
COFACTOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
NADPH
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
acetate
-
inhibits by hindering the tod gene expression
ethanol
-
inhibits by hindering the tod gene expression
phenol
-
competitive inhibition
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
additional information
additional information
-
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
0.045
-
with benzene as substrate
0.054
-
with ethylbenzene as substrate
0.056
-
with toluene as substrate
2.46
-
units per mg of alpha-subunit of oxygenase
additional information
-
-
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
6.6 - 7.5
-
NADH-ferredoxinTOL reductase component
pI VALUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
7.8
-
about, TodT
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
-
UniProt
Manually annotated by BRENDA team
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
metabolism
physiological function
-
expression of genes encoding toluene dioxygenase complex todC1C2BA in Escherichia coli results in the ability to degrade 4-chloroaniline
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
108000
-
TodS
14700
-
ferredoxinTOL component of the toluene dioxygenase, equilibrium sedimentation
151000
-
oxygenase component, gel filtration
15300
-
alpha2beta2, 2 * 46000 + 2 * 15300, oxygenase component of toluene dioxygenase
15500
-
1 * 15500, ferredoxinTOL component of the toluene dioxygenase, SDS-PAGE
20800
-
x * 52500 + x * 20800, oxygenase component, SDS-PAGE
28000
-
phosphorylated TodT, gel filtration
46000
46500
-
NADH-ferredoxinTOL reductase component, gel filtration
52500
-
x * 52500 + x * 20800, oxygenase component, SDS-PAGE
additional information
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
?
-
x * 52500 + x * 20800, oxygenase component, SDS-PAGE
hexamer
-
enzyme is a heterohexamer containing a catalytic and a structural subunit type, consists of three domains: an FAD-binding domain, an NADH-binding domain and a C-terminal domain
monomer
tetramer
-
alpha2beta2, 2 * 46000 + 2 * 15300, oxygenase component of toluene dioxygenase
additional information
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
phosphoprotein
-
TodS exhibits basal autophosphorylation activity that increases in the presence of toluene and is translated as an increase in the rate of transphosphorylation of TodT, TodT phosphorylation occurs only with the folded protein by the TodS sensor kinase, binding site analysis, overview
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
hanging drop and sitting drop vapour diffusion method using 40% (w/v) polyethylene glycol 600, 0.1 M sodium citrate pH 6.1 and 20-50 mM Fe(NH4)2(SO4)
-
purified recombinant enzyme system components, hanging-drop or sitting-drop vapour diffusion method, from 1.4 M ammonium sulfate, 0.1 M HEPES, pH 7.7. TDO-F crystallized in 38% PEG 8000, 0.1 M MES pH 6.1 or 37% PEG 8000, 0.1 M MES, pH 5.8. Apo-TDO-O crystallizes in 40% w/v PEG 600, 0.1 M sodium citrate, pH 5.8. Cocrystallization experiments with Fe(NH4)2(SO4)2 and toluene were performed under strict anaerobic conditions in 40% w/v PEG 600, 0.1 M sodium citrate pH 6.1, 20-50 mM Fe(NH4)2(SO4)2 and 20 mM toluene, X-ray diffraction structure determinhation and analysis at 1.2-3.2 A resolution, molecular replacement, structure modelling, overview
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
D219A
-
mutation at alpha-subunit of oxygenase component completely abolishes toluene dioxygenase activity, mutation completely eliminates formation of cis-toluene dihydrodiol
E214A
-
mutation at alpha-subunit of oxygenase component completely abolishes toluene dioxygenase activity, mutation completely eliminates formation of cis-toluene dihydrodiol
E609L
-
increased activity with all substrates
F366
-
the mutant shows strongly reduced activity compared to the wild type enzyme
H222A
-
mutation at alpha-subunit of oxygenase component completely abolishes toluene dioxygenase activity, mutation completely eliminates formation of cis-toluene dihydrodiol
H228A
-
mutation at alpha-subunit of oxygenase component completely abolishes toluene dioxygenase activity, mutation completely eliminates formation of cis-toluene dihydrodiol
I324F
-
the mutant shows reduced activity compared to the wild type enzyme
T365N
-
the mutant shows slightly reduced activity compared to the wild type enzyme
Y221A
-
mutation at alpha-subunit of oxygenase component, 42% of the activity of the wild-type enzyme, formation of cis-toluene dihydrodiol is reduced
Y266A
-
mutation at alpha-subunit of oxygenase component, 12% of the activity of the wild-type enzyme, formation of cis-toluene dihydrodiol is reduced
additional information
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
-20°C, ferredoxinTOL component of the toluene dioxygenase, stable for over 10 weeks
-
-20°C, purified NADH-ferredoxinTOL reductase component is stable for two weeks
-
0-4°C, ferredoxinTOL component of the toluene dioxygenase, stable for up to 72 h
-
0-4°C, purified NADH-ferredoxinTOL reductase component is stable for up to 30 h
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
beta-subunit of oxygenase component
-
ferredoxinTOL component of the toluene dioxygenase
-
NADH-ferredoxinTOL reductase component of toluene dioxygenase
-
oxygenase component, ISPTOL
-
Q-Sepharose FF column chromatography
-
rapid purification of oxygenase component from a polyol-responsive monoclonal antibody
-
recombinant alpha-subunit of the oxygenase component
-
recombinant TDO-F, TDO-R, TDO-O and apo-TDO-O from Escherichia coli
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
cloned and expressed in Escherichia coli HB101
-
co-overexpression of TDO-F, TDO-R, TDO-O and apo-TDO-O in Escherichia coli
-
expressed in Escherichia coli
-
expressed in Escherichia coli BL21(DE3) cells
-
expressed in Escherichia coli DH5alpha cells
-
expressed in Escherichia coli DHalpha
-
expressed in Escherichia coli JM109
-
expressed in Escherichia coli JM109 cells
-
expressed in Escherichia coli strain CGSC7692 (pDTG601A)
-
expressed in Escherichia coli strain JM109
-
expression into Escherichia coli BW25113 DELTAgldA. A strongly regulated toluene dioxygenase plasmid system for the dearomatizing cis-1,2-dihydroxylation of benzene is developed. Escherichia coli BW25113 DELTAgldA strain harboring pBAD18-TDO system is a suitable platform for the production of the valuable compound cis-1,2-dihydrocatechol (DHC) at gram scale
expression of genes encoding toluene dioxygenase complex todC1C2BA in Escherichia coli
-
expression of mutant enzyme TDO 2-B38, in which the wild-type stop codon is replaced with a codon encoding Thr
-
expression of wild-type TodT, C-terminal part of TodT, and TodT mutants in Escherichia coli strain BL21(DE3). Genes todS and todT are transcribed from a single promoter called PtodX once the response regulator TodT is phosphorylated by the TodS sensor kinase in response to pathway substrates
-
genes encoding the three components of the toluene dioxygenase overproduced in Escherichia coli JM109: 1. the reductaseTOL - tolA, 2. the ferredoxinTOL and 3. the two subunits of the terminal dioxygenase - todC1C2
-
genes todC1C2BA, expression of the enzyme components todC1, C2, B, and A in Escherichia coli strain JM109 and in Rhodococcus opacus strain B-4. In Escherichia coli JM109, the yield of hydroxylated monoaromatics decreased with increasing substrate hydrophobicity, while in Rhodococcus opacus B-4, high performance in the hydroxylation of monoaromatics occurs, irrespective of substrate hydrophobicity.
-
EXPRESSION
ORGANISM
UNIPROT
LITERATURE
the todST operon is transcribed from a main promoter and that the +1 initiation point is located 31 nucleotides upstream from the A of the first ATG codon and is preceded by a -10/-35 canonical promoter. Expression from PtodS is under catabolite control, and in cells growing with glucose, the level of expression from this promoter is reduced, which in turn translates to low levels of the TodS/TodT regulators and results in a decrease of transcription from the PtodX promoter. The main underlying regulatory mechanisms of the tod structural genes are at the levels of catabolite repression control from PtodS and transcription activation, mediated by the TodT response regulator through a regulatory cascade in which the effector enhances autophosphorylation of TodS by ATP, with subsequent transphosphorylation of TodT
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
analysis
-
whole cell bioassay for the detection of benzene, toluene, ethyl benzene, and xylenes (BTEX)
degradation
-
stable isotopes could serve as a diagnostic for detecting aerobic biodegradation of TCE by toluene oxygenases at contaminated sites. There are no significant differences in fractionation among the enzymes toluene 3-monoxygenase, toluene 4-monooxygenase, and toluene 2,3-dioxygenase for compounds trichloroethene and cis-1,2-dichloroethene
synthesis
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Subramanian, V.; Liu, T.N.; Yeh, W.K.; Narro, M.; Gibson, D.T.
Purification and properties of NADH-ferredoxinTOL reductase. A component of toluene dioxygenase from Pseudomonas putida
J. Biol. Chem.
256
2723-2730
1981
Pseudomonas putida
Manually annotated by BRENDA team
Subramanian, V.; Liu, T.N.; Yeh, W.K.; Gibson, D.T.
Toluene dioxygenase: purification of an iron-sulfur protein by affinity chromatography
Biochem. Biophys. Res. Commun.
91
1131-1139
1979
Pseudomonas putida
Manually annotated by BRENDA team
Wackett, L.P.; Kwart, L.D.; Gibson, D.T.
Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida
Biochemistry
27
1360-1367
1988
Pseudomonas putida
Manually annotated by BRENDA team
Yeh, W.K.; Gibson, D.T.; Liu, T.N.
Toluene dioxygenase: a multicomponent enzyme system
Biochem. Biophys. Res. Commun.
78
401-410
1977
Pseudomonas putida
Manually annotated by BRENDA team
Zylstra, G.J.; Gibson, D.T.
Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli
J. Biol. Chem.
264
14940-14946
1989
Pseudomonas putida
Manually annotated by BRENDA team
Stephens, G.M.; Sidebotham, J.M.; Mann, N.H.; Dalton, H.
Cloning and expression in Escherichia coli of the toluene dioxygenase gene from Pseudomonas putida
FEMS Microbiol. Lett.
57
295-300
1989
Pseudomonas putida, Pseudomonas putida NCIB11767
Manually annotated by BRENDA team
Zylstra, G.J.; Wackett, L.P.; Gibson, D.T.
Trichloroethylene degradation by Escherichia coli containing the cloned Pseudomonas putida F1 toluene dioxygenase genes
Appl. Environ. Microbiol.
55
3162-3166
1989
Pseudomonas putida
Manually annotated by BRENDA team
Subramanian, V.; Liu, T.N.; Yeh, W.K.; Serdar, C.M.; Wackett, L.P.; Gibson, D.T.
Purification and properties of ferredoxinTOL. A component of toluene dioxygenase from Pseudomonas putida F1
J. Biol. Chem.
260
2355-2363
1985
Pseudomonas putida
Manually annotated by BRENDA team
Zylstra, G.J.; McCombie, W.R.; Gibson, D.T.; Finette, B.A.
Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon
Appl. Environ. Microbiol.
54
1498-1503
1988
Pseudomonas putida
Manually annotated by BRENDA team
Wackett, L.P.
Toluene dioxygenase from Pseudomonas putida F1
Methods Enzymol.
188
39-45
1990
Pseudomonas putida
Manually annotated by BRENDA team
Lange, C.C.; Wackett, L.P.
Oxidation of aliphatic olefins by toluene dioxygenase: enzyme rates and product identification
J. Bacteriol.
179
3858-3865
1997
Pseudomonas putida
Manually annotated by BRENDA team
Jiang, H.; Parales, R.E.; Gibson, D.T.
The alpha subunit of toluene dioxygenase from Pseudomonas putida F1 can accept electrons from reduced FerredoxinTOL but is catalytically inactive in the absence of the beta subunit
Appl. Environ. Microbiol.
65
315-318
1999
Pseudomonas putida
Manually annotated by BRENDA team
Lynch, N.A.; Jiang, H.; Gibson, D.T.
Rapid purification of the oxygenase component of toluene dioxygenase from a polyol-responsive monoclonal antibody
Appl. Environ. Microbiol.
62
2133-2137
1996
Pseudomonas putida
Manually annotated by BRENDA team
Jiang, H.; Parales, R.E.; Lynch, N.A.; Gibson, D.T.
Site-directed mutagenesis of conserved amino acids in the alpha subunit of toluene dioxygenase: potential mononuclear non-heme iron coordination sites
J. Bacteriol.
178
3133-3139
1996
Pseudomonas putida
Manually annotated by BRENDA team
Leahy, J.G.; Olsen, R.H.
Kinetics of toluene degradation by toluene-oxidizing bacteria as a function of oxygen concentration, and the effect of nitrate
FEMS Microbiol. Ecol.
23
23-30
1997
Pseudomonas sp., Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas sp. W31, Pseudomonas fluorescens CFS215
Manually annotated by BRENDA team
Lee, K.; Brand, J.M.; Gibson, D.T.
Stereospecific sulfoxidation by toluene and naphthalene dioxygenases
Biochem. Biophys. Res. Commun.
212
9-15
1995
Pseudomonas putida
Manually annotated by BRENDA team
Li, S.; Wackett, L.P.
Trichloroethylene oxidation by toluene dioxygenase
Biochem. Biophys. Res. Commun.
185
443-451
1992
Pseudomonas putida
Manually annotated by BRENDA team
Resnick, S.M.; Torok, D.S.; Lee, K.; Brand, J.M.; Gibson, D.T.
Regiospecific and stereoselective hydroxylation of 1-indanone and 2-indanone by naphthalene dioxygenase and toluene dioxygenase
Appl. Environ. Microbiol.
60
3323-3328
1994
Pseudomonas putida, Pseudomonas putida F39D
Manually annotated by BRENDA team
Bui, V.P.; Vidar Hansen, T.; Stenstrom, Y.; Hudlicky, T.; Ribbons, D.W.
A study of substrate specificity of toluene dioxygenase in processing aromatic compounds containing benzylic and/or remote chiral centers
New J. Chem.
25
116-124
2001
Pseudomonas putida
-
Manually annotated by BRENDA team
Boyd, D.R.; Sharma, N.D.; Haughey, S.A.; Kennedy, M.A.; McMurray, B.T.; Sheldrake, G.N.; Allen, C.C.R.; Dalton, H.; Sproule, K.
Toluene and naphthalene dioxygenase-catalyzed sulfoxidation of alkyl aryl sulfides
J. Chem. Soc. Perkin Trans.
1
1929-1934
1998
Pseudomonas putida, Pseudomonas putida UV4
-
Manually annotated by BRENDA team
Bowers, N.I.; Boyd, D.R.; Sharma, N.D.; Goodrich, P.A.; Groocock, M.R.; Blacker, A.J.; Goode, P.; Dalton, H.
Stereoselective benzylic hydroxylation of 2-substituted indanes using toluene dioxygenase as biocatalyst
J. Chem. Soc. Perkin Trans.
1
1453-1462
1999
Pseudomonas putida, Pseudomonas putida UV4
-
Manually annotated by BRENDA team
Sakamoto, T.; Joern, J.M.; Arisawa, A.; Arnold, F.H.
Laboratory evolution of toluene dioxygenase to accept 4-picoline as a substrate
Appl. Environ. Microbiol.
67
3882-3887
2001
Pseudomonas putida
Manually annotated by BRENDA team
Bagneris, C.; Cammack, R.; Mason, J.R.
Subtle difference between benzene and toluene dioxygenases of Pseudomonas putida
Appl. Environ. Microbiol.
71
1570-1580
2005
Pseudomonas putida
Manually annotated by BRENDA team
Xu, Z.; Mulchandani, A.; Chen, W.
Detection of benzene, toluene, ethyl benzene, and xylenes (BTEX) using toluene dioxygenase-peroxidase coupling reactions
Biotechnol. Prog.
19
1812-1815
2003
Pseudomonas putida
Manually annotated by BRENDA team
Ni, Y.; Chen, R.R.
Lipoprotein mutation accelerates substrate permeability-limited toluene dioxygenase-catalyzed reaction
Biotechnol. Prog.
21
799-805
2005
Pseudomonas putida
Manually annotated by BRENDA team
Kim, J.Y.; Lee, K.; Kim, Y.; Kim, C.K.; Lee, K.
Production of dyestuffs from indole derivatives by naphthalene dioxygenase and toluene dioxygenase
Lett. Appl. Microbiol.
36
343-348
2003
Pseudomonas putida
Manually annotated by BRENDA team
Boyd, D.R.; Sharma, N.D.; Bowers, N.I.; Boyle, R.; Harrison, J.S.; Lee, K.; Bugg, T.D.; Gibson, D.T.
Stereochemical and mechanistic aspects of dioxygenase-catalysed benzylic hydroxylation of indene and chromane substrates
Org. Biomol. Chem.
1
1298-1307
2003
Pseudomonas putida, Pseudomonas putida UV4
Manually annotated by BRENDA team
Boyd, D.R.; Sharma, N.D.; Gunaratne, N.; Haughey, S.A.; Kennedy, M.A.; Malone, J.F.; Allen, C.C.; Dalton, H.
Dioxygenase-catalysed oxidation of monosubstituted thiophenes: sulfoxidation versus dihydrodiol formation
Org. Biomol. Chem.
1
984-994
2003
Pseudomonas putida, Pseudomonas putida UV4
Manually annotated by BRENDA team
Lee, K.; Friemann, R.; Parales, J.V.; Gibson, D.T.; Ramaswamy, S.
Purification, crystallization and preliminary X-ray diffraction studies of the three components of the toluene 2,3-dioxygenase enzyme system
Acta crystallogr. Sect. F
61
669-672
2005
Pseudomonas putida
Manually annotated by BRENDA team
Boyd, D.R.; Sharma, N.D.; Bowers, N.I.; Dalton, H.; Garrett, M.D.; Harrison, J.S.; Sheldrake, G.N.
Dioxygenase-catalysed oxidation of disubstituted benzene substrates: benzylic monohydroxylation versus aryl cis-dihydroxylation and the meta effect
Org. Biomol. Chem.
4
3343-3349
2006
Pseudomonas putida, Pseudomonas putida UV4
Manually annotated by BRENDA team
Boyd, D.R.; Sharma, N.D.; Llamas, N.M.; Coen, G.P.; McGeehin, P.K.; Allen, C.C.
Chemoenzymatic synthesis of trans-dihydrodiol derivatives of monosubstituted benzenes from the corresponding cis-dihydrodiol isomers
Org. Biomol. Chem.
5
514-522
2007
Pseudomonas putida, Pseudomonas putida UV4
Manually annotated by BRENDA team
Ramos-Gonzalez, M.I.; Ben-Bassat, A.; Campos, M.J.; Ramos, J.L.
Genetic engineering of a highly solvent-tolerant Pseudomonas putida strain for biotransformation of toluene to p-hydroxybenzoate
Appl. Environ. Microbiol.
69
5120-5127
2003
Pseudomonas putida, Pseudomonas putida DOT-T1E
Manually annotated by BRENDA team
Morono, Y.; Unno, H.; Tanji, Y.; Hori, K.
Addition of aromatic substrates restores trichloroethylene degradation activity in Pseudomonas putida F1
Appl. Environ. Microbiol.
70
2830-2835
2004
Pseudomonas putida
Manually annotated by BRENDA team
Shingleton, J.T.; Applegate, B.A.; Baker, A.J.; Sayler, G.S.; Bienkowski, P.R.
Quantification of toluene dioxygenase induction and kinetic modeling of TCE cometabolism by Pseudomonas putida TVA8
Biotechnol. Bioeng.
76
341-350
2001
Pseudomonas putida, Pseudomonas putida TVA8
Manually annotated by BRENDA team
Lovanh, N.; Alvarez, P.J.
Effect of ethanol, acetate, and phenol on toluene degradation activity and tod-lux expression in Pseudomonas putida TOD102: evaluation of the metabolic flux dilution model
Biotechnol. Bioeng.
86
801-808
2004
Pseudomonas putida
Manually annotated by BRENDA team
Woo, H.; Sanseverino, J.; Cox, C.D.; Robinson, K.G.; Sayler, G.S.
The measurement of toluene dioxygenase activity in biofilm culture of Pseudomonas putida F1
J. Microbiol. Methods
40
181-191
2000
Pseudomonas putida
Manually annotated by BRENDA team
Zhang, N.; Stewart, B.G.; Moore, J.C.; Greasham, R.L.; Robinson, D.K.; Buckland, B.C.; Lee, C.
Directed evolution of toluene dioxygenase from Pseudomonas putida for improved selectivity toward cis-indandiol during indene bioconversion
Metab. Eng.
2
339-348
2000
Pseudomonas putida
Manually annotated by BRENDA team
Boyd, D.R.; Sharma, N.D.; Coen, G.P.; Gray, P.J.; Malone, J.F.; Gawronski, J.
Enzyme-catalysed synthesis and absolute configuration assignments of cis-dihydrodiol metabolites from 1,4-disubstituted benzenes
Chemistry
13
5804-5811
2007
Pseudomonas putida, Pseudomonas putida UV4
Manually annotated by BRENDA team
Ouyang, S.P.; Liu, Q.; Sun, S.Y.; Chen, J.C.; Chen, G.Q.
Genetic engineering of Pseudomonas putida KT2442 for biotransformation of aromatic compounds to chiral cis-diols
J. Biotechnol.
132
246-250
2007
Pseudomonas putida, Pseudomonas putida KT 2442
Manually annotated by BRENDA team
Friemann, R.; Lee, K.; Brown, E.N.; Gibson, D.T.; Eklund, H.; Ramaswamy, S.
Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system
Acta Crystallogr. Sect. D
65
24-33
2009
Pseudomonas putida
Manually annotated by BRENDA team
Boyd, D.R.; Sharma, N.D.; Malone, J.F.; Allen, C.C.
New families of enantiopure cyclohexenone cis-diol, o-quinol dimer and hydrate metabolites from dioxygenase-catalysed dihydroxylation of phenols
Chem. Commun. (Camb. )
2009
3633-3635
2009
Pseudomonas putida
Manually annotated by BRENDA team
Kwit, M.; Gawronski, J.; Boyd, D.R.; Sharma, N.D.; Kaik, M.; More O'Ferrall, R.A.; Kudavalli, J.S.
Toluene dioxygenase-catalyzed synthesis of cis-dihydrodiol metabolites from 2-substituted naphthalene substrates: assignments of absolute configurations and conformations from circular dichroism and optical rotation measurements
Chemistry
14
11500-11511
2008
Pseudomonas putida, Pseudomonas putida UV4
Manually annotated by BRENDA team
Hamada, T.; Maeda, Y.; Matsuda, H.; Sameshima, Y.; Honda, K.; Omasa, T.; Kato, J.; Ohtake, H.
Effect of cell-surface hydrophobicity on bacterial conversion of water-immiscible chemicals in two-liquid-phase culture systems
J. Biosci. Bioeng.
108
116-120
2009
Pseudomonas putida
Manually annotated by BRENDA team
Lacal, J.; Guazzaroni, M.E.; Busch, A.; Krell, T.; Ramos, J.L.
Hierarchical binding of the TodT response regulator to its multiple recognition sites at the tod pathway operon promoter
J. Mol. Biol.
376
325-337
2008
Pseudomonas putida
Manually annotated by BRENDA team
Busch, A.; Lacal, J.; Silva-Jimenez, H.; Krell, T.; Ramos, J.L.
Catabolite repression of the TodS/TodT two-component system and effector-dependent transphosphorylation of TodT as the basis for toluene dioxygenase catabolic pathway control
J. Bacteriol.
192
4246-4250
2010
Pseudomonas putida
Manually annotated by BRENDA team
Boyd, D.R.; Sharma, N.D.; Stevenson, P.J.; Blain, M.; McRoberts, C.; Hamilton, J.T.; Argudo, J.M.; Mundi, H.; Kulakov, L.A.; Allen, C.C.
Dioxygenase-catalysed cis-dihydroxylation of meta-substituted phenols to yield cyclohexenone cis-diol and derived enantiopure cis-triol metabolites
Org. Biomol. Chem.
9
1479-1490
2011
Pseudomonas putida, Pseudomonas putida UV4
Manually annotated by BRENDA team
Clingenpeel, S.; Moan, J.; McGrath, D.; Hungate, B.; Watwood, M.
Stable carbon isotope fractionation in chlorinated ethene degradation by bacteria expressing three toluene oxygenases
Front. Microbiol.
3
63
2012
Pseudomonas putida
Manually annotated by BRENDA team
Lin, T.Y.; Werther, T.; Jeoung, J.H.; Dobbek, H.
Suppression of electron transfer to dioxygen by charge transfer and electron transfer complexes in the FAD-dependent reductase component of toluene dioxygenase
J. Biol. Chem.
287
38338-38346
2012
Pseudomonas putida
Manually annotated by BRENDA team
Nitisakulkan, T.; Oku, S.; Kudo, D.; Nakashimada, Y.; Tajima, T.; Vangnai, A.; Kato, J.
Degradation of chloroanilines by toluene dioxygenase from Pseudomonas putida T57
J. Biosci. Bioeng.
117
292-297
2013
Pseudomonas putida, Pseudomonas putida T57
Manually annotated by BRENDA team
Vila, M.; Umpierrez, D.; Veiga, N.; Seoane, G.; Carrera, I.; Rodriguez Giordano, S.
Site-directed mutagenesis studies on the toluene dioxygenase enzymatic system Role of phenylalanine 366, threonine 365 and isoleucine 324 in the chemo-, regio-, and stereoselectivity
Adv. Synth. Catal.
359
2149-2157
2017
Pseudomonas putida
-
Manually annotated by BRENDA team
Vila, M.A.; Pazos, M.; Iglesias, C.; Veiga, N.; Seoane, G.; Carrera, I.
Toluene dioxygenase-catalysed oxidation of benzyl azide to benzonitrile mechanistic insights for an unprecedented enzymatic transformation
ChemBioChem
17
291-295
2016
Pseudomonas putida
Manually annotated by BRENDA team
Nitisakulkan, T.; Oku, S.; Kudo, D.; Nakashimada, Y.; Tajima, T.; Vangnai, A.; Kato, J.
Degradation of chloroanilines by toluene dioxygenase from Pseudomonas putida T57
J. Biosci. Bioeng.
117
292-297
2014
Pseudomonas putida, Pseudomonas putida T57
Manually annotated by BRENDA team
Vila, M.; Umpierrez, D.; Seoane, G.; Rodriguez, S.; Carrera, I.; Veiga, N.
Computational insights into the oxidation of mono- and 1,4 disubstituted arenes by the toluene dioxygenase enzymatic complex
J. Mol. Catal. B
133
5410-5419
2016
Pseudomonas putida (A5W4F2), Pseudomonas putida strain ATCC 700007 (A5W4F2)
-
Manually annotated by BRENDA team
Hoering, P.; Rothschild-Mancinelli, K.; Sharma, N.; Boyd, D.; Allen, C.
Oxidative biotransformations of phenol substrates catalysed by toluene dioxygenase A molecular docking study
J. Mol. Catal. B
134
396-406
2016
Pseudomonas putida, Pseudomonas putida UV4
-
Manually annotated by BRENDA team
Boyd, D.R.; Sharma, N.D.; Malone, J.F.; McIntyre, P.B.; McRoberts, C.; Floyd, S.; Allen, C.C.; Gohil, A.; Coles, S.J.; Horton, P.N.; Stevenson, P.J.
Toluene dioxygenase-catalyzed synthesis and reactions of cis-diol metabolites derived from 2- and 3-methoxyphenols
J. Org. Chem.
80
3429-3439
2015
Pseudomonas putida, Pseudomonas putida UV4
Manually annotated by BRENDA team
Froese, J.; Endoma-Arias, M.; Hudlicky, T.
Processing of o-halobenzoates by toluene dioxygenase. The role of the alkoxy functionality in the regioselectivity of the enzymatic dihydroxylation reaction
Org. Process Res. Dev.
18
801-809
2014
Pseudomonas putida
-
Manually annotated by BRENDA team
Wissner, J.L.; Ludwig, J.; Escobedo-Hinojosa, W.; Hauer, B.
An enhanced toluene dioxygenase platform for the production of cis-1,2-dihydrocatechol in Escherichia coli BW25113 lacking glycerol dehydrogenase activity
J. Biotechnol.
325
380-388
2021
Pseudomonas putida (A5W4F2 AND A5W4F1), Pseudomonas putida
Manually annotated by BRENDA team