Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 1.11.1.7 - peroxidase and Organism(s) Armoracia rusticana and UniProt Accession K7ZW28

for references in articles please use BRENDA:EC1.11.1.7
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     1 Oxidoreductases
         1.11 Acting on a peroxide as acceptor
             1.11.1 Peroxidases
                1.11.1.7 peroxidase
IUBMB Comments
Heme proteins with histidine as proximal ligand. The iron in the resting enzyme is Fe(III). They also peroxidize non-phenolic substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS). Certain peroxidases (e.g. lactoperoxidase, SBP) oxidize bromide, iodide and thiocyanate.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Armoracia rusticana
UNIPROT: K7ZW28
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Armoracia rusticana
The enzyme appears in selected viruses and cellular organisms
Reaction Schemes
2
phenolic donor
+
=
2
phenoxyl radical of the donor
+
2
Synonyms
horseradish peroxidase, horseradish peroxidase (hrp), rhepo, lactoperoxidase, eosinophil peroxidase, guaiacol peroxidase, heme peroxidase, rubrerythrin, cyp119, thiol peroxidase, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
donor:hydrogen peroxide oxidoreductase
-
-
eosinophil peroxidase
-
-
-
-
extensin peroxidase
-
-
-
-
guaiacol peroxidase
-
-
-
-
heme peroxidase
-
-
-
-
horseradisch peroxidase
-
-
horseradish peroxidase
horseradish peroxidase (HRP)
-
-
-
-
horseradish peroxidase C
-
-
HP
-
acidic isoform, type A
HRP-C
isoenzyme C of horseradish peroxidase
Japanese radish peroxidase
-
-
-
-
lactoperoxidase
-
-
-
-
MPO
-
-
-
-
myeloperoxidase
-
-
-
-
oxyperoxidase
-
-
-
-
peroxidase
-
-
protoheme peroxidase
-
-
-
-
pyrocatechol peroxidase
-
-
-
-
rHRP1
-
apo-horseradish peroxidase constituted with the artificial prostethic group heminD1
rHRP2
-
apo-horseradish peroxidase constituted with the artificial prostethic group heminD2
scopoletin peroxidase
-
-
-
-
thiocyanate peroxidase
-
-
-
-
verdoperoxidase
-
-
-
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
redox reaction
-
-
-
-
oxidation
-
-
-
-
reduction
-
-
-
-
PATHWAY SOURCE
PATHWAYS
-
-, -, -, -, -, -, -
SYSTEMATIC NAME
IUBMB Comments
phenolic donor:hydrogen-peroxide oxidoreductase
Heme proteins with histidine as proximal ligand. The iron in the resting enzyme is Fe(III). They also peroxidize non-phenolic substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS). Certain peroxidases (e.g. lactoperoxidase, SBP) oxidize bromide, iodide and thiocyanate.
CAS REGISTRY NUMBER
COMMENTARY hide
9003-99-0
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2
? + H2O
show the reaction diagram
-
-
-
?
(2Z)-2-(4-aminophenyl)-3-(1H-indol-2-yl)prop-2-enenitrile + H2O2
?
show the reaction diagram
-
-
-
-
?
(2Z)-2-(4-aminophenyl)-3-(4-hydroxyphenyl)prop-2-enenitrile + H2O2
?
show the reaction diagram
-
-
-
-
?
(2Z)-2-(4-aminophenyl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-enenitrile + H2O2
?
show the reaction diagram
-
-
-
-
?
(2Z)-2-(4-aminophenyl)-3-anthracen-9-ylprop-2-enenitrile + H2O2
?
show the reaction diagram
-
-
-
-
?
(2Z)-2-(4-aminophenyl)-3-pyren-1-ylprop-2-enenitrile + H2O2
?
show the reaction diagram
-
-
-
-
?
(2Z)-2-(4-aminophenyl)-3-thiophen-2-ylprop-2-enenitrile + H2O2
?
show the reaction diagram
-
-
-
-
?
(2Z)-3-(1H-indol-3-yl)-2-(4-nitrophenyl)prop-2-enenitrile + H2O2
?
show the reaction diagram
-
-
-
-
?
(2Z)-3-(4-hydroxyphenyl)-2-(4-nitrophenyl)prop-2-enenitrile + H2O2
?
show the reaction diagram
-
-
-
-
?
(2Z)-3-[4-(dimethylamino)phenyl]-2-(4-nitrophenyl)prop-2-enenitrile + H2O2
?
show the reaction diagram
-
-
-
-
?
(2Z,4E)-2-(4-aminophenyl)-5-[4-(dimethylamino)phenyl]penta-2,4-dienenitrile + H2O2
?
show the reaction diagram
-
-
-
-
?
1-(1,3-dioxolan-2-ylmethyl)-4-[(E)-2-[4-[4-(2-hydroxyethyl)piperazin-1-yl]phenyl]ethenyl]pyridinium bromide + H2O2
?
show the reaction diagram
-
-
-
-
?
1-(1,3-dioxolan-2-ylmethyl)-4-[(E)-2-[4-[4-(2-hydroxyethyl)piperazin-1-yl]phenyl]ethenyl]pyridinium perchlorate + H2O2
?
show the reaction diagram
-
-
-
-
?
1-butyl-4-[(E)-2-(1H-indol-3-yl)ethenyl]quinolinium perchlorate + H2O2
?
show the reaction diagram
-
-
-
-
?
1-ethyl-4-[(E)-2-(1H-indol-3-yl)ethenyl]quinolinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
1-ethyl-4-[(E)-2-(1H-pyrrol-2-yl)ethenyl]quinolinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
1-ethyl-4-[(E)-2-thiophen-2-ylethenyl]quinolinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
1-methyl-4-[(E)-2-(1H-pyrrol-2-yl)ethenyl]pyridinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
1-methyl-4-[(E)-2-thiophen-2-ylethenyl]pyridinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
2 guaiacol + H2O2
3,3'-dimethoxy-4,4'-biphenylquinone + H2O
show the reaction diagram
-
-
-
?
2 phenol + 2 nitrite + H2O2
2 nitrophenol + H2O
show the reaction diagram
-
-
-
-
?
2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) + H2O2
? + H2O
show the reaction diagram
-
-
-
?
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) + H2O2
? + H2O
show the reaction diagram
2,3-dimethoxyphenol + H2O2
? + H2O
show the reaction diagram
-
-
-
-
?
2,4,6-tribromophenol + H2O2
? + H2O
show the reaction diagram
-
-
-
-
?
2,4,6-trichlorophenol + H2O2
? + H2O
show the reaction diagram
-
-
-
-
?
2-(1,3-benzothiazol-2-yl)-5-(diethylamino)phenol + H2O2
?
show the reaction diagram
-
-
-
-
?
2-(4-[4-[(E)-2-quinolin-2-ylethenyl]phenyl]piperazin-1-yl)ethanol perchlorate (salt) + H2O2
?
show the reaction diagram
-
-
-
-
?
2-aminophenol + H2O2
2-amino-9,10a-dihydro-3H-phenoxazin-3-one
show the reaction diagram
-
-
-
-
ir
2-chloro-4-methoxyphenol + H2O2
? + H2O
show the reaction diagram
-
-
-
-
?
2-chlorophenol + H2O2
?
show the reaction diagram
-
optimal concentrations of 2-chlorophenol and H2O2 are 0.2 mM and 0.3 mM, respectively
-
-
r
2-[(1Z,3Z)-4-[4-(dimethylamino)phenyl]buta-1,3-dien-1-yl]-3-propyl-1,3-benzothiazol-3-ium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
2-[(E)-2-[4-(diethylamino)phenyl]ethenyl]-3-propyl-1,3-benzothiazol-3-ium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
2-[(E)-2-[4-(dimethylamino)naphthalen-1-yl]ethenyl]-3-ethyl-1,3-benzothiazol-3-ium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
2-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1-propylpyridinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
2-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1-propylquinolinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
2-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-3-propyl-1,3-benzothiazol-3-ium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
2-[(E)-2-[4-(diphenylamino)phenyl]ethenyl]-3-propyl-1,3-benzothiazol-3-ium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
2-[(E)-2-[4-(diprop-2-en-1-ylamino)phenyl]ethenyl]-3-ethyl-1,3-benzothiazol-3-ium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
2-[(E)-2-[4-[4-(2-hydroxyethyl)piperazin-1-yl]phenyl]ethenyl]-1-propylquinolinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
2-[(E)-2-[4-[4-(2-hydroxyethyl)piperazin-1-yl]phenyl]ethenyl]-3-propyl-1,3-benzothiazol-3-ium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
2-[(E)-2-[4-[4-(2-hydroxyethyl)piperazin-1-yl]phenyl]ethenyl]-3-propyl-1,3-benzoxazol-3-ium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
2-[(E)-2-[4-[bis(2-hydroxyethyl)amino]phenyl]ethenyl]-3-ethyl-1,3-benzothiazol-3-ium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
2-[[4-(1,3-benzothiazol-2-yl)phenyl](ethyl)amino]ethanol + H2O2
?
show the reaction diagram
-
-
-
-
?
3,3',5,5'-tetramethyl benzidine + H2O2
?
show the reaction diagram
-
-
-
-
?
3,3',5,5'-tetramethylbenzidine + H2O2
? + H2O
show the reaction diagram
-
-
-
-
?
3,4-dimethoxyphenol + H2O2
? + H2O
show the reaction diagram
-
-
-
-
?
3,5-dimethoxyphenol + H2O2
? + H2O
show the reaction diagram
-
-
-
-
?
3-(4-carboxybutyl)-2-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1,3-benzothiazol-3-ium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
3-(4-hydroxyphenyl)propanoic acid + H2O2
? + H2O
show the reaction diagram
-
-
-
-
?
3-(4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]quinolinium-1-yl)propanoate + H2O2
?
show the reaction diagram
-
-
-
-
?
3-ethyl-2-[(E)-2-(9-ethyl-9H-carbazol-3-yl)ethenyl]-1,3-benzothiazol-3-ium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
3-[(E)-2-(4-nitrophenyl)ethenyl]-1H-indole + H2O2
?
show the reaction diagram
-
-
-
-
?
4-(2-aminoethyl)phenol + H2O2
?
show the reaction diagram
-
-
-
-
?
4-(4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]pyridinium-1-yl)butane-1-sulfonate + H2O2
?
show the reaction diagram
-
-
-
-
?
4-(diethylamino)benzaldehyde + H2O2
?
show the reaction diagram
-
-
-
-
?
4-(dimethylamino)benzaldehyde + H2O2
?
show the reaction diagram
-
-
-
-
?
4-aminoantipyrin + H2O2
?
show the reaction diagram
-
-
-
-
?
4-aminophenol + H2O2
?
show the reaction diagram
-
-
-
-
?
4-hydroxybenzaldehyde + H2O2
?
show the reaction diagram
-
-
-
-
?
4-methylphenol + H2O2
?
show the reaction diagram
-
-
-
-
?
4-nitrophenol + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(1E,3E)-4-[4-(dimethylamino)phenyl]buta-1,3-dien-1-yl]-1-methylpyridinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(1E,3E)-4-[4-(dimethylamino)phenyl]buta-1,3-dien-1-yl]-1-pentylpyridinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(1Z)-3-[4-(dimethylamino)phenyl]prop-1-en-1-yl]-1-(2-propoxyethyl)quinolinium perchlorate + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(1Z,3Z)-4-[4-(dimethylamino)phenyl]buta-1,3-dien-1-yl]-1-(2-propoxyethyl)quinolinium perchlorate + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(1Z,3Z)-4-[4-(dimethylamino)phenyl]buta-1,3-dien-1-yl]-1-methylquinolinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(1Z,3Z)-4-[4-(dimethylamino)phenyl]buta-1,3-dien-1-yl]-1-propylquinolinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(1Z,3Z)-4-[4-(dimethylamino)phenyl]buta-1,3-dien-1-yl]-1-[2-(2-hydroxyethoxy)ethyl]quinolinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-(1,3-benzothiazol-2-yl)ethenyl]-N,N-dimethylaniline + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-(1H-indol-3-yl)ethenyl]-1-methylquinolinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-(9-ethyl-9H-carbazol-3-yl)ethenyl]-1-methylpyridinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-benzo[g]quinolin-4-ylethenyl]-N,N-dimethylaniline + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(acetylamino)phenyl]ethenyl]-1-methylpyridinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(acetylamino)phenyl]ethenyl]-1-methylquinolinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(dimethylamino)naphthalen-1-yl]ethenyl]-1-methylpyridinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1-(1,3-dioxolan-2-ylmethyl)pyridinium + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1-(1,3-dioxolan-2-ylmethyl)pyridinium bromide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1-(2-ethoxyethyl)pyridinium bromide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1-(2-hydroxyethyl)pyridinium bromide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1-(2-hydroxyethyl)pyridinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1-(3-methylbutyl)pyridinium bromide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1-(5-ethoxy-5-oxopentyl)pyridinium perchlorate + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1-dodecylquinolinium bromide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1-methylpyridinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1-methylquinolinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1-octylpyridinium bromide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1-propylpyridinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]-1-propylquinolinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(diphenylamino)phenyl]ethenyl]-1-methylpyridinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-(diprop-2-en-1-ylamino)phenyl]ethenyl]-1-methylpyridinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-[4-(2-hydroxyethyl)piperazin-1-yl]phenyl]ethenyl]-1-propylpyridinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(E)-2-[4-[4-(2-hydroxyethyl)piperazin-1-yl]phenyl]ethenyl]-1-propylquinolinium iodide + H2O2
?
show the reaction diagram
-
-
-
-
?
4-[(Z)-2-(4-aminophenyl)-2-cyanoethenyl]benzoic acid + H2O2
?
show the reaction diagram
-
-
-
-
?
5-aminosalicylic acid + H2O2
? + H2O
show the reaction diagram
-
-
-
-
?
5-ethyl-6-phenyl-5,6-dihydrophenanthridine-3,8-diamine + H2O2
?
show the reaction diagram
-
-
-
-
?
7-nitropyren-1-amine + H2O2
?
show the reaction diagram
-
-
-
-
?
8-nitropyren-1-amine + H2O2
?
show the reaction diagram
-
-
-
-
?
9-ethyl-6-nitro-9H-carbazol-3-amine + H2O2
?
show the reaction diagram
-
-
-
-
?
acetaminophen + H2O2
?
show the reaction diagram
-
-
-
-
?
Amplex Red + H2O2
?
show the reaction diagram
-
-
-
-
?
benzhydroxamic acid + H2O2
? + H2O
show the reaction diagram
-
-
-
?
capsaicin + H2O2
5,5'-dicapsaicin + 4'-O-5-dicapsaicin ether + capsaicin polymers
show the reaction diagram
-
-
-
-
?
chlorophyll a + H2O2
?
show the reaction diagram
-
in the active centre of the enzyme the imidazole nitrogen of His-42plays a crucial role in the C-132 deprotonation of chlorophyll a, which results in the chlorophyll a enolate ion resonance hybrid. The chlorophyll enolate is then oxidized to the chlorophyll 132-radical
-
-
?
dihydrocapsaicin + H2O2
5,5-didihydrocapsaicin + 4'-O-5-didihydrocapsaicin ether + dihydrocapsaicin polymers
show the reaction diagram
-
-
-
-
?
electron donor + H2O2
oxidized electron donor + H2O
show the reaction diagram
-
-
-
-
?
esculetin + H2O2
?
show the reaction diagram
ferulic acid + H2O2
? + H2O
show the reaction diagram
-
-
-
?
guaiacol + H2O2
?
show the reaction diagram
-
-
-
-
?
guaiacol + H2O2
? + H2O
show the reaction diagram
-
-
-
-
?
guaiacol + H2O2
tetraguaiacol + H2O
show the reaction diagram
L-3,4-dihydroxyphenylalanine + H2O2
?
show the reaction diagram
-
-
-
-
?
L-tyrosine + H2O2
?
show the reaction diagram
-
-
-
-
?
m-hydroxyanisol + H2O2
? + H2O
show the reaction diagram
-
-
-
-
?
N,N,N',N'-tetramethyl-p-phenyldiamine + H2O2
? + H2O
show the reaction diagram
-
-
-
-
?
N,N-dimethyl-4-[(E)-2-(4-nitrophenyl)ethenyl]aniline + H2O2
?
show the reaction diagram
-
-
-
-
?
N,N-dimethyl-4-[(E)-2-nitroethenyl]aniline + H2O2
?
show the reaction diagram
-
-
-
-
?
N,N-dimethyl-4-[(E)-2-pyridin-4-ylethenyl]aniline + H2O2
?
show the reaction diagram
-
-
-
-
?
N,N-dimethyl-4-[(E)-2-quinolin-2-ylethenyl]aniline + H2O2
?
show the reaction diagram
-
-
-
-
?
N,N-dimethyl-4-[(E)-2-quinolin-2-ylethenyl]aniline perchlorate + H2O2
?
show the reaction diagram
-
-
-
-
?
N,N-dimethyl-4-[(E)-2-quinolin-4-ylethenyl]aniline + H2O2
?
show the reaction diagram
-
-
-
-
?
N,N-diphenyl-4-[(E)-2-pyridin-4-ylethenyl]aniline + H2O2
?
show the reaction diagram
-
-
-
-
?
o-phenylenediamine + H2O2
? + H2O
show the reaction diagram
-
-
-
-
?
o-toluidine + H2O2
? + H2O
show the reaction diagram
-
-
-
-
?
p-hydroxybenzoic acid + H2O2
?
show the reaction diagram
-
-
-
-
?
p-hydroxyphenylacetamide + H2O2
? + H2O
show the reaction diagram
-
a model compound of tyrosine residues in fibroins
-
-
?
p-phenylenediamine + H2O2
benzene-1,4-diamine + H2O
show the reaction diagram
-
-
-
-
?
p-phenylenediamine + H2O2
cyclohexa-2,5-diene-1,4-diimine + H2O
show the reaction diagram
-
-
-
-
?
phenol + H2O2
?
show the reaction diagram
phenol + H2O2
? + H2O
show the reaction diagram
-
-
-
?
reduced 2,2'-azino-bis-(3-ethylbenzthiazole-6-sulfonic acid) + H2O2
oxidized 2,2'-azino-bis-(3-ethylbenzthiazole-6-sulfonic acid) + H2O
show the reaction diagram
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
additional information
?
-
-
HRP in colloidal carbon microspheres/chitosan hybrid keeps its native bioactivity and has high affinity for H2O2
-
-
?
COFACTOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
Fe3+
-
required
Tb3+
-
HRP bioactivity is slightly stimulated and reaches the maximum at 0.01 mM Tb3+
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1-butyl-3-methylimidazolium tetrafluoroborate
-
weak, non-competitive inhibitor
2,4-dinitroresorcinol
-
competitive inhibition of 3,3',5,5'-tetramethylbenzidine oxidation
2-amino-4-nitrophenol
-
competitive inhibition of 3,3',5,5'-tetramethylbenzidine oxidation
9-methylanthracene
-
strong inhibitor of native HRP
acetonitrile
-
about 98% activity is lost for native HRP after incubation in 50% (v/v) acetonitrile at 35°C for 3 h, native HRP only possess less than 20% activity in 30% (v/v) acetonitrile
astilbin
-
efficient inhibitor
butyl-3-methylimidazolium tetrafluoroborate
-
significantly weakens the binding affinity of guaiacol to HRP
fluoranthene
-
strong inhibitor of native HRP
gallic acid
-
competetive inhibition of 3,3',5,5'-tetramethylbenzidine oxidation
La3+
-
the formation of the La3+-HRP complex causes the destruction of the native structure of HRP molecule, leading to the decrease in the non-planarity of the porphyrin ring in the heme group of HRP molecule, and then in the exposure extent of active center, Fe(III) of the porphyrin ring of HRP molecule. Thus, the direct electrochemical and catalytic activities of HRP are decreased. When the molar ratio of La3+ and HRP is 10, the catalytic activity of HRP is decreased by 12% comparing with that of HRP in the absence of La3+
n-Hexanol
-
the enzymatic activity of horseradish peroxidase decreases upon addition of n-hexanol
phenoxy radical
phenylalanine residues are vulnerable to modification by phenoxyl radicals. Radical coupling does not change the secondary structure or the active site of HRP isoform C
resorcinol
-
competitive inhibition of 3,3',5,5'-tetramethylbenzidine oxidation
Tb3+
-
after treatment with 0.2 mM Tb3+, the HRP bioactivity in horseradish leaf is inhibited by 27.2% compared to the sample without Tb3+treatment
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
2-aminothiazole
-
2 mM, 4fold, more than 2fold and 1.4fold activation of 3,3',5,5'-tetramethylbenzidine, o-phenylenediamine and 5-aminosalycylic acid oxidation, respectively
melamine
-
1 mM, approx. 2fold increase in kcat for oxidation of 3,3',5,5'-tetramethylbenzidine
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
1.95
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
pH 6.5, 37°C
0.18 - 0.27
2,2'-azino-bis-(3-ethylbenzthiazole-6-sulfonic acid)
0.99 - 5.4
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
5
2,3-dimethoxyphenol
-
pH 7.0
4.53
2,4,6-tribromophenol
-
pH 7.0, temperature not specified in the publication
5.1
2,4,6-Trichlorophenol
-
pH 7.0, temperature not specified in the publication
0.4
2-chloro-4-methoxyphenol
-
pH 7.0
0.09 - 0.15
3,3',5,5'-tetramethylbenzidine
1.4
3,4-dimethoxyphenol
-
pH 7.0
3.7
3,5-dimethoxyphenol
-
pH 7.0
9.7
3-(4-hydroxyphenyl)propanoic acid
-
pH 7.0
2.36
4-Aminophenol
-
native enzyme, at 30°C
0.081
amplex red
-
native HRP
0.0052 - 2
esculetin
0.966 - 22.5
guaiacol
0.005 - 2.33
H2O2
3.5
m-hydroxyanisol
-
pH 7.0
0.025
N,N,N,N-tetramethyl-p-phenyldiamine
-
pH 7.0
0.38
o-phenylenediamine
-
20°, pH 6.2
2.5
o-toluidine
-
pH 7.0
18.76
p-hydroxybenzoic acid
-
native enzyme, at 30°C
3.59 - 9.45
phenol
607
reduced 2,2'-azino-bis-(3-ethylbenzthiazole-6-sulfonic acid)
25°C, pH 5.0, mutant enzyme
additional information
additional information
-
Hofmeister specific-ion effects
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
736 - 810
2,2'-azino-bis-(3-ethylbenzthiazole-6-sulfonic acid)
571
2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
-
pH 7.0, temperature not specified in the publication
100
2,3-dimethoxyphenol
-
pH 7.0
223
2,4,6-tribromophenol
-
pH 7.0, temperature not specified in the publication
52.5
2,4,6-Trichlorophenol
-
pH 7.0, temperature not specified in the publication
1900
2-chloro-4-methoxyphenol
-
pH 7.0
172 - 790
3,3',5,5'-tetramethylbenzidine
1800
3,4-dimethoxyphenol
-
pH 7.0
90
3,5-dimethoxyphenol
-
pH 7.0
300
3-(4-hydroxyphenyl)propanoic acid
-
pH 7.0
1272
4-Aminophenol
-
native enzyme, at 30°C
240
amplex red
-
native HRP
871 - 890
esculetin
0.952 - 990
guaiacol
201.8
H2O2
at pH 6.0
430
m-hydroxyanisol
-
pH 7.0
650
N,N,N',N'-tetramethyl-p-phenylenediamine
-
pH 7.0
528
o-phenylenediamine
-
20°, pH 6.2
270
o-toluidine
-
pH 7.0
311.7
p-hydroxybenzoic acid
-
native enzyme, at 30°C
691.7
phenol
-
native enzyme, at 30°C
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.61 - 1.49
guaiacol
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
2900
1-butyl-3-methylimidazolium tetrafluoroborate
-
at 25°C
IC50 VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.0853
9-methylanthracene
Armoracia rusticana
-
native HRP
0.0986
fluoranthene
Armoracia rusticana
-
native HRP
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
1045
-
pH 6.8
1150
-
pH 5.0
2.65
-
crude enzyme, using guaiacol as substrate, in 50 mM phosphate buffer (pH 7.5), at 30°C
772.3
-
after 291fold purification, using guaiacol as substrate, in 50 mM phosphate buffer (pH 7.5), at 30°C
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
6
-
oxidation of 5-aminosalycylic acid
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
3 - 7.5
-
oxidation of 5-aminosalicylic acid, approx. 30% of maximal activity at pH 4.5 and pH 7.0, respectively
4.5 - 7
-
assay at 4.5.and 7.0
6 - 8
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
28
-
optimum temperature using phenol or 2-chlorophenol as substrate
30
-
optimum temperature using guaiacol as substrate
TEMPERATURE RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
42
-
thermal denaturation of isolated HRP occurs at temperatures above 42°C, and the enzyme activity decreases rapidly
pI VALUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
6.4
-
calculated from amino acid sequence
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
-
UniProt
Manually annotated by BRENDA team
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
K7ZW28_ARMRU
336
1
35029
TrEMBL
Secretory Pathway (Reliability: 2)
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
40000
-
SDS-PAGE
44000
60000
-
x * 60000, SDS-PAGE
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
monomer
-
1 * 40000, SDS-PAGE
POSTTRANSLATIONAL MODIFICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
glycoprotein
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
F130A/F142A/ F143A/F179A
isoform HRP C, mutant shows marginal improvement in stability
F142A
isoform HRP C, mutation in a residue vulnerable to modification by phenoxyl radicals, mutant still exhibits rapid radical inactivation
F143A
isoform HRP C, mutation in a residue vulnerable to modification by phenoxyl radicals, mutant still exhibits rapid radical inactivation
F179A
isoform HRP C, mutation in a residue vulnerable to modification by phenoxyl radicals, mutant still exhibits rapid radical inactivation
F68A
isoform HRP C, mutation in a residue vulnerable to modification by phenoxyl radicals, mutant still exhibits rapid radical inactivation
F68A/F142A/F143A/F179A
isoform HRP C, dramatic enhancement of radical stability by retaining 41% of its initial activity in conditions when wild-type is completely inactivated
N13D/N57S/N255D/N268D
mutations introduced to reduce glycosylation during production in Pichia pastoris
T171S
loss of a structural restraint in the proximal heme pocket that allows slippage of the proximal heme ligand, but only in the reduced state. This is a remarkably subtle and specific effect that appears to increase the flexibility of the reduced state of the mutant compared to that of the wild-type protein. Significant change in the Fe2+/Fe3+ redox potential of the mutant T171S
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
4 - 9
-
the enzyme shows high stability between pH 4.0 and 9.0. At lower and higher pH values a significant reduction of the enzymatic activity is observed
726432
TEMPERATURE STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
65
-
the enzyme has a half-life of 11.55 min at 65°C
65 - 76.5
-
the melting temperature is at 70°C for the native enzyme and at 75.4°C for the cofactor-modified enzyme rHRP1 and at 76.5°C for the cofactor-modified enzyme rHRP2. the reconstituted HRPs with modified hemin show higher thermostability in aqueous buffer. After the exposure for 1.5 h at 65°C, native HRP retains only about 15% activity, the reconstituted HRPs, however, retained about 60% activity
GENERAL STABILITY
ORGANISM
UNIPROT
LITERATURE
cofactor modification(heminD1 in rHRP1 and heminD2 in rHRP2 instead of heme) increases the substrate affinity and catalytic efficiency both in aqueous buffer and some organic solvents, the catalytic efficiency for phenol oxidation is increased by about 55% for rHRP1 in aqueous buffer, and it is also increased by about 70% for rHRP1 in 10% (v/v) acetonitrile.
-
the optimal buffer for the assay of purified HRP is 50 mM phosphate buffer (pH 7.5)
-
ORGANIC SOLVENT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
guanidine-HCl
unfolding at 7.6 M
urea
resistant to unfolding by urea
STORAGE STABILITY
ORGANISM
UNIPROT
LITERATURE
-20°C, 50 mM phosphate buffer (pH 7.5) containing 20% (v/v) glycerol, at least 6 months, less than 5% loss of activity
-
0-2°C, 50 mM phosphate buffer (pH 7.5), 48-72 h, 40-45% loss of activity
-
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
ammonium sulfate precipitation, ion-exchange chromatography and gel filtration
-
hydrophobic charge induction chromatography with 4-mercapto-ethyl-pyridine and Superdex 75 gel filtration
-
m-aminophenylboronic acid agarose column chromatography
-
ultrasonication, ammonium sulfate salt precipitation, and phenyl Sepharose column chromatography
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expression in Pichia pastoris
expressed in Pichia pastoris strain CBS7435
-
expression in Pichia pastoris
expression of Thr171Ser mutant enzyme in Escherichia coli
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
synthesis
expression of 19 individual HRP isoenzymes recombinantly in the yeast Pichia pastoris and optimization of a 2-step purification strategy
analysis
synthesis
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Goodwin, D.C.; Hertwig, K.M.
Peroxidase-catalyzed oxidation of capsaicinoids: steady-state and transient-state kinetic studies
Arch. Biochem. Biophys.
417
18-26
2003
Armoracia rusticana
Manually annotated by BRENDA team
Karasyova, E.I.; Naumchik, I.V.; Metelitza, D.I.
Activation of peroxidase-catalyzed oxidation of aromatic amines with 2-aminothiazole and melamine
Biochemistry
68
54-62
2003
Armoracia rusticana
Manually annotated by BRENDA team
Gilabert, M.A.; Fenoll, L.G.; Garcia-Molina, F.; Tudela, J.; Garcia-Canovas, F.; Rodriguez-Lopez, J.N.
Kinetic characterization of phenol and aniline derivates as substrates of peroxidase
Biol. Chem.
385
795-800
2004
Armoracia rusticana
Manually annotated by BRENDA team
Kamal, J.K.; Behere, D.V.
Activity, stability and conformational flexibility of seed coat soybean peroxidase
J. Inorg. Biochem.
94
236-242
2003
Armoracia rusticana, Glycine max
Manually annotated by BRENDA team
Howes, B.D.; Brissett, N.C.; Doyle, W.A.; Smith, A.T.; Smulevich, G.
Spectroscopic and kinetic properties of the horseradish peroxidase mutant T171S. Evidence for selective effects on the reduced state of the enzyme
FEBS J.
272
5514-5521
2005
Armoracia rusticana (P00433), Armoracia rusticana
Manually annotated by BRENDA team
Sanz, V.; de Marcos, S.; Castillo, J.R.; Galban, J.
Application of molecular absorption properties of horseradish peroxidase for self-indicating enzymatic interactions and analytical methods
J. Am. Chem. Soc.
127
1038-1048
2005
Armoracia rusticana
Manually annotated by BRENDA team
Nazari, K.; Mahmoudi, A.; Shahrooz, M.; Khodafarin, R.; Moosavi-Movahedi, A.A.
Suicide-peroxide inactivation of horseradish peroxidase in the presence of sodium n-dodecyl sulphate: a study of the enzyme deactivation kinetics
J. Enzyme Inhib. Med. Chem.
20
285-292
2005
Armoracia rusticana
Manually annotated by BRENDA team
Bauduin, P.; Nohmie, F.; Touraud, D.; Neueder, R.; Kunz, W.; Ninham, B.W.
Hofmeister specific-ion effects on enzyme activity and buffer pH: Horseradish peroxidase in citrate buffer
J. Mol. Liq.
123
14-19
2005
Armoracia rusticana
-
Manually annotated by BRENDA team
Andreu, R.; Ferapontova, E.E.; Gorton, L.; Calvente, J.J.
Direct electron transfer kinetics in horseradish peroxidase electrocatalysis
J. Phys. Chem. B
111
469-477
2007
Armoracia rusticana
Manually annotated by BRENDA team
Ding, C.; Zhang, M.; Zhao, F.; Zhang, S.
Disposable biosensor and biocatalysis of horseradish peroxidase based on sodium alginate film and room temperature ionic liquid
Anal. Biochem.
378
32-37
2008
Armoracia rusticana
Manually annotated by BRENDA team
Kamal, J.K.; Behere, D.V.
Kinetic stabilities of soybean and horseradish peroxidases
Biochem. Eng. J.
38
110-114
2008
Glycine max (O22443), Armoracia rusticana (P00433)
-
Manually annotated by BRENDA team
Munoz-Munoz, J.L.; Garcia-Molina, F.; Varon, R.; Rodriguez-Lopez, J.N.; Garcia-Canovas, F.; Tudela, J.
Kinetic characterization of the oxidation of esculetin by polyphenol oxidase and peroxidase
Biosci. Biotechnol. Biochem.
71
390-396
2007
Armoracia rusticana
Manually annotated by BRENDA team
Hong, E.S.; Kwon, O.Y.; Ryu, K.
Strong substrate-stabilizing effect of a water-miscible ionic liquid [BMIM][BF(4)] in the catalysis of horseradish peroxidase
Biotechnol. Lett.
30
529-533
2008
Armoracia rusticana
Manually annotated by BRENDA team
Bhatti, H.N.; Akbar, M.N.; Zia, M.A.
Kinetics of irreversible thermal denaturation of horseradish peroxidase
J. Chem. Soc. Pak.
29
99-102
2007
Armoracia rusticana
-
Manually annotated by BRENDA team
Bhatnagar, P.K.; Das, D.; Suresh, M.R.
Sequential affinity purification of peroxidase tagged bispecific anti-SARS-CoV antibodies on phenylboronic acid agarose
J. Chromatogr. B
863
235-241
2008
Armoracia rusticana
Manually annotated by BRENDA team
Lee, Y.M.; Kwon, O.Y.; Yoo, I.K.; Ryu, K.G.
Effect of ionic liquid on the kinetics of peroxidase catalysis
J. Microbiol. Biotechnol.
17
600-603
2007
Armoracia rusticana
Manually annotated by BRENDA team
Krieg, R.; Eitner, A.; Guenther, W.; Schuerer, C.; Lindenau, J.; Halbhuber, K.J.
N,N-dialkylaminostyryl dyes: specific and highly fluorescent substrates of peroxidase and their application in histochemistry
J. Mol. Histol.
39
169-191
2008
Armoracia rusticana
Manually annotated by BRENDA team
Kamidate, T.; Maruya, M.; Tani, H.; Ishida, A.
Application of 4-iodophenol-enhanced luminol chemiluminescence to direct detection of horseradish peroxidase encapsulated in liposomes
Anal. Sci.
25
1163-1166
2009
Armoracia rusticana
Manually annotated by BRENDA team
Nagaraja, P.; Shivakumar, A.; Kumar Shrestha, A.
Development and evaluation of kinetic spectrophotometric assays for horseradish peroxidase by catalytic coupling of paraphenylenediamine and mequinol
Anal. Sci.
25
1243-1248
2009
Armoracia rusticana
Manually annotated by BRENDA team
Feng, J.Y.; Liu, J.Z.; Ji, L.N.
Thermostability, solvent tolerance, catalytic activity and conformation of cofactor modified horseradish peroxidase
Biochimie
90
1337-1346
2008
Armoracia rusticana
Manually annotated by BRENDA team
Glettenberg, M.; Niemeyer, C.M.
Tuning of peroxidase activity by covalently tethered DNA oligonucleotides
Bioconjug. Chem.
20
969-975
2009
Armoracia rusticana
Manually annotated by BRENDA team
Nagaraja, P.; Shivakumar, A.; Shrestha, A.K.
Peroxidase-catalyzed oxidative coupling of paraphenylenediamine with 3-dimethylaminobenzoic acid: application in crude plant extracts
J. Agric. Food Chem.
57
5173-5177
2009
Armoracia rusticana
Manually annotated by BRENDA team
Roth, J.P.; Cramer, C.J.
Direct examination of H2O2 activation by a heme peroxidase
J. Am. Chem. Soc.
130
7802-7803
2008
Armoracia rusticana
Manually annotated by BRENDA team
Matsuo, T.; Hayashi, A.; Abe, M.; Matsuda, T.; Hisaeda, Y.; Hayashi, T.
Meso-unsubstituted iron corrole in hemoproteins: Remarkable differences in effects on peroxidase activities between myoglobin and horseradish peroxidase
J. Am. Chem. Soc.
131
15124-15125
2009
Armoracia rusticana
Manually annotated by BRENDA team
Guo, S.; Cao, R.; Lu, A.; Zhou, Q.; Lu, T.; Ding, X.; Li, C.; Huang, X.
One of the possible mechanisms for the inhibition effect of Tb(III) on peroxidase activity in horseradish (Armoracia rusticana) treated with Tb(III)
J. Biol. Inorg. Chem.
13
587-597
2008
Armoracia rusticana
Manually annotated by BRENDA team
Biswas, R.; Das, A.R.; Pradhan, T.; Touraud, D.; Kunz, W.; Mahiuddin, S.
Spectroscopic studies of catanionic reverse microemulsion: correlation with the superactivity of horseradish peroxidase enzyme in a restricted environment
J. Phys. Chem. B
112
6620-6628
2008
Armoracia rusticana
Manually annotated by BRENDA team
Violante-Mota, F.; Tellechea, E.; Moran, J.F.; Sarath, G.; Arredondo-Peter, R.
Analysis of peroxidase activity of rice (Oryza sativa) recombinant hemoglobin 1: Implications for in vivo function of hexacoordinate non-symbiotic hemoglobins in plants
Phytochemistry
71
21-26
2010
Oryza sativa, Armoracia rusticana (P00433), Armoracia rusticana
Manually annotated by BRENDA team
Chen, X.; Li, C.; Liu, Y.; Du, Z.; Xu, S.; Li, L.; Zhang, M.; Wang, T.
Electrocatalytic activity of horseradish peroxidase/chitosan/carbon microsphere microbiocomposites to hydrogen peroxide
Talanta
77
37-41
2008
Armoracia rusticana
Manually annotated by BRENDA team
Koelsch, M.; Mallak, R.; Graham, G.G.; Kajer, T.; Milligan, M.K.; Nguyen, L.Q.; Newsham, D.W.; Keh, J.S.; Kettle, A.J.; Scott, K.F.; Ziegler, J.B.; Pattison, D.I.; Fu, S.; Hawkins, C.L.; Rees, M.D.; Davies, M.J.
Acetaminophen (paracetamol) inhibits myeloperoxidase-catalyzed oxidant production and biological damage at therapeutically achievable concentrations
Biochem. Pharmacol.
79
1156-1164
2010
Armoracia rusticana
Manually annotated by BRENDA team
Petacci, F.; Freitas, S.S.; Brunetti, I.L.; Khalil, N.M.
Inhibition of peroxidase activity and scavenging of reactive oxygen species by astilbin isolated from Dimorphandra mollis (Fabaceae, Caesalpinioideae)
Biol. Res.
43
63-74
2010
Armoracia rusticana
Manually annotated by BRENDA team
Lavery, C.B.; Macinnis, M.C.; Macdonald, M.J.; Williams, J.B.; Spencer, C.A.; Burke, A.A.; Irwin, D.J.; D'Cunha, G.B.
Purification of peroxidase from horseradish (Armoracia rusticana) roots
J. Agric. Food Chem.
58
8471-8476
2010
Armoracia rusticana
Manually annotated by BRENDA team
Guo, S.; Wang, L.; Lu, A.; Lu, T.; Ding, X.; Huang, X.
Inhibition mechanism of lanthanum ion on the activity of horseradish peroxidase in vitro
Spectrochim. Acta A. Mol. Biomol. Spectrosc.
75
936-940
2010
Armoracia rusticana
Manually annotated by BRENDA team
Gumiero, A.; Murphy, E.J.; Metcalfe, C.L.; Moody, P.C.; Raven, E.L.
An analysis of substrate binding interactions in the heme peroxidase enzymes: a structural perspective
Arch. Biochem. Biophys.
500
13-20
2010
Armoracia rusticana (P00433)
Manually annotated by BRENDA team
Zakharova, G.S.; Uporov, I.V.; Tishkov, V.I.
Horseradish peroxidase: modulation of properties by chemical modification of protein and heme
Biochemistry
76
1391-1401
2011
Armoracia rusticana
Manually annotated by BRENDA team
Hynninen, P.H.; Kaartinen, V.; Kolehmainen, E.
Horseradish peroxidase-catalyzed oxidation of chlorophyll a with hydrogen peroxide: characterization of the products and mechanism of the reaction
Biochim. Biophys. Acta
1797
531-542
2010
Armoracia rusticana
Manually annotated by BRENDA team
Spadiut, O.; Rossetti, L.; Dietzsch, C.; Herwig, C.
Purification of a recombinant plant peroxidase produced in Pichia pastoris by a simple 2-step strategy
Protein Expr. Purif.
86
89-97
2012
Armoracia rusticana
Manually annotated by BRENDA team
Deva Kumar, E.T.; Ganesh, V.
Immobilization of horseradish peroxidase enzyme on nanoporous titanium dioxide electrodes and its structural and electrochemical characterizations
Appl. Biochem. Biotechnol.
174
1043-1058
2014
Armoracia rusticana
Manually annotated by BRENDA team
Zhou, B.; Wang, P.; Cui, L.; Yu, Y.; Deng, C.; Wang, Q.; Fan, X.
Self-crosslinking of silk fibroin using H2O2-horseradish peroxidase system and the characteristics of the resulting fibroin membranes
Appl. Biochem. Biotechnol.
182
1548-1563
2017
Armoracia rusticana
Manually annotated by BRENDA team
Kim, S.J.; Joo, J.C.; Song, B.K.; Yoo, Y.J.; Kim, Y.H.
Engineering a horseradish peroxidase C stable to radical attacks by mutating multiple radical coupling sites
Biotechnol. Bioeng.
112
668-676
2015
Armoracia rusticana (P80679), Armoracia rusticana
Manually annotated by BRENDA team
Capone, S.; Corajevic, L.; Bonifert, G.; Murth, P.; Maresch, D.; Altmann, F.; Herwig, C.; Spadiut, O.
Combining protein and strain engineering for the production of glyco-engineered horseradish peroxidase C1A in Pichia pastoris
Int. J. Mol. Sci.
16
23127-23142
2015
Armoracia rusticana (P00433), Armoracia rusticana
Manually annotated by BRENDA team
Kong, M.; Zhang, Y.; Li, Q.; Dong, R.; Gao, H.
Kinetics of horseradish peroxidase-catalyzed nitration of phenol in a biphasic system
J. Microbiol. Biotechnol.
27
297-305
2017
Armoracia rusticana
Manually annotated by BRENDA team
Zhao, J.; Lu, C.; Franzen, S.
Distinct enzyme-substrate interactions revealed by two dimensional kinetic comparison between dehaloperoxidase-hemoglobin and horseradish peroxidase
J. Phys. Chem. B
119
12828-12837
2015
Armoracia rusticana, Amphitrite ornata, Amphitrite ornata (Q9NAV8)
Manually annotated by BRENDA team
Wang, S.; Xu, J.; Wang, Q.; Fan, X.; Yu, Y.; Wang, P.; Zhang, Y.; Yuan, J.; Cavaco-Paulo, A.
Preparation and rheological properties of starch-g-poly(butyl acrylate) catalyzed by horseradish peroxidase
Process Biochem.
59
104-110
2017
Armoracia rusticana
-
Manually annotated by BRENDA team
Krainer, F.; Pletzenauer, R.; Rossetti, L.; Herwig, C.; Glieder, A.; Spadiut, O.
Purification and basic biochemical characterization of 19 recombinant plant peroxidase isoenzymes produced in Pichia pastoris
Protein Expr. Purif.
95
104-112
2014
Armoracia rusticana (K7ZW28), Armoracia rusticana (K7ZW57), Armoracia rusticana (K7ZWW6), Armoracia rusticana
Manually annotated by BRENDA team